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Abstract— The Epipolar Geometry Toolbox (EGT) was realized
to provide a MATLAB user with an extensible framework for
the creation and visualization of multi-camera scenarios and the
manipulation of the visual information and the geometry between
them. Functions provided, for both pin-hole and panoramic
vision sensors, include camera placement and visualization,
computation and estimation of epipolar geometry entities and
many others. The compatibility of EGT with the Robotics
Toolbox [7] allows to address general vision-based controlissues.
Two applications of EGT to visual servoing tasks are here
provided. This article introduces the Toolbox in tutorial form.
Examples are provided to show its capabilities. The complete
toolbox, the detailed manual and demo examples are freely
available on the EGT web site [21].

I. I NTRODUCTION

The Epipolar Geometry Toolbox (EGT) is a toolbox de-
signed for MATLAB [29]. MATLAB is a software envi-
ronment, available for a wide range of platforms, designed
around linear algebra principles and graphical presentations
also for large datasets. Its core functionalities are extended
by the use of many additional toolboxes. Combined with
interactive MATLAB environment and advanced graphical
functions, EGT provides a wide set of functions to approach
computer vision problems especially with multiple views.

The Epipolar Geometry Toolbox allows to design vision-
based control systems for both pin-hole and central panoramic
cameras. EGT is fully compatible with the well known
Robotics Toolbox by Corke [7]. The increasing interest in
robotic visual servoing for both6DOF kinematic chains and
mobile robots equipped with pin-hole or panoramic cameras
fixed to the workspace or to the robot, motivated the develop-
ment of EGT.

Several authors, such as [4], [9], [18], [20], [24], have
proposed new visual servoing strategies based on the geom-
etry relating multiple views acquired from different camera
configurations, i.e. the Epipolar Geometry [14].

In these years we have observed the necessity to develop
a software environment that could help researchers to rapidly
create a multiple camera setup, use visual data and design
new visual servoing algorithms. With EGT we provide a wide
set of easy-to-use and completely customizable functions to
design general multi-camera scenarios and manipulate the
visual information between them.

Let us emphasize that EGT can also be successfully em-
ployed in many other contexts when single and multiple view
geometry is involved as, for example, in visual odometry and
structure from motion applications [23] [22]. For example in
the first work an interesting “visual odometry” approach for
robot SLAM is proposed in which the multiple view geometry
is used to estimate the camera motion from pairs of images
without requiring the knowledge of the observed scene.

EGT, as the Robotics Toolbox, is a simulation environment,
but the EGT functions can be easily embedded by the user in
Simulink models. In this way, thanks to the MATLAB Real-
Time Workshop, the user can generate and execute stand-alone
C code for many off-line and real-time applications.

A distinguishable remark of EGT is that it can be used
to create and manipulate visual data provided by both pin-
hole and panoramic cameras. Catadioptric cameras, due to
their wide field of view, has been recently applied in visual
servoing [32].

The second motivation lead to the development of EGT was
the increasing distribution of “free” software in the latest years,
on the basis of the Free Software Foundation [10] principles.
In this way users are allowed, and also encouraged, to adapt
and improve the program as dictated by their needs. Examples
of programs that follow these principles include for instance
the Robotics Toolbox [7], for the creation of simulations
in robotics, and the Intel’s OpenCVC++ libraries for the
implementation of computer vision algorithms, such as image
processing and object recognition [1].

The third important motivation for EGT was the availability
and increasing sophistication of MATLAB. EGT could have
been written in other languages, such asC, C++ and this
would have freed it from dependency on other software.
However these low-level languages are not so conducive to
rapid program development as MATLAB.

This tutorial assumes the reader has familiarity with MAT-
LAB and presents the basic EGT functions, after short theory
recalls, together with intuitive examples. In this tutorial we
also present two applications of EGT to visual servoing.

Section 2 presents the basic vector notation in EGT, while
in Section 3 the pin-hole and omnidirectional camera models
together with EGT basic functions are presented. In Section4
we present the setup for multiple camera geometry (Epipolar
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Fig. 1. Main reference frames notation and vector representation in EGT.

Geometry) while in Section 5 two applications of EGT to
visual servoing are presented together with simulation results.
In Section 6 we make a comparison between EGT and other
software packages. EGT can be freely downloaded at [21],
can be used under Windows and requires MATLAB 6.5 or
upper. The detailed manual is provided in the EGT web site,
with a large set of examples, figures and source code also for
beginners.

