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Abstract

In this paper we introduce a novel method to address minimization of static and dynamic MRFs. Our
approach is based on principles from linear programming and, in particular, on primal dual strategies. It
generalizes prior state-of-the-art methods such-@xpansion, while it can also be used for efficiently
minimizing NP-hard problems with complex pair-wise potential functions. Furthermore, it offers a
substantial speedup - of a magnitude ten - over existing techniques, due to the fact that it exploits
information coming not only from the original MRF problem, but also from a dual one. The proposed
technique consists of recovering pair of solutions for the primal and the dual such that the gap between
them is minimized. Therefore, it can also boost performance of dynamic MRFs, where one should expect
that the new new pair of primal-dual solutions is closed to the previous one. Promising results in a number
of applications, and theoretical, as well as numerical comparisons with the state of the art demonstrate

the extreme potentials of this approach.

I. INTRODUCTION

A wide variety of tasks in computer vision and pattern recognition can be formulated as discrete
labeling problems. Furthermore, many of these problems can be very elegantly expressed in the language
of discrete Markov Random Fields (MRFs) and it is exactly for this reason that MRF optimization is
considered to be a task of fundamental importance, which has attracted a significant amount of research

in computer vision over the last years.
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In very simple terms, the MRF optimization problem can be stated as follows: we are given a discrete
set of objectsV, all of which are vertices in a grapfi. The edges of this graph (denoted &yencode
the objects’ relationships. We are also given as input a discrete set of labéle must then assign one
label from £ to each object i'V. However, each time we choose to assign a label, say an object
p, we are forced to pay a price according to the so calladletonpotential functionc,(x,), while each
time we choose to assign a pair of labels, sgyand z, to two interrelated objectp andq (i.e, two
objects that are connected to each other by an edge in the gapte are also forced to pay another
price, which is now determined by the so calleairwise potential functiond(z,, z,) (both the singleton
and pairwise potential functions are problem specific and are thus assumed to be provided as input)
Our goal is then to choose a labeling which will allow us to pay the smallest total price. In other words,
based on what we have mentioned above, we want to choose a labeling that minimizes the sum of all
the MRF potentials, or equivalently the MRF energy. This amounts to solving the following optimization

problem:

arg?li?z:cp(xp)—k Z Wped(xp, Tq). 1)
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Note that, in the above formula, we have also included a weightper edge, which can be used for
scaling (either up or down) the pairwise potential function associated with that edge.

Despite this seemingly simple formulation, MRFs have great descriptive power and offer an extremely
flexible framework, which is capable of modeling a wide range of problems. For this reason, they have
been extremely popular in computer vision up to now. For instance, they have been used in problems
such as image segmentation [30], 3D reconstruction [26], texture synthesis [31], image completion [32],
image denoising [33], object recognition [34], visual correspondence [28], just to mention a few of
the applications of discrete MRFs in computer vision. However, it should be noted that they have been
used with great success in many other disciplines as well, including medical imaging [24], [25], computer
graphics, machine learning and artificial intelligence [36], digital communications, error-correcting coding
theory, and statistical physics [18].

Hence, given the great popularity of MRFs, it becomes immediately obvious that MRF optimization
is a task of fundamental importance with far reaching applications in many areas. Yet, this task is highly

non-trivial since almost all interesting MRFs exhibit a highly non-convex energy function (with many

Throughout this document we will assume that all edges of the MRF share a common pairwise potential f{nctipbut
note that everything that we will mention here also applies to the general case where there exists a unique pairwise potential
function dpq (-, -) for each edgeq.
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Fig. 1: The difficulty of optimizing an MRF (vertical axis) depends crucially on the type of the its pairwise potential
function (horizontal axis). Here, we show how this difficulty varies for a few typical pairwise potential functions.
Ideally, we would like to be able to handle NP-hard MRFs whose pairwise potential function is as general as
possible (this means going as far as possible towards the right direction in the horizontal axis), but still without
losing the ability to provide approximately optimal solutions (this means that we would like to remain at a height
as low as possible in the vertical axis, below the blue dashed line). Furthermore, we would like to be able to
do that efficiently,i.e, as fast as possible.

local minima), which is thus NP-hard to optimize. This has motivated a great deal of research about
MRF optimization over the last years and, as a result, many algorithms have been proposed on this
topic. Algorithms such as ICM (Iterated Conditional Modes), HCF (Highest Confidence First), relaxation
labeling or simulated annealing were among the first ones to be used in this regard. These early algorithms,
however, have proven not to be particularly effective in handling difficult MRF optimization tasks such
as those encountered in the areas mentioned above. A significant progress in MRF optimization has been
achieved over the last years, primarily due to the introduction of two classes of methods, those based on
graph-cuts [2], [21], [22], [23] and those based on belief propagation [15], [16], [17], [18], [19], [20],
[32] (which is a generalization of dynamic programming to the case of tree-structured graphs). Methods
such as thev-expansion or thex3-swap are two characteristic examples from the former class, whereas
loopy Belief Propagation and Tree Reweighted message-passing (with its variants) are some important
examples that belong to the latter class. We note here that both types of techniques have been applied
with great success to many problems in computer vision or image analysis [7], [14].

Returning now back to the issue of the difficulty of MRF optimization, we should note at this point
that, of course, not all MRFs encountered in practice are equally hard to optimize. In fact, it turns out that
the difficulty of any given MRF optimization problem depends not so much on the form of its singleton
potential functions (which can be arbitrary), but mostly on the form of its pairwise potential functions.
For instance, if each pairwise potential function is submodular (which can be roughly considered as

a discrete counterpart of convexity), MRFs can be optimized in polynomial iieehe exact global



optimum can be computed [21]. If, on the other hand, each pairwise potential is assumed to be simply
a metric distance function, then, unfortunately, the resulting MRF optimization problem proves to be
NP-hard. Nevertheless, not everything is lost in this case, since there still exist efficient algorithms for
obtaining an approximately optimal solution (which is the best one can hope to achieve given the NP-
hardness of the problem). However, if absolutely no assumptions are imposed on the structure of the
pairwise potential functions, then no approximation guarantees can be provided at all and only a local
minimum can be returned as a result. All these cases are illustrated in Fig. 1.

Ideally, we would like an MRF optimization algorithm that is able to handle as general MRF energies
as possible, but who is also capable of providing solutions that are approximately optimal as well. By
referring back to the plot shown in Fig. 1, this statement could be interpreted as follows: we would like
the projection of our algorithm on the horizontal axis to be as large as possible (this corresponds to being
able to handle MRFs with more general pairwise potentials), but at the same time we would like the
vertical projection of our algorithm to be as small as possible, e.g., below the blue dashed horizontal line
in Fig. 1 (this corresponds to being able to generate solutions that, although possibly not optimal due to
the problems’s NP-hardness, yet they approximate well the optimal one).

However, besides the above mentioned issue of the quality of the MRF solutions, another very important
issue that comes up in practice is that of the algorithm’s computational efficiency. This means that, ideally,
besides being able to compute a solution which is as accurate as possible, our algorithm should also be
able to do that as fast as possihile,at a low computational cost. However, these two goadsaccuracy
and speed) are contradicting each other and so, typically, one has to make a trade-off between them. In
fact, this issue of computational efficiency has been recently looked at for the important case of dynamic
MRFs. These are MRFs whose potential functions are assumed to vary over time and it should be noted
that this type of MRFs has been recently introduced into computer vision by the work of Kohli and Torr
[4].

Motivated by all these observations mentioned above, we thus raise the following questions here:

« could there be a discrete MRF optimization algorithm, which would be not only sufficiently accurate

for the case of single MRFs, but also sufficiently efficient?

« Furthermore, could that method offer a computational advantage regarding efficiency for the case

of dynamic MRFs?
With respect to the two questions raised above, this work makes the following contributions:

Computational efficiency for single MRFs: Graph-cut based optimization algorithms, such as the

a-expansion method, try to opimize an MRF by solving a series of max-flow problems. Their efficiency



is thus largely determined from the efficiency of these max-flow problems, which, in turn, depends on
the number of augmenting paths per max-flow. Here, we build upon the framework proposed in [5]

in order to derive a new primal-dual MRF optimization method, called Fast-PD [9]. This method, like

[5] or a-expansion, also ends up solving a max-flow problem for a series of graphs. However, unlike
these techniques, the graphs constructed by Fast-PD ensure that the number of augmentations per max-
flow decreases dramatically over time, thus boosting the efficiency of MRF inference. To show this, we
prove a generalized relationship between the number of augmentations and the sproabédual gap
associated with the original MRF problem and its dual. Furthermore, to fully exploit the above property,

2 new extensions are also proposed:a@iapted max-flow algorithmas well as arincremental graph
constructionmethod.

Accuracy of solutions: Despite its efficiency, our method also makes no compromise regarding either
the quality of the solutions it generates or the generality of the MRFs it can handle. So, for instance, if
the pairwise potential$,, (-, -) are assumed to be metric functions, then it can be proved that Fast-PD is
as powerful agv-expansion, in the sense that it computes exactly the same solution, but with a substantial
speedup. Moreover, it applies to a much wider class of MR it can even handle MRFs for which
the pairwise potential¥},(-,-) are non-metric functions. In fact, in all these cases, the proposed method
can provide theoretical.€, worst-case) upper bounds about how far the energy of the generated solution
can be from the unknown optimal MRF energy. But besides these theoretical upper bounds, our method
is also capable of providing per-instance upper boundshounds that are specific to each particular
problem the algorithm has been tested on. In practice, these bounds prove, of course, to be much tighter
(i.e, much closer to 1) than the worst-case upper bounds and hence can be very useful for assessing how
well the algorithm performed in each particular case.

