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Abstract

In this paper we introduce a novel, fast, efficient and gradient free approach to
dense image registration. In such a context the registration problem is formulated
using a discrete Markov Random Field objective function. First, towards dimen-
sionality reduction on the variables we assume that the dense deformation field can
be expressed using a small number of control points (registration grid) and an in-
terpolation strategy. Then, the registration cost is expressed using a discrete sum
over image costs (using an arbitrary dissimilarity measure) projected on the control
points, and a smoothness term that penalize local deviations on the deformation
field according to a neighborhood system on grid. Towards a fully discrete approach
the search space is quantized resulting in a fully discrete model. In order to ac-
count for large deformations and produce a finer and finer resolution a multi-scale
incremental approach is considered where the optimal solution is iteratively up-
dated. This is done through successive morphings of the source towards the target
image. Efficient linear programming using the primal dual principles is considered
to recover the lowest potential of the cost function. Very promising results using
synthetic data with known deformations and real data demonstrate the extreme
potentials of our approach.
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1 Introduction

Medical image analysis [7] is an established domain in computational, mathe-
matical and biological sciences. Recent advances on the acquisition side have
made possible the visualization of human tissues as well as physiological and
pathological indices related with them either occasionally or periodically. The
ability to compare or fuse information across subjects with origins from dif-
ferent modalities is a critical and necessary component of computer aided
diagnosis. The term used often to express this need is registration.

The registration problem often involves three aspects, (i) deformation model,
(ii) dissimilarity criterion and (iii) optimization strategy.

Registration can be either global or local. Parametric models are often em-
ployed to address global registration with a small number of degrees of free-
dom, such as rigid or similarity. These models refer to a good compromise
between performance and computational complexity. Furthermore, the regis-
tration problem in such context is well posed since the number of variables
to be determined is over-constrained from the number of observations. Dense
image registration aims to go further and seeks individual correspondences
between observations. The main goal is to determine relationships that locally
express the correlation of the observations either for the same subject (acqui-
sitions of different modalities or acquisitions of the same organ in time). Local
alignment or dense/deformable registration are the terms often considered to
describe this task.

Deformable registration is one of the most challenging problems in medical
imaging. The problem consists of recovering a local transformation that aligns
two signals that have in general an unknown non-linear relationship. Several
methods exist in the literature where specific measures are designed to account
for this non-linearity and optimize the transformation that brings together
these two signals.

Local image alignment is often performed according to geometric or pho-
tometric criteria. Landmark-based methods [17,28] are a classic example of
geometric-driven registration. In such a setting, a number of anatomical key
points [25]/structures (segmented values) are identified both in the source and
the target image and a transformation that aims to minimize the Euclidean
distance between these structures is to be recovered. The main limitation of
these methods is related to the selection and extraction of landmarks, while
their main strength is the simplicity of the optimization process.

Iconic registration methods [4] seek for “visual” correspondences between the
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source and the target image. Such a problem is tractable when one seeks
registration for images from the same modality due to an explicit photometric
correspondence of the image intensities. Sum of squared differences [16], sum of
absolute differences [16], cross correlation [16] or distances on subspaces that
involve both appearance and geometry (intensities, curvature, higher order
image moments) [6] have been considered. On the other hand it becomes more
challenging when seeking transformations between different modalities with a
non-linear relation of intensities. Non-linear measures have often been used
[18] where normalized mutual information [24], Kullback-Liebler divergence
[33] and correlation ratio [26] are some of the measures used to define similarity
between different modalities.

Once the dissimilarity measure has been defined the next task consists of re-
covering the parameters that optimize the designed cost function. Parameters
can be either searched or estimated. In the first case techniques like exhaus-
tive search can be employed which are time consuming. On the other hand,
one can use known optimization techniques, gradient-free or gradient-based
to determine the optimal set of parameters starting from an initial guess.
These methods require an important customization from one application to
another since a correlation exists between the modalities/problem and the se-
lection of the dissimilarity measure. Furthermore, the optimization is often
sub-optimal due the non-convexity of the designed cost functions. Further-
more, in particular when considering complex dissimilarity functions defined
on the continuous space, then the numerical approximation of the gradient
in the discrete domain (image/volume plane) is very challenging leading to
erroneous registration results.