II. BASIC VECTOR NOTATION

We here present the basic vector notation adopted in
Epipolar Geometry Toolbox. All scene pointsXw ∈ IR3

are expressed in theworld frame Sw =< Owxwywzw >

(Fig.1). When referred to thepin-hole camera frame
Sc =< Ocxcyczc > they will be indicated withXc. Moreover
all scene points expressed w.r.t. acentral catadioptric camera
frameSm =< Omxmymzm > will be indicated withXm. For
the reader convenience we briefly present the basic vector
notation and transformation [25]. Refer to Fig. 1 and consider
the3×1 vectorXc ∈ Sc. It can be expressed inSw as follows:

Xw = Rc
wXc + tcw (1)

where tcw is the translational vector centered inSw and
pointing toward theSc frame (Fig. 1). The matrixRc

w is the
rotation necessary to align the world frame with the camera
frame. For example we may chooseRc

w = Rroll,pitch,yaw =
Rz,θRy,φRx,ψ. The homogeneous notation aims to express
(1) in linear form:

X̃w = Hc
wX̃c

whereX̃w = [Xw
T 1]T , X̃c = [Xc

T 1]T . The 4 × 4 matrix
Hc
w is referred to ashomogeneous transformationmatrix:

Hc
w =

[
Rc
w tcw

0T 1

]

Analogously, a pointXw can be expressed in the camera frame
by the following transformation

X̃c =

[
Rc
w
T −Rc

w
T
tcw

0T 1

]
X̃w (2)

Consider now the more general case in which two camera
frames, referred to asactual and desired, are observing the
same pointXw. From (1)

Xw = Rd
wXd + tdw (3)

Xw = Ra
wXa + taw (4)

Substituting (4) in (3) it follows

Xd = Rd
w

T
Ra
w︸ ︷︷ ︸

Ra

d

Xa + Rd
w

T (
taw − tdw

)
︸ ︷︷ ︸

ta

d

(5)

Equation (5) will be very useful in EGT for the analytical
computation of epipolar geometry where it is necessary to
know the relative displacementtad and orientationRa

d between
the two camera frames.

III. P IN-HOLE AND OMNIDIRECTIONAL CAMERA MODELS

EGT provides easy-to-use functions for the placement of
pin-hole and central catadioptric (or omnidirectional) cameras.
Their imaging model has been here implemented to allow
users to manipulate the visual information. In this section
the fundamentals of perspective and omnidirectional camera
models are quickly reviewed. The reader is referred to [14],
[17], [5] for a detailed treatment. According to the purposes
of this tutorial, some basic EGT code examples are reported
together with the theory.

A. Perspective camera

Consider a pin-hole camera located atOc as in
Fig. 2. The full perspective model describes the relation-
ship between a 3D point (in homogeneous coordinates)
X̃w =

[
X Y Z 1

]T
expressed in the world frame and

its projectionm̃ =
[

u v 1
]T

onto the image plane ac-
cording to

m̃ = KΠX̃w

whereK ∈ IR3×3 is the cameraintrinsic parametersmatrix
given by:

K =




kuf γ u0

0 kvf v0

0 0 1
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Here (u0, v0) are the pixels coordinates, in the image frame,
of the principal point (i.e. the intersection point between the
image plane and the optical axiszc), ku andkv are the number
of pixels per unit distance in image coordinates,f is the focal
length (in meters) andγ is the orthogonality factor of the CCD
image axes (skew-factor).

Matrix Π = [R | t] ∈ IR3×4 is the so-calledexternal pa-
rameters camera matrix, that contains the rotationR and
the translationt between the world and the camera frames.
According to the commonly used notation, in the case of
no camera rotation the optical axiszc of pin-hole cameras
is parallel to theyw axis ofSw. We then define:

R =
(
Rx,−π/2Rrpy

)T

t = −
(
Rx,−π/2Rrpy

)T
tcw

In order to directly obtain the4× 4 homogeneous matrixHw
c

the functionf_Rt2H is provided

>> H=f_Rt2H(R,t).

Note that with the use off_Rt2H the position t of a
pin-hole camera is specified with respect to theworld frame
while the rotationR is referred to thepin-hole camera frame
axes. During the testing phase at the University of Siena this
choice was appreciated from students of Robotics and Vision
classes that addressed it as very intuitive.