Efficiency for dynamic MRFs: Furthermore, besides being able to significantly speed up the opti-
mization of static MRFs, our method can also be used for boosting the efficiency of dynamic MRFs.
Two works have been proposed in this regard recently [4], [3]. These methods can be applied to dynamic
MRFs that are binary or have convex priors. On the contrary, Fast-PD naturally handles a much wider
class of dynamic MRFs, and, as we shall see, it manages to achieve that by also exploiting information
coming from a problem, which is dual to the original MRF problem. Fast-PD can thus be thought of as
a generalization of previous techniques.

The rest of this paper is going to be structured as follows. In section II, we briefly review the work

%Fast-PD requires only(a, b) >0, d(a,b)=0<a=b



of [5] upon which we build in order to derive our algorithm. As already mentioned in the introduction,
our algorithm relies heavily on the duality theory of Linear Programming (LP) and, in particular, on
the primal-dual schema. We thus start that section by explaining the underlying ideas behind that very
general technique, while we then continue by explaining how the primal-dual schema can be applied
to the case of MRF optimization. The Fast-PD algorithm is then described in section lll. Its efficiency
for optimizing single MRFs is further analyzed in section IV, where related results and some important
extensions of Fast-PD are presented as well. Section V focuses on the issue of how Fast-PD can be
used for boosting the performance of dynamic MRFs, while it also contains some related experimental
results. Finally, we conclude in section VI. We also note that, for reasons of clarity of the presentation,

the technical proofs for some of the theorems in this paper have been postponed to appendices A and B.

[l. PRIMAL-DUAL MRF OPTIMIZATION ALGORITHMS
A. The primal-dual schema

The primal-dual schema is a technique which has been very well known to people in combinatorial
optimization for many years now. It started as a very general technique for solving linear programming
(LP) problems. As a result, it has been initially used for mainly deriving exact polynomial-time algorithms
to many cornerstone problems in combinatorial optimization, including max-flow, matching, shortest path,
minimum branching and minimum spanning tree [13]. However, soon, it was realized that it can be a
very powerful tool for deriving approximation algorithms to problems of linear integer programming as
well. It has thus been used for providing good approximation algorithms to many NP-hard combinatorial
problems such as those of set-cover, steiner-network, scheduling, steiner tree, feedback vertex set, just to
mention a few of them [12]. In the latter case, the basic idea behind using that technique is quite simple
and can be explained as follows:

Suppose we want to solve the following linear integer program:

min ¢’x (2)
sttAx=Db 3)
xeN 4)

Because of the fact that constraints (4) require the components of the sadutidre natural numbers, the
resulting optimization problem becomes of course NP-hard. This means that we can only hope for getting

an approximate solution to that problem. In order to achieve this goal, we thus relax the complicating
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Fig. 2: (a) By weak duality, we know that the optimal castx* will always lie between the costs’y andc”x of

any pair(x, y) of integral-primal and dual feasible solutions. Thereford’ify andc” x are close enough (e.qg. their

ratio is < £*), so arec”x* andc”x (e.g. their ratio is< f* as well), thus proving that is an f*-approximation to

x*. (b) According to the primal-dual schema, dual and integral-primal feasible solutions make local improvements
to each other, thus generating sequences of primal and dual costs. This is repeated until the fibdly¢pstsx!

are close enough (e.g., their ratio<s f*), in which case we can apply the primal-dual principle (as in Fig. (a))

and thus conclude that’ is an f*-approximation to the optimal solutiog*. (c) When the primal-dual schema is
applied to the case of MRF optimization, one eventually computes a sequence of MRF energies (corresponding to
the primal costs), as well as a sequence of lower bounds on the minimum MRF energy (corresponding to the dual
costs).

integrality constrains (4) as follows:

min ¢’ x (5)
st.Ax=b (6)

x>0 (7)



We thus obtain a linear program, which is, of course, a much easier problem. However, the reason that
we have tried to do that is not because we actually want to solve this LP, but simply because we want

to take its dual problem, which forms, of course, another LP:

max b’y (8)

st. ATy <c (9)

As a result of this process, we have ended up with 2 problems: our original linear integer program (this
will be referred to as the primal problem), as well as a dual linear program. According to the primal-dual
schema, we must then find a péak, y) of primal and dual solutions such that the corresponding primal-
dual gap i, the distance between the castx of the primal solution and the co#t’y of the dual
solution) is small enoughe.g one way for measuring this is by requiring that the ratio between these
two costs is smaller than, say;. If we manage to find such a primal-dual pair, then it is guaranteed
that the primal solutionx we have estimated is actually gif-approximation to the unknown optimal

solution of our original problem, as the following theorem states:

Theorem 1 (The primal-dual principle). If x and y are integral-primal and dual feasible solutions
satisfying:
c'x < f*-bly (10)

thenx is an f*-approximation to the optimal integral solutiat’, i.e. it holdsc”x* < ¢'x < f*- c¢T'x*

The reason that this principle holds true is rather simple and is illustrated graphically in Figure 2(a). In
particular, in this case, due to weak duality it will hold that the edst* of the optimal integral solution
will always lie between the dual cobt’ y and the primal cost”x, i.e. it will hold by < ¢’x* < ¢!'x.
Therefore, if the ratio between the two costsx and b’y is smaller thanf* then the same thing will
necessarily apply to the ratio between the cegts andc’x*, which thus proves the above theorem.

Of course, one cannot expect to come up with such a good primal-dual>paiy right from the
beginning. So what typically happens is that the primal-dual algorithm proceeds iteratively, where each
iteration consists of one update of both the primal and dual variables. Hence, given a current pair of
solutions, say(x”, y*), we act as follows: first, based on our current dual solujibpwe try to improve
our primal solution, thus generating a new solutidit!, so that its cost” x**! comes closer to the dual
costb”y*. Similarly, based on our new primal solutieff*!, we try to improve our dual solution, thus

generating a new solutiop®*!, so that its cosb”y**! also comes closer to the primal cedtx**!. In



this manner a new paix**+!, y*+1) is generated, which means that one iteration of the algorithm has just
been completed. This is, of course, repeated (thus producing sequences of primal and duabcests,

Fig. 2(b)) until the final primal-dual gap becomes small enough, in which case the algorithm terminates.
The iterative procedure that has been just described lies at the heart of any primal-dual algorithm.

One remarkable thing to note here is that despite the fact that we apply only local improvements to both
the primal and dual solutions during our algorithm, yet we manage to extract an almost globally optimal
solution at the end. Also, another important thing to note here is that, instead of working directly with
the primal and dual costs, typically one works with the complementary slackness conditions associated
with the linear program. These conditions are thus relaxed by a certain féictand then one has to
find a primal-dual pai(x,y) that satisfies these relaxed conditions. This can be shown to be the same

as trying to make the primal-dual gap smaller thén as the following theorem certifies:

Theorem 2 (Relaxed Complementary Slackness)f the pair (x,y) of integral-primal and dual feasible
solutions satisfies the so-called relaxed primal complementary slackness conditions:
m
ij>0:>2aijyi20j/fj, (11)
=1
where we also assume th#t = max; f;, then the primal-dual gap for the paiix,y) is smaller than

f* and thereforex is an f*-approximation to the optimal integral solution.

Based on this theorem, as well as on all of the previous observations, the following iterative schema

can thus be applied during a primal-dual based approximation algorithm:

Theorem 3 (The primal-dual schema).Keep generating pairs of integral-primal, dual solutiof(s*, y*)} _,,
until the elements?, y* of the last pair are both feasible and satisfy the relaxed primal complementary

slackness conditions.

One last thing, that is worthy of mentioning, is that one can derive different approximation algorithms

simply by using different relaxations of the complementary slackness condigapdy using different

fj in (11)).

B. Applying the primal-dual schema to MRF optimization

The above schema has been used in [5] for deriving approximation algorithms that can be be applied
to a very wide class of MRFs. For this purpose, the MRF optimization problem was first casted as a

problem of integer programming as follows [11]:
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minZ(Z cp(a)xp(a)> + Z (wpq Z d(a,b)zpg(a, b)) (12)

peV acl (p.q)€€ abel
s.t. Za zp(a) =1 VpeVv (13)
Za Tpg(a,0) =2,()  VYbeL, (pq) €E (14)
Y tw(ab) =zp(a)  Vael (pg ek (15)
p(+), pq(--) €{0,1} (16)

As can be seen, the MRF energy function has essentially been linearized by introducing two types
of extra indicator ite, binary) variables: the unary variabl¢s,(-)}, that are used for indicating which
label is assigned to each MRF nodee,(z,(a) = 1 < label a has been assigned 19, as well as the
pairwise variableqz,,(-,-)}, that are used for indicating which pair of labels is assigned to each pair
of neighboring nodesi.g, z,,(a,b) = 1 < labelsa, b have been assigned to nodeg). Of course, in
order to obtain a equivalent formulation to the MRF problem, we also need to impose the additional
linear constraints (13)-(15) on these binary variables. Constraints (13) simply encode the fact that only
one label can be assigned to each node, while constraints (14)-(15) enforce consistency between the
unary and the pairwise variables in the sense that they ensure thduif = z,(b) = 1, then it should
hold z,,(a,b) = 1 as well. If the indicator variables are assumed to satisfy all of the above constraints,
then it can be verified very easily that the above linear integer program is indeed equivalent to our
original problem of minimizing the MRF energy. Given this fact, we can therefore proceed and apply the
primal-dual schema to it. This means that we must relax the integrality constraints (16) to the constraints
zp(-) > 0,z,(-,-) > 0, take the dual to the resulting linear program and choose a proper relaxation of
the complementary slackness conditions.