The aim of our approach is to overcome both limitations present in all regis-
tration methods. Dependency on the dissimilarity measure selection, as well
as to the initial conditions in a reasonable computation time.

In this article we propose a novel technique that can either be used for in-
ter or intra modal image registration. Towards satisfying smoothness of the
deformation field and reducing the dimensionality of the problem we repre-
sent deformation through Free Form Deformations. Our method reformulates
registration as an Markov Random Field (MRF) optimization where a set of
labels is associated with a set of deformations, and one seeks to attribute a
label to each control point such that once the corresponding deformation has
been applied, the dissimilarity measure between the source and the target is
minimal for all voxels. The optimization procedure is independent from the
graph construction, and therefore any dissimilarity measure can be used.

The reminder of this paper is organized as follows: In Section 2 we intro-
duce the proposed registration framework, while in Section 3 we discuss the
optimization aspects. Implementation details are given in Section 4 and ex-
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perimental validation are part of Section 5. Section 6 concludes our paper.

2 Deformable Registration

In order to introduce the concept of our approach [15], we consider (without
loss of generality) the 2D image domain. Let us consider a source f : Ω =
[1, N ] × [1, M ] → R and a target image g. In general, these images are re-
lated with a non-linear transformation as well as a non-linear relation between
intensities, that is

∀x ∈ Ω g(x) = h ◦ f(T (x)) (1)

where T (x) is the transformation and h is a non-linear operator explaining
the changes of appearance between them. The most common way to formulate
the registration problem, is through the definition of a distance between the
source and the target image that is to be minimized in the entire domain Ω,
or

Edata(T ) =
∫
Ω
|g(x)− h ◦ f(T (x))|dx. (2)

Recovering the optimal potential of this objective function is not straightfor-
ward. In the case of 2D images, two variables are to be determined while one
constraint is available per pixel. The most basic approach to address this limi-
tation is through the use of a regularization function on the space of unknown
variables [32], or

Esmooth(T ) =
∫
Ω

φ(∇T (x))dx (3)

with φ being a convex function imposing smoothness on the deformation field
for neighboring pixels. Such a term will make the estimation of the deforma-
tion field feasible assuming that the linear relationship between the signals is
known. This hypothesis is not realistic due to the fact that (i) when register-
ing the same modalities this relationship depends on the parameters of the
scanner which are not available, (ii) when registering different modalities in
most of the cases such an operator does not exist.

In order to overcome this constraint, in the most general case a dissimilarity
measure ρ is introduced to account for the non-linear transformation relating
the two images, or

Edata(T ) =
∫
Ω

ρh(g(x), f(T (x))dx (4)

The definition of the ρh depends on the nature of the observed signals as
well as the application itself. Once this measure is defined the data term is
combined with the smoothness one to determine the objective function under
consideration. Gradient descent is the most common approach to perform the
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optimization, a method that has some strengths and known limitations. One
can claim that this approach is convenient and often it is straightforward to
implement. On the other hand, the problem is ill-posed due to the fact that
the number of constraints is inferior to the number of variables to be deter-
mined. Furthermore, since the objective function is non-convex one cannot
guarantee that the obtained solution will be the optimal one. Last, but not
least gradient numerical manipulation is not straightforward when projecting
from the continuous space to the discrete one.

The above observations lead to a natural conclusion that one should seek (i)
dimensionality reduction on the degrees of freedom of the model, (ii) more
efficient optimization techniques both in terms of ability to approach the op-
timal solution with reasonable computational cost, and (iii) techniques that
do not require continuous gradient manipulation in discrete spaces.