Example 1 (3D scene and pin-hole camera placement):
Consider now a pin-hole camera rotated by
R = Ry,π/4 ∈ IR3×3 and translated byt = [−10,−5, 0]T :

>> R=rotoy(pi/4);
>> t=[-10,-5,0]’ ;
>> H=f_Rt2H(R,t);

In EGT the camera frame and the associated 3D camera
can be visualized with functionsf_3Dframe(H) and
f_3Dcamera(H) respectively, where H is the 4×4
homogeneous transformation describing position and
orientation of the camera with respect toSw

>> f_3Dframe(H,1); %camera frame
>> hold on
>> f_3Dcamera(H); %3D pin-hole camera
>> axis equal, grid on, view(12,34)
>> title(’3D setup - EGT Tutorial - Ex.1’)

Plot of 3D view is reported in Fig. 3(a). All the functions
have further options. See the EGT Manual [21] for details.

We can also place a set ofN 3D pointsXi
w = [X i, Y i, Zi]

(e.g. the rectangular panel vertexes) defined as

Xw =




X1 X2 . . . XN

Y 1 Y 2 . . . Y N

Z1 Z2 . . . ZN



 ∈ IR3×N
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Fig. 3. Example 1. (a) A pin-hole camera is positioned int = [−10,−5, 0]
in the 3D world frame and rotated byπ/4 around they-axis. (b) The 3D
scene points are projected onto the image plane. Note that inthis caseK = I

for simplicity.

by the use of functionf_scenepnt(X)

>> Xi=[-3, 3, 3, -3];
>> Yi=[ 3, 3, 3, 3];
>> Zi=[-3, -3, 3, 3];
>> Xw=[Xi; Yi; Zi];
>> f_scenepnt(Xw);
>> f_3Dwfenum(Xw); %enumerate points

The perspective projectionm = [u, v]T of points Xw

is obtained withf_perspproj(Xw,H,K) :

>> [u,v]=f_perspproj(Xw,H,K);
>> plot(u,v,’rO’)

Projection of scene points is represented in Fig. 3(b).
�

Note that while the above example describes the placement of
3D pointsXw, EGT is also able to build scenes with more
complex 3D objects returning surface points and normals (see
function f_3Dsurface in [21]).

B. Omnidirectional Camera Model

Omnidirectional cameras combine reflective surfaces (mir-
rors) and lenses. Several types of panoramic cameras can be
obtained simply combining cameras (pin-hole or orthographic)
and mirrors (hyperbolic, parabolic or elliptical) [5].

Panoramic cameras are classified according to the fact that
they satisfy or not the single viewpoint constraint guaranteeing
that the visual sensor only measures the light through a single
point. Note that this constraint is required for the existence
of epipolar geometry and for the generation of geometrically
correct images [28] [12].

In [3], Baker et al. derive the entire class of catadioptric
systems verifying the single viewpoint constraint. Among
these EGT takes into account catadioptric systems consisting
of pin-hole cameras coupled with hyperbolic mirrors, and
orthographic cameras coupled with parabolic mirrors.

In [11] a unified projection model for central catadioptric
camera systems has been proposed. In particular it was shown
that all central panoramic cameras can be modelled by a
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particular mapping on a sphere, followed by a projection from
a point on the camera optical axis onto the image plane.

In order to keep in EGT a physically meaningful graphi-
cal representation we decided, without loosing generality, to
represent the central panoramic cameras not as spheres in the
space but with the couple of a CCD camera with a parabolic
or hyperbolic mirror (see for example Fig. 5).

In what follows the imaging model for a pin-hole camera
with hyperbolic mirror is described.

Consider now the basic scheme in Fig. 4. Note that in this
case all frames (for both the camera and the mirror) are aligned
with the world frame. Three important reference frames are
defined:(1) the world reference system centered atOw whose
vector isXw; (2) the mirror coordinate system centered at the
focusOm whose vector isX = [X, Y, Z]T ; and(3) the camera
coordinate system centered atOc whose vector isXc.

Henceforth all equations will be expressed in the mirror
reference frame if not stated otherwise.