When applying the primal-dual schema to this case (see Fig. 2(c)), essentially, one ends up with
computing a sequence of MRF energies (these correspond to the primal costs), as well as a sequence
of lower bounds on the unknown minimum MRF energy (these bounds corresponds to the dual costs).
After performing all the related analysis (we refer the interested reader to [5] for further details), it turns
out that, in this case, each iteration of the primal-dual schéreagach update of the primal and the
dual variables) reduces to solving a max-flow problem for a certain capacitated graph (see Fig. 3). This
means that the flows resulting from solving this max-flow problem tell us how to update both the dual

variables, as well as the primal variables associated with our problem. Also, note that this max-flow
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get current primal and construct capacitated
dual variables (xk,y¥) graph based on (xk,y*)

| solve max-flow as a step
| to get a new pair (x*,yk)

Fig. 3: In the case of MRF optimization, each iteration of the primal-dual schema essentially involves solving a
max-flow problem for a capacitated graph that is constructed based on the currepd*pgit) of primal and dual
variables. The resulting flows guide us on how to update the primal, as well as the dual variables in order to get a
new pair (x*, y*) for the next iteration.

graph is not static, but changes per iteration. In fact, its construction depends on the current primal-dual
pair of solutions, sayx”,y"). This implies that both the connectivity of that graph, as well as the
capacities of its edges are defined based on this(géiry*). Furthermore, by choosing to use different
relaxations of the resulting complementary slackness conditions, the authors in [5] showed that different
approximation algorithms can be derived in this manner, all of which are capable of handling a wide
variety of MRFs with metric, as well as non-metric pairwise potential functions. In addition, since in
every case the generated solutions provably satisfy a chosen set of relaxed complementary slackness
conditions, worst-case.§, theoretical) guarantees about the optimality of these solutions can always be
provided.

For the sake of simplicity, in this work we will concentrate on one particular choice of relaxed
complementary conditions, but it should be noted that the techniques described here apply equally well
to all relaxed complementary slackness conditions mentioned in [5]. In particular, we will focus here on

the following conditions:

hyp(zp) = minges hp(a), VpeV a7)
Ypa(Tp) + Ygp(Tq) = wped(zp, T¢), VpgEE (18)
Ypg (@) + Ygp(b) < 2wpgdmax, Vpge&,acL,beL (19)

As shown in [5], if the above conditions hold true then the solutiodefines a labeling which is an

111111

In these formulas, the primal variables, denotedxby {xz,},cy, determine the labels assigned to

nodes (calledhctive labelshereafter)e.gx, is the active label of nodge. Whereas, the dual variables are

3 max = maxXa,p d(a,b), dmin =mingp d(a,b)
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Fig. 4: The primal dual schema for MRF optimization.

divided into balanceand heightvariables. There exist 2 balance variablgs(a), y,,(a) per edge(p, q)
and labela, as well as 1 height variable,(a) per nodep and labela. Variablesy,,(a), y,,(a) are also
called conjugateand, for the dual solution to be feasible, these must be set opposite to each.ether,
Yqp(-) = —Ypq(+). Furthermore, the height variables are always defined in terms of the balance variables
as follows:

hp() = () + D0 Ypal)- (20)
Note that, due to (20), only the vectgr(of all balance variables) is needed for specifying a dual solution.

In addition, for simplifying conditions (18),(19), one can also define:

load,q(a, b) =ypq(a)+ygp(b)- (21)

For instance, by using the above definition, conditions (18), (19) can then be simplified as follows:

load,q(xp, q) = wped(zp, z4), Vpgel (22)

load,q(a, b) < 2wpgdmax, Vpge€&,acL,beL (23)

and so, whenever we refer to conditions (18), (19) hereafter, we will implicitly refer to conditions (22),(23)
as well.

The primal and the dual variables are, of course, iteratively updated until all conditions (17)-(19) hold
true,i.e, until the chosen relaxed complementary slackness conditions are satisfied, which forms the main
goal of the primal-dual algorithm for MRF optimization. The basic structure of such an algorithm can be
seen in Fig. 4. During an inneriteration (lines3-6 in Fig. 4), a labek is selected and a new primal-dual
pair of solutions(x’,y’) is generated based on the current gairy). To this end, among all balance
variablesy,,(.), only the balance variables oflabels(i.e y,,(c)) are updated during e-iteration. ||

such iterationsi(e one c-iteration per labet in £) make up an outer iteration (lin&s7 in Fig. 4), and
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Fig. 5: (a) Dual variables’ visualization for a simple MRF with 2 nodgs ¢} and 2 labelga, c}. A copy of labels
{a,c} exists for every node, and all these labels are represented by balls floating at certain heights. The role of
the height variablesh,(-) is to specify exactly these heights. Furthermore, balls are not static, but may imove (
change their heights) in pairs by updating conjudadéance variablesk.g., here, balt at p is pulled up by+d
(due to increasing,,(c) by +4) and so ballc at ¢ moves down by-§ (due to decreasing,,(c) by —¢). Active
labels are drawn with a thicker circlgb) If label c at p is below z, during ac-iteration, then (due to (17)) we
want labelc to raise and reach,. We thus connect node to the sources with an edgesp (i.e p is ans-linked
node), and flowf,, represents the total raise ofwe also setap,, = h,(z,) — hy(c)). (c) If label c atp is above

x, during ac-iteration, then (due to (17)) we want labehot to go belowz,. We thus connect nodeto the sink

t with edgept (i.e p is a t-linked node), and flowf,; represents the total decrease in the height ofre also set
cap,=hy(c)—hy(z;,) so that labek will still remain abovez,,).

the algorithm terminates if no change of label takes place at the current outer iteration.

During an inner iteration, the main update of the primal and dual variables takes place umside
DATE_DUALS_PRIMALS, and (as already mentioned) this update reduces to solving a max-flow problem
in a capacitated graph, which will be denoteddsyhereafter. Furthermore, the routinreREEDIT.DUALS
and POSTEDIT.DUALS simply apply corrections to the dual variables before and after this main update,
i.e to variablesy andy’ respectivelyt For reasons of brevity, the resulting primal-dual optimization

algorithm will be referred to as simply the PPalgorithm throughout the rest of this paper.

Ill. FAST PRIMAL-DUAL MRF OPTIMIZATION

The complexity of the PD3primal-dual method largely depends on the complexity of all max-flow
instances (one instance per inner-iteration), which, in turn, depends on the number of augmentations per
max-flow. So, for designing faster primal-dual algorithms, we first need to understand how theg§raph

associated with the max-flow problem at-dteration of PD3, is constructed.

“Throughout this paper, we use the following convention for the notation of the dual variables during an inner-iteration:
before the UPDATE.DUALS_PRIMALS routine, all dual variables are denoted without an accent, .¢(-), hp(-). After
UPDATE_DUALS_PRIMALS has updated the dual variables, we always use an accent for denoting these variables, e.g. we write
Ypq(+), hy(+) in this case.
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To this end, we also have to recall the following intuitive interpretation of the dual variables [5]: for
each nodey, a separate copy of all labels ihis considered, and all these labels are represented as balls,
which float at certain heights relative to a reference plane. The role of the height varigbles then
to determine the balls’ height (see Figure 5(&)g the height of labek at nodep is given byh,(a).

Also, expressions like “label atp is below/above label” imply h,(a) < h,(b). Furthermore, balls are
not static, but may move in pairs through updating pairs of conjugate balance varilges Figure
5(a), labelc at p is raised by+d (due to addingt+d to y,,(c)), and so labet at ¢ has to move down
by —¢é (due to adding-9 to y,,(c) so that conditiony,,(c) =—yg,(c) still holds). Therefore, the role of
balance variables is to raise or lower labels. In particular, the value of balance vagjgllerepresents
the partial raise of labet at p due to edgenq, while (by (20)) the total raise aof at p equals the sum
of partial raises from all edges ©f incident top.

Hence, PD3 tries to iteratively move labels up or down, until all conditions (17)-(19) hold true. To
this end, it uses the following strategy: it ensures that conditions (18)-(19) hold at each iteration (which
is always easy to do) and is just left with the main task of making the labels’ heights satisfy condition
(17) as well in the end (which is the most difficult part, requiring each active labéd be the lowest
label for p).