2.1 Continuous Domain

Since we are interested in local registration, let us introduce a deformation
grid G : [1, K] × [1, L] (usually K � M and L � N) superimposed onto the
image (no particular assumption is made on the grid resolution). The central
idea of our approach is to deform the grid (with a 2D displacement vector dp

for each control point) such that the underlying image structures are perfectly
aligned. One can assume that the transformation of an image pixel x can be
expressed using a linear or non-linear combination of the grid points, or

T (x) = x +D(x) with D(x) =
∑
p∈G

η(|x− p|)dp (5)

where η(·) is the weighting function measuring the contribution of the control
point p to the displacement field D. The position vector of point p is denoted as
p. In such a theoretical setting without loss of generality we consider Free Form
Deformations (FFD) based on cubic B-Splines as a transformation model. FFD
are successfully applied in non-rigid image registration [27,31]. Deformation of
an object is achieved by manipulating an underlying mesh of uniformly spaced
control points. The displacement field for a two-dimensional FFD based on
cubic B-Splines is defined as

D(x) =
3∑

l=0

3∑
m=0

Bl(u)Bm(v)di+l,j+m (6)

where i = bx/Kc−1, j = by/Lc−1, u = x/K−bx/Kc, and v = y/L−by/Lc
and where Bl represents the lth basis function of the B-Spline. The three-
dimensional version is defined in a straightforward manner.
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By defining the registration problem based on such a deformation model we
can now rewrite the criterion earlier introduced,

Edata(T ) =
1

|G|
∑
p∈G

∫
Ω

η−1(|x− p|) · ρh(g(x), f(T (x)))dx. (7)

where η−1(·) is the inverse projection for the contribution to the objective of
the image pixel x according to the influence of the control point p,

η−1(|x− p|) =
η(|x− p|)∫

Ω η(|y − p|)dy
. (8)

Such a term will guarantee photometric correspondence between the two im-
ages. Hence, this term is also called the data term. The transformation due
to the interpolation inherits some implicit smoothness properties. However, in
order to avoid folding of the deformation grid, one can consider a smoothness
term on the grid domain, or

Esmooth(T ) =
1

|G|
∑
p∈G

φ(|∇G dp|) (9)

with φ being a smoothness penalty function for instance the L1-Norm. The
complete term associated with the registration problem is then defined as the
sum of the data and smoothness term, or

Etotal = Edata + Esmooth. (10)

The most common way to obtain the transformation parameters is through
the use of a gradient-descent method in an iterative approach [30]. Thus given
an initial guess, one updates the estimate according to the following formula[
T m = T m−1 − δt δEtotal

∂T

]
. Such a process involves the derivative of the energy

term with respect to the transformation parameters and therefore it is model
and criterion dependent. Slight modifications of the cost function could lead
to a different derivative and require novel numerical approximation methods.

2.2 Discrete Domain

Let us now consider a discrete set of labels L = {u1, ..., ui} corresponding
to a quantized version of the deformation space Θ = {d1, ...,di}. A label
assignment up to a grid node p is associated with displacing the node by the
corresponding vector dup . The displacement field associated with a certain
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discrete labeling u becomes

D(x) =
∑
p∈G

η(|x− p|)dup . (11)

One can reformulate the registration as a discrete optimization problem, that
is assign individual labels up to the grid nodes such that

Edata(u) =
1

|G|
∑
p∈G

∫
Ω

η−1(|x− p|)ρh(g(x), f(T (x)))dx ≈ 1

|G|
∑
p∈G

Vp(up) (12)

where Vp(·) represents a local dissimilarity measure. There is a main issue
coming along when using such an MRF based formulation. In general, the
so-called singleton potential functions Vp(·) are assumed to be independent.
This is obviously not the case when using higher order polynomials for the
weighting function in our transformation model. Actually it is not possible to
pre-compute the exact data term corresponding to a certain discrete labeling
since the resulting deformation depends on all grid nodes influencing the local
image patch. Therefore, we propose an approximation scheme for an efficient
pre-computation of the look-up table containing the |L| × |G| data terms. For
a given image pair this computation can be achieved by simple global shift
operators. The entries of one table row (corresponding to a certain label up) are
determined simultaneously by translating the source image with the associated
displacement vector dup . The entry for node p and label up is determined by

Vp(up) =
∫
Ω

η−1(|x− p|)ρh(g(x), f(x + dup))dx. (13)

Thanks to the use of the inverse projection and the local grid node support
on the deformation field, the error that is made during this approximation
is relatively small. Since image points which are close to a grid node and
mostly affected by its displacement will also have the most influence when
back-projecting the dissimilarity measure.