Refer to Fig. 4 and leta and b be the hyperbolic mirror
parameters

(z + e)2

a2
− x2 + y2

b2
= 1

with eccentricitye =
√

a2 + b2, the transformation to obtain
the projectionu in the pin-hole camera frame (see Fig. 4) is
given by

m = K
1

2e

(
Rm
c

(
λRm

w
T (Xw − tmw )

)
+ tmc

)
(6)

whereλ = b2(−eZ±a||X||)
b2Z2−a2X2−a2Y 2 is a nonlinear function ofX. K

is the internal calibration matrix of CCD camera looking at the
mirror. tmc is the mirror center expressed in the camera frame
and corresponds to[0, 0, 2e]. Rm

c is the matrix representing
the rotation between camera and mirror frames. Analogously
tmw and Rm

w represent the mirror configuration (rotation and
orientation) with respect to the world frame.

In EGT a central catadioptric camera is defined by speci-
fying the homogeneous transformation matrix between mirror
and world frames

Hm
w =

[
Rm
w tmw

0T 1

]

Example 2 (Panoramic camera placement):In EGT a
panoramic camera can be placed and visualized. Let us place
the camera att=[-5,-5,0]’ with orientationR≡ Rz,π/4.
EGT provides a function to simply visualize the panoramic
camera in the 3D world frame as in Fig. 5.

>> H=[rotoz(pi/4) , [-5,-5,0]’;
>> 0 0 0 , 1 ];
>> f_3Dpanoramic(H);

Moreover, for assigned camera calibration matrixK:

K=[10ˆ3 0 320;
0 10ˆ3 240;
0 0 1 ];

the projection of a 3D pointXw=[0,0,4]’ in both
the camera (m) and mirror (Xh) frames can be obtained from:

>> [m,Xh] = f_panproj(Xw,H,K);
>>
m =
4.1048e+002
2.4000e+002
1.0000e+000

Xh =
6.0317e-001
3.7881e-017
3.4120e-001
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Graphical results are reported in Fig. 5 and more accurately
described in theEGT Reference Manual. More examples can
be found in the directorydemos.

�

IV. EPIPOLAR GEOMETRY

In this section the EGT functions dealing with the Epipolar
Geometry are presented.

A. Epipolar geometry for pin-hole cameras

Consider two perspective views of the same scene taken
from distinct viewpointsO1 and O2, as in Fig.6. Letm1

and m2 be the corresponding points in two views, i.e. the
perspective projection throughO1 andO2, of the same point
Xw, in both image planesI1 andI2, respectively. The epipolar
geometry defines the geometric relationship between these
corresponding points.

Associated with Fig.6 we define the following set of geo-
metric entities [14], [17]:

Definition 1: Epipolar Geometry

1) The plane passing through the optical centersO1 and
O2 and the scene pointXw, is called anepipolar plane.
Note that in aN -points scene, a pencil of planes exists
(one for each scene pointXi

w)
2) The projectione1 (e2) of one camera centerO1 (O2)

onto the image plane of the other camera frameI2

(I1) is called epipole. The epipole will be expressed
in homogeneous coordinates

ẽ1 =
[

e1x e1y 1
]T

ẽ2 =
[

e2x e2y 1
]T

3) The intersection of the epipolar plane forXw with image
planeI1 (I2), defines theepipolar linel1 (l2). Note that
all epipolar lines pass through the epipole.

One of the main parameters of the epipolar geometry is
the 3×3 Fundamental MatrixF that conveys most of the
information about the relative position and orientation(t,R)
between the two views. Moreover, the fundamental matrix
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Fig. 7. Example 3. (a) 3D simulation setup for epipolar geometry, with both
cameras looking at two scene pointsX

1
w and X

1
w; (b)-(c) image planes of

both pin-hole cameras with corresponding features and epipoles. Note that all
epipolar lines meet at the epipole and pass through the corresponding points.

algebraically relates corresponding points in the two images
through theEpipolar Constraint:

Theorem 1:(Epipolar Constraint ) Let be given two views
of the same 3D pointXw, both characterized by their relative
position and orientation(t,R) and the internal calibration pa-
rametersK1 andK2. Moreover, letm1 andm2 (homogeneous
notation) be the two corresponding projections ofXw in both
image planes. The epipolar constraint is:

mT
2 Fm1 = 0 where F = K2

−T [t]×RK1
−1.

and [t]× is the3 × 3 skew-symmetric matrix associated tot.
�

The epipolar geometry is reviewed extensively in [14], [17].
Example 3 (Epipolar Geometry for pinhole cameras):