For this purpose, labels are moved in groups. In particular, duriagteration, only thec-labels are
allowed to move (see Fig. 6). Furthermore, the main movement of-lalbels (.e the main update of

dual variablesy,,(c) andh,(c) for all p, q) takes place iUPDATE_DUALS_PRIMALS, and this movement

v
inner c-iteration

| PREEDIT_DUALS

l

UPDATE_DUALS_PRIMALS
L>(run max-flow in graph G°)

l

| POSTEDIT_DUALS |

Fig. 6: The basic structure of an inneriteration is shown here. During such an iteration, only tHabels are

allowed to move i(e only them can change their heights). The main movement ottlabels takes place inside

the UPDATE_DUALS_PRIMALS routine, and this movement is simulated by pushing the maximum-flow through an
appropriate directed grapic. However, besides the movement duringDATE_DUALS_PRIMALS, c-labels also

move before and after that routine as well. This happens because roRREE®IT.DUALS and POSTEDIT.DUALS

also apply corrections to the dual variables, and these corrections take place before and after max-flow respectively.
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has been shown that it can be simulated by pushing the maximum flow through a directed7§raph
(which is constructed based on the current primal-dual paiy) at a c-iteration). The nodes of¢
consist of all nodes of grap§i (the internal nodes), plus Zxternalnodes, the source and the sinkt.
In addition, all nodes ofj¢ are connected by two types of edgésterior and exterior edges. Interior
edges come in pairgg, gp (with one such pair for every 2 neighbassq in G), and are responsible for
updating the balance variables durin@DATE_DUALS_PRIMALS. In particular, the corresponding flows
fvd/fqp represent the increase/decrease of balance varighle), i.e v,,,(c) =vpq(c) + fog — fop- AlsO,
as we shall see, the capacities of these edges are responsible to ensure (aloPRE®XIT DUALS,
POSTEDIT.DUALS) that conditions (18), (19) hold true.

But for now, in order to understand how to make a faster primal-dual method, it is the exterior edges
(which are in charge of the update of height variables dutirQppATE_DUALS_PRIMALS), as well as
their capacities (which are left with ensuring condition (17) on their own), that are of interest to us. The
reason is that these edges determine the numbetioked nodes, which, in turn, affects the number of
augmenting paths per max-flow. In particular, each internal node connects to either thess@urdes
an s-linked node) or to the sink (i.e it is a t-linked node) through one of these exterior edges, and this
is done (with the goal of ensuring (17)) as follows: if lalkeat p is abovez, during ac-iteration (i.e
hy(c) > hy(xp)), then labele should not go belowt,, or else (17) will be violated fop. Nodep thus
connects ta through directed edggt (i.e p becomeg-linked), and flowf, represents the total decrease
in the height ofc during UPDATE DUALS_PRIMALS, i.€ hi,(c) = hy(c)— fpt (See Fig. 5(c)). Furthermore,
the capacity ofpt is set so that labet will still remain abovez,, i.e cap,; = hy(c) — hy(xp). On the
other hand, if labet at p is below active labek), (i.e h,(c) < hy(z)p)), then (due to (17)) label should
raise so as to reach,, and sop connects tos through edgesp (i.e p becomess-linked), while flow
fsp represents the total raise of balli.e hy(c) = hy(c)+ fsp (see Fig. 5(b)). In this case, we also set
capgy, = hp(xp) —hp(c).

This way, by pushing flow through the exterior edgegitfall c-labels that are strictly below an active
label try to raise and reach that label duringDATE_DUALS_PRIMALS®. Not only that, but the fewer
are thec-labels below an active label.€ the fewer are the-linked nodes), the fewer will be the edges
connected to the source, and thus the less will be the number of possible augmenting paths. In fact, the

algorithm terminates when, for any labelthere are no more-labels strictly below an active labelé

SEquivalently, if c-label atp cannot raise high enough to reagh, UPDATE_DUALS_PRIMALS then assigns that-label as
the new active label op (i.e z;,=c), thus effectively making the active label go down. This once again helps condition (17)
to become true, and forms the main rationale behind the update of the primal vasiainles® DATE_DUALS_PRIMALS.
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p p p
hp(xp) -% "T“ hp(xp) _9’) CQ___ hp(C) hp(xp) _9’) o % 'T‘"
5 & [cop,
cfpsp fspi h (Ol gél P
hp(c) """" CO F-=-- . p c

(a) before max-flow (b) after max-flow (c) after correction by
PREEDIT DUALS or POSTEDIT DUALS

Fig. 7: (a) Labelc atp is belowz,, and thus labet is allowed to raise itself in order to reae). This means that

will be ans-linked node of graplg, i.e cap,,, >0, and thus a non-zero floy, (representing the total raise of label
¢ in UPDATE_DUALS_PRIMALS) may pass through edge. Therefore, in this case, edge may become part of an
augmenting path during max-flogb) After UPDATE_DUALS_PRIMALS (i.e after max-flow), labek has managed
to raise byf,, and reachr,. Since it cannot go higher than that, no flow can pass through @ddee cap,, =0,

and so no augmenting path may traverse that edge therg@ftédowever, due to some correction applied later
to c-label's height byPREEDIT.DUALS or POSTEDIT.DUALS, labelc has dropped below, once more ang has
become ars-linked node againif cap,, >0). Edgesp can thus be part of an augmenting path again (as in (a)).

[X,y]<INIT -DUALS_PRIMALS (): x<random labels; y«0;
Yog, adjust ype(Tp) or Ygp(x4) so that loady(zp, 2q) =wped(zp, T4)

y<—PREEDIT _DUALS (¢, X,y):
Yog, if loadyq(c, zq) >wped(c,x4) or loadyq(zp,c)>wped(xy, )
adjust ype(c) so that loadp,(c,zq)=wped(c, z4)

[x',¥']<—UPDATE_DUALS_PRIMALS (¢, X,y): X «x; y' «Vy;
Construct G° and apply max-flow to compute all flows fosp/fpt, fpq

Vg, y;q(C)Hypq@)“‘qu_fqp
W , if an unsaturated path from s to p exists, then $;<—C

y'—POSTEDIT DUALS(c,x',y’): {We denote load,,(-,-) =y, () +¥,,(-)
Vpg, if load), (), x}) > wpqd(x), ) {This implies x,=c or z,=c}

adjust y,,(c) so that load,,, (], z}) = wyed(z}, x/,)

Fig. 8: Fast-PD’s pseudocode.

no s-linked nodes exist and thus no augmenting paths may be found), in which case condition (17) will
finally hold true, as desired. Put another wapDATE_DUALS_PRIMALS tries to pushc-labels (which are
at a low height) up, so that the number wfinked nodes is reduced and thus fewer augmenting paths
may be possible for the next iteration.

However, althougluPDATE_DUALS_PRIMALS tries to reduce the number eflinked nodes (by pushing
the maximum amount of flowRREEDIT.DUALS Or POSTEDIT.DUALS very often spoil that progress. As
we shall see later, this occurs because, in order to restore condition (18) (which is their main goal), these

routines are forced to apply corrections to the dual variablesq the labels’ height). This is abstractly
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illustrated in Figure 7, where, due 1OPDATE_DUALS_PRIMALS (i.e due to max-flow), ac-label has
initially managed to reach an active labg), but it has again dropped belawy,, due to some correction
by these routines. In fact, as one can show, the only point where a+fieked node can be created is
during eitherPREEDIT_.DUALS Or POSTEDIT.DUALS.

To fix this problem, we will redefin@REEDIT_DUALS, POSTEDIT.DUALS S0 that they can now ensure
condition (18) by using just a minimum amount of corrections for the dual varial@egby touching
these variables only rarely). To this end, howewe¥DATE DUALS_PRIMALS needs to be modified as
well. The resulting algorithm, called Fast-PD, carries the following main differences ovey @Dy
a c-iteration (its pseudocode appears in Fig. 8):

- the new PREEDIT.DUALS modifies a pairy,,(c),yqp(c) of dual variables only when absolutely
necessary. So, whereas the previous version modified these variables (thereby changing the height of
a c-label) whenever#x,, c#x, (which could happen extremely often), a modification is now applied
only if load,g(c, £4)>wpqd(c, z4) OF loady,(xp, €)>wped(zp, ¢) (Which, in practice, happens much more
rarely). In this case, a modification is needed (see code in Fig. 8), because the above inequalities indicate
that condition (18) will be violated if eithefec, z,) or (z,,c) become the new active labels fprg. On

the contrary, no modification is needed if the following inequalities are true:
loadpg(c, xq)<wpqd(c, 7q), loadpg (p, ¢)<wpqd(zp, ),

because then, as we shall see below, the DBBATE_.DUALS_PRIMALS can always restore (18).€ even

if (c,zq) Or (z,,c) are the next active labelse.g see (28)). In fact, the modification t9,,(c) that is
occasionally applied by the nemrREEDIT_.DUALS can be shown to be the minimal correction that restores
exactly the above inequalities (assuming, of course, this restoration is possible).

- Similarly, the balance variableg,, (z;) (with z;, = c) or y;,(z;) (with 2} = c) are modified much
more rarely by the newOSTEDIT.DUALS. So, whereas the previous version modified these variables
(thereby changing the height of @label) whenever they were negative (which, in practice, happened
most of the time), the new routine applies a modification onljoikl,,, (), 2,)>wpqd(z},, /,),° which
may happen only in very seldom occasiorgy(f the distance functioni(-, -) is a metric, one may then
show that this can never happen). If the above inequality does hold truep&reDIT.DUALS simply

, .
needs to reduckad,, (z;, r;) SO as to just restore (18).

- But, to allow for the above changes, we also need to modify the construction of grajpm

®As in (21), we defindoad),, (a, b) =y, (a)+y,,(b) for variabley’.
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exterior capacities interior capacities
a1, ()N (O [Xo % 0P[5, (0X)-1020] (06 1[5 €/ Cap= O
cap=[hy(0)-hy(x)]*[ X, # ¢l capg,=[w d(x,,c)-l0ad,(x,,0)]* [, = ciCaPe= 0

Fig. 9: Capacities of graplg®, as set by Fast-PD.