Unfortunately, the mentioned approximation scheme including the inverse pro-
jection can only be used for point-to-point dissimilarity measures. For more
complex measures, such as Mutual Information or Cross Correlation, the in-
verse projection cannot be used. Here, we can simply approximate these mea-
sures in the local neighborhood of a grid node. In case of Mutual Information
for instance, we generate a local joint histogram from the neighboring image
patches next to certain control point.

Since the computation of the data term is only based on global translations it
is very fast and straightforward. Additionally, it allows to plug in any dissim-
ilarity measure without modifications on the scheme itself. The measures are
only considered on the image domain and no further analytical differentiation
is needed.
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The number of labels and their capture range play a significant role to the
registration process. It is clear that setting the number of labels to infinity
will converge to the continuous formulation which though is intractable from
computational perspective. On the other side, if the set of labels is too small or
misses important displacements the registration process can yield poor results.
Therefore we propose to perform several optimization cycles (while resetting
the control grid and updating the dense deformation field in a compositional
fashion) which allow us to keep the set of labels quite small and thus the
optimization to be fast. This iterative approach improves the accuracy of the
results since the data term approximation gets better and better after updating
the deformation after each cycle. Furthermore, in case that an optimal grid
node displacement is not covered by the capture range of the first cycle we
can still converge to the optimal position. Additionally, we can successively
refine the quantized deformation space to enable high sub-pixel accuracy. To
this end, we can define a series of cost functions, or

Et
data(u) =

∑
p∈G

∫∫
Ω

η−1(|x− p|)ρh(g(x), f(dup ◦ T t−1(x)))dx. (14)

We should note, that from an optimization point of view we achieve (quasi)
optimal solutions for the discrete labeling in every cycle.

Recently, one certain kind of deformations gained quite a lot of interest. In
some applications, e.g. where the deformation field itself is further analyzed, it
is desirable to obtain smooth, invertible deformations called diffeomorphisms.
Following Rueckert et al. [29], we can guarantee diffeomorph deformations by
simply setting the maximum allowed displacement to the bounds derived in
[29].

The next aspect to be addressed is the definition of the smoothness term in
the label domain. One can express distances between the deformation vectors
using differences between labels if a ranking has been considered within the
definition of the label set, or

Esmooth(u) =
1

|E|
∑

p,q∈E
Vpq(up, uq) (15)

where E represents the neighborhood system associated with the deformation
grid G. For the distance Vpq(·, ·) (also called pairwise potentials) we consider a
simple piecewise smoothness truncated term based on the euclidean geometric
distances between the deformations corresponding to the assigned labels:

Vpq(up, uq) = λpq min (|dup − duq |, T ) (16)

with T being the maximum penalty and λpq being a (spacially varying) weight-
ing to control the influence of this prior term. Basically, this is a discrete
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approximation of the smoothness term defined in Equation 9 extended by
the piecewise property. We propose two ways of incorporating the smooth-
ness function in the optimization process. Incremental regularization [4] of
the transformation in each cycle independently yields a fluid-like registration
[11]. This has the advantage that the pairwise potentials always fulfill the
metric properties which is needed for MRF optimization algorithms such as
the α-expansion algorithm [3]. Full regularization over time can be achieved
by back-projecting the dense deformation field to the (reseted) grid nodes in
a similar way as it is done for the data term. Here, an optimization method
is needed which can handle semi-metrics which is the case for the below men-
tioned algorithm based on linear programming.

Such a smoothness term together with the data term allows to convert the
problem of image registration into the form of an MRF [23] in a discrete
domain, or

Etotal(u) =
1

|G|
∑
p∈G

Vp(up) +
1

|E|
∑

p,q∈E
Vpq(up, uq). (17)

MRFs [12] have been very popular in the area of computer vision in late
eighties and early nineties. However their main bottleneck at that time was
the lack of efficient optimization techniques to recover their lowest poten-
tial. Deterministic and non-deterministic algorithms have been considered to
address this demand. Iterated conditional modes [1] as well as Highest Con-
fidence First [5] are the most well known deterministic processes which often
converge to the local minimum. On the other hand, techniques like simulated
annealing [19] can in theory drive the solution to the optimal one, however
in practice the process was rather complicated and important attention was
to be paid on the handling of the temperature decrease. This constrain have
made the use of annealing methods almost impractical.