The computation of epipolar geometry with EGT is
straightforward. Consider a two-views scene as in Fig. 7(a)
where the first camera is placed att1 = [−10, −10, 0]T

with orientation R1 = Ry,π/4, while the second one is
coincident with the world frame, i.e.t2 = [0, 0, 0]T with
orientation R2 = I. Pin-hole cameras can be shown and
their homogeneous transformation matricesH1 and H2 can
be obtained withf_Rt2H as described in Sec. III-A. Two
feature points inX1

w = [0, 10, 10]T andX2
w = [−10, 5, 5]T

are observed and projected inm1
1, m2

1 andm1
2, m2

2 onto the



two image planes, respectively.
In EGT the computation of epipoles and fundamental

matrix is obtained through function

>> [e1,e2,F]=f_epipole(H1,H2,K1,K2);

while the epipolar lines are retrieved with:

>> [l1,l2]=f_epipline(m1,m2,F);

Note that l1 (l2) is a vector in IR3 in homogeneous
coordinates. In (Fig. 7(b)) both image planes are represented
together with feature points, epipoles and the corresponding
epipolar lines. In this case, for the sake of simplicity, it is
assumed thatK = I.

B. Epipolar Geometry for panoramic cameras

As in the pinhole cameras, the epipolar geometry is here
defined when a pair of panoramic views is available. Note
however that in this case epipolar lines become epipolar
conics. The reader is referred to [11], [27] for an exhaustive
treatment.

Let now consider two panoramic cameras (with equal hy-
perbolic mirrorQ) with foci Om1 and Om2 respectively, as
represented in Fig. 8. Moreover, let beR andt be the rotation
and translation between the two mirror frames, respectively.
Let Xh1 andXh2 represent the mirror projections of the scene
point X onto both hyperbolic mirrors.

The coplanarity ofXh1, Xh2 andX can be expressed as:

XT
h2EXh1 = 0 where E = [t]× R (7)

Equivalently to the pin-hole case, the3×3 matrixE is referred
to as theessential matrix[15].

Vectors Xh1, Xh2 and t define theepipolar planewith
normal vectornπ, that intersects both mirror quadricsQ in
the two epipolar conicsC1 andC2 [26]. For each 3D point
Xi a pair of epipolar conicsCi

1 and Ci
2 exist for the two

views setup.
All the epipolar conics pass through two pairs of epipoles,

e1 ande′1 for one mirror ande2 ande′2 for the second one,
which are defined as the intersections of the two mirrorsQ
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Fig. 8. Epipolar geometry for panoramic camera sensors.

with the baselineOm1Om2 (see Fig.8).
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tation and visualization in EGT.

Example 4 (Epipolar geometry for panoramic cameras):
Similar camera and scene configurations as for the Example 3
have been set. Now we placed 8 feature points in the space.
By using the EGT function:

>> [e1c,e1pc,e2c,e2pc] = f_panepipoles(H1,H2);

the CCD coordinates of the epipoles are easily computed and
plotted.

The CCD projections of all epipolar conicsCi
1 and Ci

2

wherei = 1, ..., 8, corresponding to all 3D points inXw are
computed and visualized by

>> [C1m,C2m] = f_epipconics(Xw,H1,H2);
�

Fig. 9 presents the application of EGT to the computation of
epipolar geometry between central catadioptric cameras (A)
and (D). Note that also the epipoles onto the mirror surface
are visualized.

Epipolar conics in both CCD image plane, together with
corresponding feature points, are showed in Fig. 10(A)-(B).
The complete MATLAB source code is available at the EGT
web-site [21].

C. Estimation of Epipolar Geometry

Up to now the EGT functions we presented for the epipolar
geometry computation were based on the knowledge of the
relative position and orientation between the two cameras.
However many algorithms exist in the literature to estimate
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ID Estimation Algorithm
1 Unconstrained linear estimation[16]
2 The normalized 8-point algorithm[13]
3 Algorithm based on Geometric Distance (Sampson)[14]

TABLE I

THE EPIPOLAR GEOMETRY ESTIMATION ALGORITHMS IMPLEMENTED IN

EGT (WITH BIBLIOGRAPHY).

the epipolar geometry from the knowledge of corresponding
feature pointsmi

a andmi
d. A very important feature of EGT

is that some of the most important algorithms for the epipolar
geometry estimation have been embedded in the toolbox code.
In particular we implemented the linear method [16], the well
known Hartley’s normalized8-points algorithm [13] and the it-
erative algorithm based on geometric distance (Sampson) [14]
as summarized in Table I. A complete comparison and review
of these methods has been reported in [14]. The epipolar
geometry estimation is one of the most relevant features of
EGT. The main reason is that users can run simulations where
the fundamental matrix is estimated from noisy feature points.