UPDATE_DUALS_PRIMALS. In particular, forc#z, and c#z,, the capacities of interior edges, ¢p

must now be set as follows:

Cappq = [wpqd(c’ z4) —loadp(c, fL‘q)TF ) (24)

CaPgp = [wpqd(fcmc)_loadpq(%aC)Tr ; (25)

where[z]T=max(z,0). Besides ensuring condition (19) (by not letting the balance variables increase too
much), the main rationale behind the above definition of interior capacities is to also ensure that (after
max-flow) condition (18) will be met by most pai(p, ¢), no matter if(c,z,) or (z,,c) are the next

labels assigned to them (which is good, since we will thus manage to avoid the need for a correction by
POSTEDIT.DUALS for all but a fewp, ¢). To see this, the crucial thing to observe is that if, sayz,) are

the next labels fop andg, then capacityap,,, can be shown to represent the increaséoefl,,(c, z,)

after max-flow,i.e:

loady,, (¢, z4) = loadyy(c, x4) + cap,,. (26)
Hence, if the following inequality is true as well:
loadpg (¢, zq) < wpqd(c, z4) (27)

then condition (18) will do remain valid after max-flow, as the following trivial derivation shows:

(26), (24)

loady, (¢, 24) loady, (¢, z4) + [wped(c, z4) — loadyg(c, 4)] T

2
= load,g(c, z4) + [wped(c, x4) — loadyg(c, z4)] = wped(c, z4) (28)
But this means that a correction may need to be applieeldsyTEDIT.DUALS only for pairsp, ¢ violating
(27) (before max-flow). However, such pairs tend to be very rare in pragigeas one can prove, no
such pairs exist wher(-, -) is a metric), and thus very few corrections need to take place.

Fig. 9 summarizes how Fast-PD sets the capacities for all edggs 8k already mentioned, based on

the interior capacities, one may show th#DATE_DUALS_PRIMALS (with the help ofPREEDIT.DUALS,

If e=zx, OF c=2x,, thencap,,=cap,,=0 as beforej.e as in PD3.
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~ (a) Noisy (b) Restoration of
“penguin”image the “penguin”image
by the Fast-PD
algorithm

(d) Corresponding disparity as
estimated by Fast-PD

(f) Corresponding disparity

() "SRI tree"image as estimated by Fast-PD

Fig. 10: Image restoration and stereo matching results by the Fast-PD algorithm.

POSTEDIT.DUALS in a few cases) ensures (18),(19), while, thanks to the exterior capachiBSTE_DUALS_PRIMALS

can ensure (17). As a result, the next theorem holds (see appendix A for a complete proof):

Theorem 4. The last primal-dual pair(x,y) of Fast-PD satisfies conditiond7)-(19), and sox is an

fapp-approximate solution.

In fact, Fast-PD maintains all good optimality properties of the PB@&thod.E.g, for a metricd(-, -),

Fast-PD proves to be as powerful aexpansion (see appendix B for a proof):

Theorem 5. If d(-,-) is a metric, then the Fast-PD algorithm computes the leestpansion after any

c-iteration.
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(a) High-level view of the Fast-PD algorithm
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(b) High-level view of thea-expansion algorithm

Fig. 11: (a) Fast-PD generates pairs of primal-dual solutions iteratively, with the goal of always reducing the
primal-dual gap i(e the gap between the resulting primal and dual costs). But, for the case of Fast-PD, this gap
can be viewed as a rough estimate for the number of augmentations, and so this number is forced to reduce over
time as well.(b) On the contraryp-expansion works only in the primal domaine(it is as if a fixed dual cost is

used at the start of each new iteration) and thus the primal-dual gap can never become small enough. Therefore,
no significant reduction in the number of augmentations takes place as the algorithm progresses.

IV. EFFICIENCY OFFAST-PD FOR SINGLEMRFs

But, besides having all these good optimality properties, a very important advantage of Fast-PD over
all previous primal-dual methods, as well asexpansion, is that it proves to be much more efficient in
practice.

In fact, the computational efficiency for all methods of this kind is largely determined from the
time taken by each max-flow problem, which, in turn, depends on the number of augmenting paths
that need to be computed. For the case of Fast-PD, the number of augmentations per inner-iteration
decreases dramatically, as the algorithm progre&sgs$-ast-PD has been applied to the problem of image
restoration, where, given a corrupted (by noise) image, one seeks to restore the original (uncorrupted)
image back. In this case, labels correspond to intensities, while the singleton potential fupcliovas
defined as a truncated squared differenge) = min{|I, —a|?, 10*} between the label and the observed
intensity 7, at pixelp. Fig. 10(b) contains a related result about the denoising of a corrupted (with gaussian
noise) “penguin” image (256 labels and a truncated quadratic distdnck) = min(|a—b|?, D) - where
D = 200 - were also used in this case). Fig. 12(a) shows the corresponding number of augmenting paths
per outer-iterationi(e per group of|£| inner-iterations). Notice that, for both-expansion, as well as

PD3,, this number remains very high.€ almost over2 - 10° paths) throughout all iterations. On the



21

contrary, for the case of Fast-PD, it drops towards zero very quiektypnly 4905 and 7 paths had

to be found during the® and last outer-iteration respectively (obviously, as also shown in Fig. 13(a),
this directly affects the total time needed per outer-iteration). In fact, for the case of Fast-PD, it is very
typical that, after very few inner-iterations, only a very small number of augmenting paths need to be
computed per max-flow, which really boosts the performance in this case.

This property can be explained by the fact that Fast-PD maintains both a primal, as well as a dual
solution at each iteration. Fast-PD manages to effectively use this pair of primal and dual solutions
from the previous iteration so as to reduce the number of augmenting paths for the next iteration. What
essentially happens is illustrated in Fig. 11(a). Intuitively, Fast-PD ultimately wants to close the gap
between the primal and the dual cost (see Theorem 1), and, for this, it iteratively generates primal-dual
pairs, with the goal of continuously decreasing the size of this gap. But, for Fast-PD, the gap’s size
can be thought of as, roughly speaking, a rough estimation for the number of augmenting paths per
inner-iteration (see Theorem 7 below). Therefore, since Fast-PD manages to reduce this gap throughout
its execution, the number of augmenting paths is forced to decrease over time as well, which, in turn,
results in improving the efficiency of the max-flow algorithm (recall that a path augmenting max-flow
algorithm works by keep finding augmenting paths until there there are no more of them).

On the contrary, a method lika-expansion, that works only in the primal domain, ignores dual
solutions completely. It is, roughly speaking, asxifexpansion is resetting the dual solution to zero at
the start of each inner-iteration, thus effectively forgetting that solution thereafter (see Fig. 11(b)). For
this reason, it fails to substantially reduce the primal-dual gap and thus also fails to achieve a reduction
in path augmentations over timee across inner-iterations. This, of course, has as a result that more
time is needed to be spent per iteration. However, not onlywtegpansion, but the PRQ3algorithm as
well fails to mimic Fast-PD’s behavior (despite being a primal-dual method). As explained in sec. lll,
this happens because, in this casREEDIT.DUAL andPOSTEDIT.DUAL temporarily destroy the gap just
before the start ofJPDATE_DUALS_PRIMALS, i.e just before max-flow is about to begin computing the
augmenting paths. (Note, of course, that this destruction is only temporary, and the gap is restored again
after the execution 0bPDATE_DUALS_PRIMALS).

The above mentioned relationship between the primal-dual gap and the number of augmenting paths

is formally described in the next theorem (see appendix C for a proof):

Theorem 6. For Fast-PD, the primal-dual gap at the current inner-iteration forms an approximate upper

bound for the number of augmenting paths at each iteration thereafter.
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Fig. 12: (a) Number of augmenting paths per outer iteration for the “penguin” example (similar results hold for
the other examples as well). Note that only in the case of Fast-PD, this number decreases dramatically over time.
(b) This property of Fast-PD is directly related to the decreasing numbetioked nodes per outer-iteration (this
number is shown here for the same example as in (a)).
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Fig. 13: Total time per outer iteration for thé) “penguin”, (b) “Tsukuba” and(c) “SRI tree” examples(d)

Resulting total running times for the same examples. (We note that for all experiments of this paper, a 1.6GHz
laptop has been used).

Due to the above mentioned property, the time per outer-iteration decreases dramatically over time.

This has been verified experimentally with virtually all problems that Fast-PD has been tested on.
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Fast-PD has been also applied to the problem of stereo matching. In this case, the conventional measure of
SSD (sum of squared differences) or SAD (sum of absolute differences) has been used for the singleton
potentialsc,(-). Fig. 10(d) contains the resulting disparity (of siz&l x 288 with 16 labels) for the
well-known “Tsukuba” stereo pair, while fig. 10(f) contains the resulting disparity (of sizex288 with

10 labels) for an image pair from the well-known “SRI tree” sequence (in both cases, a truncated linear
distanced(a, b) =min(|a — b|, D) - with D=2 and D=5 - has been used, while the weights, were

allowed to vary based on the image gradient)atigures 13(b), 13(c) contain the corresponding running
times per outer iteration. Notice how much faster the outer-iterations of Fast-PD become as the algorithm
progresses, e.g. the last outer-iteration of Fast-PD (for the “SRI-tree” example) lasted less than 1 msec
(since, as it turns out, only 4 augmenting paths had to be found during that iteration). Contrast this with
the behavior of either the:-expansion or the PDQ3algorithm, which both require an almost constant
amount of time per outer-iteratiom,g the last outer-iteration ofi-expansion needed more than 0.4 secs

to finish (.e it was more than 400 times slower than Fast-PD’s iterafio8imilarly, for the “Tsukuba”

example,a-expansion’s last outer-iteration was more than 2000 times slower than Fast-PD’s iteration.

A. Max-flow algorithm adaptation

However, for fully exploiting the decreasing number of path augmentations and reduce the running
time, one also has to properly adapt the max-flow algorithm. To this end, the crucial thing to observe
is that the decreasing number of augmentations is directly related to the decreasing numbekesf
nodes, as already explained in sec. BIgfig. 12(b) shows how the number eflinked nodes varies per
outer-iteration for the “penguin” example (with a similar behavior being observed for the other examples
as well). As can be seen, this number decreases drastically over time. In fact, as implied by condition
(17), nos-linked nodes will finally exist upon the algorithm’s termination. Any augmentation-based max-
flow algorithm striving for computational efficiency, should certainly exploit this property when trying
to extract its augmenting paths.

The most efficient of these algorithms [1] maintains 2 search trees for the fast extraction of these
paths, asourceand asink tree (see Fig. 14(a)). Here, the source tree will start growing by exploring
non-saturated edges that are adjacent-limked nodes, whereas the sink tree will grow by exploring
non-saturated edges that connect to #ieked nodes (whenever these two trees touch each other, this
means that a new augmenting path has been found). Of course, the max-flow algorithm will terminate
when no unsaturated edges that connect these two trees can be found any more. However, in the case of

the Fast-PD algorithm, the source tree turns out to be of much smaller size than the sink tree. This is due



24

source-tree sink-tree

source sink
(@

large sink-tre

small source-tree
/—/%

source sink

few source-linked
nodes

(b)

Fig. 14: (a) Typically, path augmenting max-flow algorithms maintain and expand 2 trees (source tree and a

sink tree) in order to find new augmenting pattts. However, during the execution of the Fast-PD algorithm, the
source tree has a much smaller size than the sink tree (as explained in the text, this is due to the existence of a
small number of source-linked nodes). Hence, in this case, it is much more efficient to find new augmenting paths
by simply maintaining only the source tree.

to the fact that, as explained above, there can exist only a small numbdinkéd nodes (see Fig. 14(b)).
Hence, maintaining the sink tree will be completely inefficient in this case and will certainly not take
advantage of the above mentioned property. Therefore, instead of doing that, we propose maintaining only
the source tree during max-flow, as this will be a much cheaper operation to pedagrrim (many inner
iterations, there can be fewer than ddinked nodes, but many thousandstdinked nodes). Moreover,

due to the small size of the source tree, detecting the termination of the max-flow procedure can now be
done a lot fasteii,e without having to fully expand the large sink tree (which is a very costly operation),
thus giving a substantial speedup. In addition to that, for efficiently building the source tree, we keep
track of all s-linked nodes and don’t recompute them from scratch each time. In our case, this tracking
can be done without cost, since, as explained in sec. llk-lamked node can be created only inside the
PREEDIT.DUALS or the POSTEDIT.DUALS routine, and thus can be easily detected. The above simple

strategy has been extremely effective for boosting the performance of max-flow, especially when a small
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number of augmentations were needed.

B. Incremental graph construction

But besides the max-flow algorithm adaptation, one may also modify the way the max-flowdtraph
is constructed. That is, instead of constructing this capacitated giafiom scratch each time, we also
propose an incremental way of setting its capacities (recall that the max-flow graph is not static, but
changes per iteration). In fact, our framework provides a principled way of doing this incremental graph
construction for the case of general MRFs. What essentially allows us to achieve that is the fact that the
Fast-PD algorithm maintains both primal and dual information throughout its execution. The following

lemma turns out to be crucial in this regard:

Lemma 1. LetG¢, G¢ be the graphs for the current and previougteration. Let alsap, ¢ be 2 neighboring
MRF nodes. If, during the interval from the previous to the curkeiteration, no change of label took
place for p and ¢, then the capacities of the interior edges, ¢p in G¢ and of the exterior edges

sp, pt, sq, gt in G¢ equal the residual capacities of the corresponding edgescin

The proof follows directly from the fact that if no change of label took placepfgt then none of the
height variablesy,(z,), hy(x4) or the balance variableg,(z,), yqp(z4) could have changed. Due to the
above lemma, for building grapfi¢, we can simply reuse the residual graphgsfand only recompute
those capacities of/¢ for which the above lemma does not hold. This way, an additional speedup can

be obtained in some cases.

C. Combining speed with optimality

Fig. 13(d) contains the running times of Fast-PD for various MRF problems. As can be seen from
that figure, Fast-PD proves to be much faster than eitherntegpansiof or the PD3 method,e.g
Fast-PD has been more than 9 times faster thaxpansion for the case of the “penguin” image (17.44
secs vs 173.1 secs). In fact, this behavior is a typical one, since Fast-PD has consistently provided at
least a 3-9 times speedup for all the problems it has been tested on. However, besides its efficiency,
Fast-PD does not make any compromise regarding the optimality of its solutions. On the one hand,
this is ensured by theorems 4, 5, which essentially provide worst-casehgoretical) suboptimality

bounds. On the other hand, Fast-PD, like any other primal-dual method, can also tell for free how well

8We note that the publicly available implementation of [7] has been used fox-#seansion algorithm. Furthermore, since
a-expansion cannot be applied whé, -) is not a metric, the extension proposed in [6] has been used for the cases where a
non-metric distance functiod(-, -) was needed.
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Fig. 15: In the case of a primal-dual MRF optimization method, such as Fast-PD, théwedsof any dual solution
generated during the course of the algorithm forms a per-instance lower bound on the optimal MRF energy, say,
primal®, whereas the cogirimal, of any primal solution is obviously a per-instance upper bound on the minimum
energyprimal®. Hence, any primal-dual ratigap, = primal,/dual; forms a per-instance suboptimality bound
telling at most how far the current energy is from the unknown optimal enefgyal”. Of course, this suboptimality

bound gets refined.é, becomes smaller) during the execution of the algorithm.
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(b) Suboptimality bounds for image

(a) Suboptimality bounds for stereo matching restoration

Fig. 16: Suboptimality bounds (per inner iteration) for a stereo matching problem (“Tsukuba” example), as well as
for an image restoration problem (“penguin” example). As can be seen in both cases, the bounds drop very close
to 1, which means that the corresponding solutions are almost optimal.

it performed for each particular problem instance it has been tested on. And it can do that at no extra
cost by providing per-instance suboptimality bounds, which, in practice, prove to be much tighter than
their theoretical counterparts. To understand how this can be donfgrietal,}% ,, {dual;}*_, be the
sequence of primal and dual costs generated during the course of the algorithm. As already explained in
section Il, any of the dual costhial; forms a per-instance lower bound on the optimal MRF energy, say,
primal®. Furthermore, any of the primal cogtsimal; is obviously a per-instance upper bound on this
minimum energyprimal®. As a result, any primal-dual ratigap, = primal,/dual; forms a per-instance
suboptimality bound telling at most how far the current energy can be from the unknown optimal energy
primal®. Of course, this suboptimality bound is updated and becomes tighter as the algorithm progresses.
E.g fig. 16 shows how these ratios vary per inner-iteration for the “tsukuba” and “penguin” problems
(with similar results holding for the other problems as well). As one can notice, these ratios finally drop

very close to 1, meaning that an almost optimal solution is estimated at the end of the algorithm (and
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despite the problem being NP-hard). Before proceeding, we should also note that no special tuning of
either the singleton or the pairwise potential functions took place for deriving the results in Figure 10.
Therefore, by properly adjusting these functions with more care, even better results may be obtained by
the Fast-PD algorithmE.g Figure 17 displays the resulting disparity (for the “Tsukuba” image pair),
when a Potts function (instead of a truncated linear function) has been used as the distance function
().

We have also applied the Fast-PD algorithm to the problem of inter or intra modal deformable registra-
tion, which is one of the most challenging problems in medical imaging. Towards satisfying smoothness of
the deformation field and reducing the dimensionality of the problem, we represent deformation through
Free Form Deformations. Our method reformulates registration as an MRF optimization problem, where
a set of labels is associated with a set of deformations, and one seeks to attribute a label to each control
point such that once the corresponding deformation has been applied, the similarity metric between the
source and the target is maximal for all voxels [24]. Schnabel et al. [37] have also proposed a non-rigid
image registration method based on B-Spline Free Form Deformation (FFD) together with a gradient-
descent optimization. Their approach can be seen as the state-of-the-art in FFD based registration. In
order to demonstrate the performance of our deformable registration framework using FastPD, we run
both algorithms on the same data with similar registration parameters in terms of equal FFD mesh size and
same dissimilarity measure. The test data are two CT volumes showing the heart of pig (see Fig. 18). The
volume resolution is 128x128x88. Due to the heart beat a deformation of the shape before registration is
clearly visible. While the gradient-descent approach takes more than two hours to converge, the running
time of our method is less than 2 minutes (AMD Athlon64 2.21 GHz). Also, visually the results of the

registration are slightly better. Within a region of interest enclosing the heart we measure an average

Fig. 17: Disparity for the “Tsukuba” image as estimated by the Fast-PD algorithm in the case where a Potts function
has been used for the distandg, -).
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() (h)

(e)
Fig. 18: (a) Checkerboard visualization before registrati¢in) after registration using the method in
[37], and(c) after registration using our methdgd) After registration using our approach with pyramidal
settings. Same order for the difference imagesgei(h).