The basic EGT function to estimate the fundamental matrix
F is

>> F=f_Festim(U1,U2,algorithm);

where U1 and U2 are two (2 × N) matrices containing
all N corresponding features

U1 =

[
x1

1 x2
1 ... xN1

y1
1 y2

1 ... yN1

]

The integeralgorithm identifies the type of estimation
algorithm to be used between those available according to
Table I.

It is worth noting that these functions allows EGT to
estimate the epipolar geometry also in real experiments other
than simulations.

V. V ISUAL SERVOING

When used together with a robotics toolbox, such as the
Robotics Toolbox (RT) by Corke [7], EGT proves to be an
efficient tool to implement visual servoing techniques based
also on multiple view geometry.

The visual servoing controllers proposed by Rives in [24]
(for pin-hole cameras) and that proposed in [19] (for central
panoramic cameras) have been considered as tutorial examples
to show the main EGT features in a visual servoing context.

A. Visual Servoing with Pin-hole Cameras for6DOF Robots

In what follows the algorithm proposed in [24] is briefly
recalled for the reader convenience. The main goal of this
visual servoing is to drive a6DOF robot arm (simulated with
RT), equipped with a CCD camera (simulated with EGT), from
a starting configuration toward a desired one using only image
data provided during the robot motion (Fig. 11). The basic
visual servoing idea consists in decoupling the camera/end-
effector rotations and translations by the use of the hybrid
vision-based task function approach [9]. The servoing taskis
performed minimizing an error functionϕ which is divided
in both apriority task ϕ1, that acts rotating the actual camera
until the desired orientation is get, and in asecondary taskϕ2

(to be minimized under the constraintϕ1 = 0) that has been
chosen in [24] to be the camera distance to the target position.

The analytical expression of the error function is given by

ϕ = W+ϕ1 + β(II6 −W+W )
∂ϕ2

∂X
(8)

whereβ ∈ IR+, while W+ is the pseudo-inverse of the matrix
W ∈ IRm×n: Range(WT ) = Range(JT1 ) where J1 is the
Jacobian matrix of task functionJ1 = ∂ϕ1

∂X .
The priority task accomplishes to rotate the camera/end-

effector using a well-known epipolar geometry property stating
that when both the initial and the desired cameras gain the
same orientation, then all the distances between feature points
mi and corresponding epipolar linesl′i are zero.

xy
z

Fig. 11. Simulation setup for EGT application to visual servoing. EGT is
compatible also with Robotics Toolbox.
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Fig. 13. (a) Control inputs to PUMA 560; (b) Norm of the error functione
whenβ = 0 and whenβ = 1.

Fig. 12 shows the simulation results of the algorithm previ-
ously proposed for a scene with8 points. The dotted points in
Fig. 12 shows, in the image plane (K = I), the migration of
the features to the epipolar lines during the rotation (firsttask),
while crossed points correspond to the camera translation
(second task).

In Fig. 13 the control inputs(vc, ωc) and the plot of the
norm of the error functione are reported.

The MATLAB code of this simulation (SIM_Rives00.m )
is included in the directorydemo_pinhole of EGT [21].

B. Visual Servoing with Panoramic Cameras for Mobile Robot

While visual servoing with pin-hole cameras has been
deeply investigated in the literature, less results exist for
omnidirectional cameras. Interesting contributions for mobile
robots equipped with panoramic cameras can be found in [6],
[8], [31].

We here briefly recall the application of the Epipolar Geom-
etry Toolbox to the design of a visual servoing technique for
holonomic mobile robots equipped with a central panoramic
camera presented in [19]. The proposed strategy does not
assume any knowledge about the 3D observed scene geometry
and position with respect to the camera/robot.