SSD error of 12278 before registration. The gradient-descent method achieves an error of 3402, while
our method minimizes the error to 3180. Last, but not least, we should mention, that this experiment
was not performed to obtain the best registration of the two data sets, but rather to compare the two
algorithms. With our standard pyramidal approach we obtain a SSD error of 1233 by same running time

of about 2 minutes.

V. DYNAMIC MRFs

But, besides single MRFs, Fast-PD can be easily adapted to also boost the efficiency for dynamic MRFs
[4], i.e MRFs varying over time, thus showing the generality and power of the proposed method. In fact,
Fast-PD fits perfectly to this task. The implicit assumption here is that the change between successive
MRFs is small, and so, by initializing the current MRF with the final (primal) solution of the previous
MRF, one expects to speed up inference. A significant advantage of Fast-PD in this regard, however, is
that it can exploit not only the previous MRF’s primal solution (sgy but also its dual solution (say
¥). And this, for initializing current MRF’s both primal and dual solutions (say).

Obviously, for initializing x, one can simply sek=x. Regarding the initialization of, however,
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Fig. 19: Statistics for the “SRI tree” sequence.

things are slightly more complicated. For maintaining Fast-PD’s optimality properties, it turns out that,
after settingy =y, a slight correction still needs to be applied yo In particular, Fast-PD requires

its initial solutiony to satisfy condition (18)j.€ y,q(zp)+ygp(2q) = wped(zp, z4), Whereasy satisfies
Upg(Tp) + Ygp(24) = Wped(xp, 74), i.€ condition (18) withw,,d(-,-) replaced by the pairwise potential
wped(-,-) of the previous MRF. The solution for fixing that is very simpkeg we can simply set

Ypg(Tp)+=wped(xp, x4) —Wped(zp, z4). Finally, for taking into account the possibly different singleton
potentials between successive MRFs, the new heights will obviously need to be upddigd)as=
¢p(-)—¢p(+), wheret,(-) are the singleton potentials of the previous MRF. These are the only changes

needed for the case of dynamic MRFs, and thus the new pseudocode appears in Fig. 20.

[x, y]«<—INIT _DUALS_PRIMALS (X,¥):
X=X Yy _
WG, Ypq(Tp) +=wped(Tp, Tq) —Wped(p, Tq);
W, hp() +=cp(-) —p();

Fig. 20: Fast-PD’s new pseudocode for dynamic MRFs.
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Fig. 21: (a) The final costs primal, dual, of the previous MRF are slightly perturbed to give the initial costs
primal, dual, of the current MRF. Thereforeghp” (i.e, the initial primal-dual gap of the current MRF) will be
close to ‘gap” (i.e, the final primal-dual gap of the previous MRF). Since, in the case of Fast-PD, the latter is small,
so will be the former, and thus few augmenting paths will need to be computed right from the start for the current
MREF, thus boosting its inferencé) However, in the case of an algorithm that works only in the primal domain,
“gap” will be large and thus the initial primal-dual of the current MRF will remain large as well (despite that only

a small perturbation exists between prignaind primal). Therefore, there will be no significant reduction in the
number of augmenting paths for the current MRF.

As expected, the speedup provided by Fast-PD for dynamic MRFs is even greater than single MRFs.
E.g Fig. 19(a) shows the running times per frame for the “SRI tree” image sequence. Fast-PD proves to
be be more than 10 times faster thamexpansion in this case (requiring on average 0.22 secs per frame,
whereasn-expansion required 2.28 secs on average). Fast-PD can thus run on about 5 framesisec,
can do stereo matching almost in real time for this example (in fact, if successive MRFs bear greater
similarity, even much bigger speedups can be achieved). Furthermore, fig. 19(b) shows the corresponding
number of augmenting paths per frame for the “SRI tree” image sequence (forbmtpansion and
Fast-PD). As can be seen from that figure, a substantial reduction in the number of augmenting paths is
achieved by Fast-PD, which helps that algorithm to reduce its running time.

This same behavior has been observed in all other dynamic problems that Fast-PD has been tested on as
well. Intuitively, what happens is illustrated in Fig. 21(a). Fast-PD has already managed to close the gap
between the costs primaldual of the final primal-dual solutiong,y of the previous MRF. However,
due to the possibly different singletdie c,(-)) or pairwise(i.e wy,d(-, -)) potentials of the current MRF,

these costs need to be perturbed to generate the costs,primal, for the initial solutionsx,y of the
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Fig. 22: Fast-PD reduces the number of augmenting paths in 2 ways: internalfgross iterations of the same
MRF (see red arrows), as well as externallg,across different MRFs (see blue arrow).

current MRF. Nevertheless, as only slight perturbations take place, the new primal-duakdpegiween
primal,, dual,) will still be close to the previous gap.¢ between primal, dual). This means that the
new initial gap will be small and, so, few augmenting paths will have to be found even from the first
iteration of the current MRF, which helps a lot in improving the efficiency for doing inference on that
MRF.

On the other hand, for the case of an algorithm that works only in the primal domgin{expansion),
the final primal-dual gap for the previous MRF will be large. Hence, despite that only a small perturbation
takes place between the costs of the previous and the current primal soligjdrefween primal and
primal,), the initial primal-dual gap for the current MRF will necessarily be large, which means that a
lot of augmenting paths will have to be computed right from the first iteration of the current MRF, thus
making inference slower.

Put otherwise, for the case of dynamic MRFs, Fast-PD manages to boost perforimameduce
number of augmenting paths, across two different “axes”. The first axis lies along the different inner-
iterations of the same MRFe(gsee red arrows in Fig. 22), whereas the second axis extends across time,
i.e across different MRFse(g see blue arrow in Fig. 22, connecting last iteration of NMRFto first
iteration of MRF).

VI. CONCLUSIONS

In conclusion, a new graph-cut based method for MRF optimization has been proposed, which is
capable of handling a wide class of MRFs that are frequently encountered in computer vision. It builds
upon the recently proposed primal-dual framework for MRF optimization in order to generate solutions
that are approximately optimal. To this end, it can provide both theoretieahorst-case) guarantees, but

also per-instance guarantees, with the latter being, in practice, much tighter than the former. Furthermore,
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despite the quality of the generated solutions, it still makes no compromise regarding its efficiency. It
thus can be used for providing a significant speedup on the optimization of static MRFs, but, in addition,
it can be used for boosting the performance of dynamic MRFs as weIMRFs that vary over time). In

both cases, its efficiency comes from the fact that it exploits information related not only to the “primal”
problem (.e the MRF optimization problem), but also to an “LP-dual” problem. Due to all of the above,
and given the ubiquity of MRFs, we strongly believe that the Fast-PD algorithm can prove to be an

extremely valuable tool for many problems in computer vision in the years to come.
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APPENDIXA: PROOF OFTHEOREM4 ABOUT THE OPTIMALITY OF FAST-PD’S SOLUTIONS

The purpose of this section is to provide the proof for Theorem 4, which certifies that the solutions
estimated by the Fast-PD algorithm have guaranteed optimality properties. But before that, the following

3 lemmas need to be proved:

Lemma A.1

During a c-iteration, the following inequalities hold true exactly aftePDATE_ DUALS_PRIMALS:

y;q(C) S ypq(c) + Cappq (29)

y(/]p(c) S yqp(c) + Capqp (30)

Proof. An intuitive proof comes from the fact that flows, and f,, represent the increase of the balance

variablesy,,(c) andy,,(c) respectively duringyPDATE_DUALS_PRIMALS. Since it is always true that:
qu S C&ppq 9
fqp S Capqp 9

the lemma then follows directly. O

Lemma A.2 During a c-iteration, the following entailments hold true:

load, (¢, Zq) < wped(c, Tq) = load’ py(c, Ty) < wped(c, Zy) (31)

load,q(Zp, €) < wped(Tp, c) = load’ pg(Tp, ¢) < wped(Tp, ) | (32)

wherex can be any labeling which is a-expansion of the primal solutiox at the start of the current
c-iteration. (In the above entailments, quantitiesad,,(c, z,), load,,(Z,, c) are supposed to have been

estimated using the value of the balance variables exactly alR€EDIT_DUALS).

Proof. If z, = c then (31) is trivial to prove. We may therefore assume that =, # c (sincex is a

c-expansion ofk). So, in order to prove (31), let us then also assume that:

loady, (¢, zq) < wpqd(c, z4) (33)
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But then, by combining Lemma A.1 with the definition of capacity,,, in (24), we get:
(29) (24)
y;;q(c) < Ypq (C) + Cappq =

(33)
=" Ypq(c) + wped(c, z4) — loadyy(c, z4)

Ypq(c) + [wpgd(c, z4) — loadp(c, ﬂcq)]Jr

TqFcC

= Wpqd(c, Tq) — Ygp(Tq) = wped(c, zq) — y;p(xq)
which thus proves (31). The proof for (32) proceeds similarly. O

Lemma A.3 At the lastc-iteration of the Fast-PD algorithm, the following inequalities hold (for any

p;q):
load;,q (C, l‘i]) S wpqdmax (34)

1oad;q(x;,, ¢) < Wpgdmax (35)

Proof. The lemma is trivial if eithee = x;, or ¢ = 7, and so we will hereafter assume thag x;, and

c# z; Furthermore, since this is the lasiteration, no label change takes place, and so:

x; = Zp, x; = z4. (36)

CASE 1: If the following two inequalities hold true:
loadpg(c, zq) < wped(c, 2q) (37)
loadyg (2, ¢) < wped(xp, ) , (38)

then the lemma follows directly from Lemma A.2.

CAsE 2: It thus remains to consider the case where at least one of the inequalities (37), (38) is violated.

Then (and only then)pREEDIT-DUALS (by definition) will adjusty,,(c) so that:
loady, (¢, zq) = wpqd(c, z4) (39)

Hence, condition (37) will be restored after the adjustment. We may then assume that (38) will remain

violated after the adjustment (or else we would fall back to caseelyye may assume that:

load,q(zp, ¢) > wped(zp, c) (40)
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Based on (39), (40) and the definition of capacities in (24), (25), it then resultsahat= cap,, = 0.

This implies thaty,, (c) = yp,(c), and it is then easy to show that:

loady,, (¢, z4) = loadpy(c, z4) (41)
loady,, (), ¢) = loadyy(zy, c) (42)
But then:
loady,, (¢, z4) @ loadp,(c, q) €9 Wped(c, 2q) < Wpgdmax (43)
and also:
loady, (), ¢) @ loadyg (zp, ¢) = [loadyq(zp, €) + loady, (¢, z4)] — loady,(c, 4) (44)
= loadpq(xp, z4) — loady,(c, z4) (45)
(18439)wpqd(l‘pa Tq) — Wped(C, Tq) < Wpgdmax; (46)
with equality (45) being true due to the identityad,,(z,, ¢) + load,q(c, z4) = loadpy(zp, z4). O

We may now proceed to prove Theorem 4, which (as already mentioned) forms the main goal of this

section.

Proof for Theorem 4 To complete the proof of this theorem, we need to show that each one of the
complementary slackness conditions (17)-(19) will hold true by the time Fast-PD terminates:
Condition (18): As already explained in section Ill, thePDATE_DUALS_PRIMALS routine can restore
condition (18) for most pairgp,q) during any inner-iteration. However, even if there do exist pairs
that violate this condition aftetPDATE_DUALS_PRIMALS, then thePOSTEDIT.DUALS routine can, by
definition, always restore condition (18) for them.
Condition (19). Based on Lemma A.3, it follows that, given any labekhe following inequality will
hold true after the lasi-iteration:

loadyq(a, z4) < Wpgdmax- (47)
Similarly, given any labeb, the following inequality will also hold true after the lasiteration:

loadyq(xp, b) < Wpgdmax- (48)
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Combining these inequalities with the identity:
load,q(a, b) + load,q(zp, x4) = loady,(a, z4) + loadyy(zp, b), (49)
we get that:

loadyg(a, b) = [loadpy(a, b) + loadpq(xp, 24)] — loadyg(zp, 4)

=) loadyq(a, z4) + loadyy(zp, b)] — load,q(zp, 4)

(47), (48)
2Wpgdmax — loadyg(xp, z4),
and then condition (19) follows trivially, sindead,,(xp, zq) = d(zp, z4) > 0 by (18).
Condition (17): It turns out that theuPDATE_.DUALS_PRIMALS routine can finally ensure condition
(17) due to the way that the exterior capacities of grgphare defined. Since Fast-PD uses the same
definition as PD3 for these capacities, the corresponding proof (that has been used for the case of the

PD3, algorithm) in [5] applies here as well. O
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APPENDIXB: PROOF OFTHEOREM5 ABOUT THE EQUIVALENCE OFFAST-PD AND a-EXPANSION IN

THE CASE OF A METRIC DISTANCE FUNCTIOl\d(-, )

In this section, we will provide the proof for Theorem 5, which shows that when dis@nge is a
metric, then Fast-PD can compute exactly the same solution as-&x@ansion algorithm. To this end,

we will make use of the following two lemmas:
Lemma B.1 Let us define:
primal(x) = MRF energy of labeling x ,

and let alsox be any primal solution generated during an inner-iteration of the Fast-PD algorithm. It

then holds that:
primal(x Zh Zp) (50)

Proof.

primal(x) @ Z ep(zp) + Z Wped(xp, T4q)

pge &
@ Z cp(zp) + Z load(zp, z4) Z Z (Ypg(Tp) + Ygp(4))
P pgEe € p pge &
= Zcp (zp) + Z Z Ypg(Tp) Z cp Tp) + Z ypq(xp)) (Q)th(xp)
P qpg€ & D q:pg€ & P

O]

Lemma B.2 Let the distance functiod(-,-) be a metric. Let be the primal solution at the start of the
current c-iteration, and let alsax be any solution which coincides with@expansion of solutiox. It

will then hold that:
loady,, (Zp, Tq) < wpqd(Tp, Tg) (51)

Proof. If either z, = 2, = c or z, = z,,, T, = x,, the lemma is trivial to prove. So let us assume that

Zp = xp, Tq = c (the caser, = ¢, T, = x4 can be handled similarly). In this case, we need to show that:
loady, (p, ¢) < wyed(xp, ¢) (52)

Due to entailment (32) in Lemma A.2, it then suffices to show that the following condition will hold
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true afterPREEDIT_.DUALS:

load,q(zp, ¢) < wped(xyp, €). (53)

Regarding inequality (53), this will always hold FREEDIT.DUALS has to apply no adjustment to
Ypq(c) (this results from the definition oPREEDIT.DUALS). However, even ifPREEDIT.DUALS must
adjust the value ofj,,(c), inequality (53) will still hold true, provided that(-, ) is a metric.

To see that, it suffices to observe that after the adjustment madedgDIT_DUALS, it will then hold:
loadpg(c, zq) = wped(c, 7q) (54)
and so:

loadyg (), ¢) = [loadyq(zp, €) + loadpy(c, z4)] — loady,(c, x4)

(18),(54)
= loadpg(xp, 2) —loadpg(c,2q) == " wpqd(p, 2q) — wped(c, x4) < wped(xp,c)

where the last inequality holds due to tht, -) is a metric and thus has to satisfy the triangle inequality.
O
We may now proceed to the main goal of this section, which is the proof of Theorem 5.

Proof for Theorem 5 Let x be the primal solution at the start of the curresiteration, letx’ be the
solution selected by Fast-PD at the end of the curedtgration, and let als& be any solution which
coincides with ac-expansion of solutiorx.

To prove the theorem, we need to show that:
primal(x’) < primal(X) (55)

To this end, it suffices to show that the following conditions hold true:

primal(x’) = Z hoy(7,) (56)
p

D hplan) < hy(x) (57)
p p

> hi(z,) < primal(X) (58)

p
Regarding equation (56), this follows directly by applying Lemma B.1 to the primal solution
generated by the Fast-PD algorithm.
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To prove inequality (57), one can first show thg{(x;,) = min{h;,(z,), h,(c)}. In addition to that, it
will also hold eitherz, = x, or z, = c (sincex is a c-expansion ofx). By combining these facts, it

then results thak,,(x;,) < h;,(7,), and thus (57) follows directly.

Finally, inequality (56) will hold true because:

primal(®) = 3 ¢, (@) + 3 wpd(Ep 7g) = 3 ep@p) + 3 load! (7, 7)
D pge & p pge &
= Z cp(Zp) + Z (y;/;q(jp) + y;p(jq)) = Z cp(Zp) + Z Z y;;q(jp)
P pge € P P qpg€ &
= Z(Cp(xp) + Z ?J;qu(fp)) @ Z ;o(jp)
4 q:pge & P
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APPENDIXC: PROOF OFTHEOREM 7

Theorem 7. For Fast-PD, the primal-dual gap at the current inner-iteration forms an approximate upper

bound for the number of augmenting paths at each iteration thereafter.

Proof. The same dual linear program as in [5] has been used, and so the cost of a dual solution is defined

as:
dual cost = 1((117&1? hp(a) , (59)
P
which implies that:
dual cost < Z min(hy(c), hy(zp)) (60)

p
Furthermore, in the case of the Fast-PD algorithm, it can be shown that the following equality will hold

before the start of max-flow at an inner-iteration (see lemma B.1):

primal cost = Z hy(zp) (61)
P

Based on (60), (61), the following inequality then results:

primal dual gap = primal cost — dual cost > Z hyp(zp) — Z min(hy,(c), hy(zp))
P

= Z[hp(xp) — hp(c)]" = Z capy,- (62)

But the quantityzp cap,,, obviously forms an upper-bound on the maximum flow duringiteration,
which, in turn, upper-bounds the number of augmenting paths (assuming integral flows). In addition to
that, the upper bound defined @p capg, Will not increase during any of the nextiterations (which
means that the number of augmentations will keep decreasing over time), and so the current primal-dual
gap will be an approximate upper bound for the number of augmentations of the-itepetions as well.

The fact that the upper bound, , cap,, = 3= [hy(2,) — hy(c)]™ will not increase during any of the
next iterations may be justified by that any of the terfig(z,) — h,(c)]T can increase only during
either PREEDIT.DUALS Or POSTEDIT.DUALS (it is easy to show thaUPDATE_.DUALS_PRIMALS may
only decrease the value of these terms). However, bethEDIT.DUALS and POSTEDIT.DUALS modify
the height variables,(-) only in very rare occasions during the execution of Fast-BQif d(-,-) is
a metric, one may prove that none of the height variables need to be altered9T¥EDIT.DUALS).

Hence, the term§,(z,) — h,(c)]™ will typically not be altered by these routines (or they will be altered
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by a negligible amount at most), and so onlgyDATE_.DUALS_PRIMALS may modify these terms, thus

decreasing their values.