Consider a holonomic mobile robot and letq = (x, y, θ)T

be its configuration vector with respect to the world frame

< Oxyz >w (Fig. 14). Letvx,vy be the translational velocities
andω the rotational velocity, respectively

ẋ = vx
ẏ = vy
θ̇ = ω

(9)

Suppose that a fixed catadioptric camera is mounted on the
mobile robot such that its optical axis is perpendicular to the
xy-plane. Without loosing generality, suppose that a target
panoramic image, referred to asdesired, has been previously
acquired in the desired configurationqd = (0, 0, 0)T . More-
over, one more panoramic view, theactualone, is available at
each time instant from the camera-robot in the actual position.

As shown in the initial setup of Fig. 15 (upper-left), the
mobile robot disparity between the actual and the desired
poses is characterized by rotationR ∈ SO(2) and translation
t ∈ IR2. The control law will be able to drive the robot
disparity between the actual and the desired configuration
to zero only using visual information. In particular, we will
regulate separately the rotational disparity (first step) and
the translational displacement (second step) (upper-centerand
upper-right in Fig. 15, respectively).

In the first stepthe rotational disparity is compensated ex-
ploiting the auto-epipolar condition [19]. This novel property
is based on the concept of bi-osculating conics (or bi-conics,
for short), computed on the image plane from observed image
corresponding features. It has been shown [19] that when all
bi-conics intersect in only two points then the rotational dispar-
ity between the actual and the desired view is compensated.
Fig. 15 (bottom-left) shows the image plane bi-conics when
the two cameras are not in auto-epipolar configuration. On
the other hand Fig. 15 (bottom-center) shows the image plane
bi-conics when the cameras are in auto-epipolar configuration
and all bi-conics intersect in only two points.

Once the rotational disparity is compensated, then the
second stepis executed. It consists of a translational motion in
which the robot is constrained to move along the baseline in
order to approach the desired position (Fig. 15top-right). This
translational control law can be designed on the image plane
constraining all current features to lie on the epipolar conics
and also the distance between current and desired featuress(t)

x
y

θ

x (t)

y(t)

ω

[vx ,vy]

0

Fig. 14. The holonomic mobile robot with a fixed catadioptriccamera moving
on a plane.
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Fig. 16. Simulation results with EGT for the first step. The robot, placed
in the actual configuration, rotates until the same orientation of the desired
configuration is obtained.

to decrease as the robot approach the goal (Fig. 15bottom-
right).

Fig. 16 gathers some simulation results for the first step. The
left and the right top windows show, respectively, the actual
and desired camera locations, together with scene points.
On the left bottom window of Fig. 16 we can observe the
feature points (crosses) moving from initial position towards

the epipolar conics. In the right bottom Fig. 16 it is shown the
angular velocityω provided by the controller that decreases
to zero. Fig. 17 shows simulation results for the second step.
In the left-top window the translational velocitiesvx(t) and
vy(t) are reported. In the right-top window the distances(t)
between all feature points goes to zero, as reported in the
bottom center window, where crossed points (actual positions)
go to the desired one (circles).

The MATLAB code for the auto-epipolar property is the
ex5_autoepipolar.m and is included in the directory
demo_panoramic of EGT.

VI. COMPARISON WITH OTHER PACKAGES

To the best of our knowledge no other software packages
for the MATLAB environment exist that deal with the creation
of multi-camera scenarios for both pin-hole and panoramic
cameras.

An interesting MATLAB package is the Structure and Mo-
tion Toolkit by Torr [30]. This toolkit is specifically designed
for features detection and matching, robust estimation of
the fundamental matrix, self-calibration, and recovery ofthe
projection matrices. The main difference with EGT is that the
work of Torr is specifically oriented to pin-hole cameras and
is not specifically designed to run simulations.

Regarding the visual servoing, it is worthwhile to mention
the interesting Visual Servoing Toolbox (VST) by Cervera
et al. [2] providing a set of Simulink blocks for simulation
of vision-controlled systems. The main difference is that the
VST implements some well known visual servoing control
laws but does not consider neither multiple view geometry
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nor panoramic cameras that are the distinguishing featuresof
EGT.

VII. C ONCLUSIONS

The Epipolar Geometry Toolbox for MATLAB is a software
package targeted to research and education in Computer Vision
and Robotics Visual Servoing. It provides the user a wide set
of functions for design multi-camera systems for both pin-hole
and panoramic cameras. Several epipolar geometry estimation
algorithms have been implemented. EGT is freely available
and can be downloaded at the EGT web site together with a
detailed manual and code examples.
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