The use of the max-flow/min-cut algorithm [10] and the prove of equivalence
with certain MRFs was the main reason of renaissance for the MRF framework,
in late nineties. In particular, the graph-cut algorithm [2] which refers to an
efficient implementation of the max-flow/min-cut approach in regular image
grids has boosted the attention of the vision communities in MRFs. This
method can guarantee the global optimum or a good approximation of it
(solving a succession of binary problems using the alpha-expansion [2]) under
certain conditions [20] which related the solution with the number of labels
and the complexity of the pair/clique-wise potentials. In practice the more
complex the interaction terms are, the more challenging is the optimization
of the objective function in reasonable computational time. The use of metric
or sub-modular functions is the most common constraint related with the
definition of the pairwise potential function.
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Dense registration is a problem which by default involves a multi-label task
while at the same time the regularization terms are often non-linear functions
(first and second order derivatives, elastic models, etc.). Therefore assuming
that the pairwise potentials are sub-modular functions is unrealistic. Further-
more, one should expect that the level of resolution in the quantized search
space will depend on the position of the control point in the image plane. In
other words, in areas with strong image content like edges and texture the
matching process would be quite precise which will not be the case in smooth
areas. Last, but not least given the important number of degrees of freedom,
the method should be computational efficient. Due the pairwise potentials re-
quirements, the use of methods like graph-cuts, or other max-fow/min-cut is
limited.

3 MRF optimization based on Linear Programming

For optimizing the resulting MRF, we seek to assign a label up ∈ L to each
node p ∈ G, so that the MRF energy in (17) is minimized. To this end,
a recently proposed method, called Fast-PD, will be used [22]. This is an
optimization technique, which builds upon principles drawn from the duality
theory of linear programming in order to efficiently derive almost optimal
solutions for a very wide class of NP-hard MRFs. When applied to the image
registration task, this technique thus offers a series of important advantages
compared to prior art (see Section 3.2).

For more details about the Fast-PD algorithm, the reader is referred to [22,21].
Here, we will just provide a brief, high level description of the basic driving
force behind that algorithm. This driving force will consist of the primal-dual
schema, which is a well-known technique in the linear programming literature.

3.1 The primal-dual schema for MRF optimization

To understand how the primal-dual schema works in general, we will need to
consider the following pair of primal and dual Linear Programs (LPs):

Primal: min cTx Dual: max bTy

s.t. Ax = b,x ≥ 0 s.t. ATy ≤ c
(18)

Here A represents a coefficient matrix, while b, c are coefficient vectors. Also,
x, y represent the vectors of primal and dual variables respectively. We seek
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Fig. 1. (a) By weak duality, the optimal cost cTx∗ will lie between the costs bTy
and cTx of any pair (x,y) of integral-primal and dual feasible solutions. Therefore,
if bTy and cTx are close enough (e.g. their ratio r1 is ≤ f), so are cTx∗ and cTx
(e.g. their ratio r0 is ≤ f as well), thus proving that x is an f -approximation to x∗.
(b) According to the primal-dual schema, dual and integral-primal feasible solutions
make local improvements to each other, until the final costs bTyt, cTxt are close
enough (e.g. their ratio is ≤ f). We can then apply the primal-dual principle (as in
Fig. (a)) and thus conclude that xt is an f -approximation to x∗.

an optimal solution to the primal program, but with the extra constraint of x
being integral. Due to this integrality requirement, this problem is in general
NP-hard and so we need to settle with estimating approximate solutions. A
primal-dual f -approximation algorithm achieves that by use of the following
principle (illustrated also in Fig. 1(a)):

Primal-Dual Principle 1 If x and y are integral-primal and dual feasible
solutions having a primal-dual gap less than f , i.e.:

cTx ≤ f · bTy, (19)

then x is an f -approximation to the optimal integral solution x∗, i.e. cTx∗≤
cTx ≤ f · cTx∗

Based on the above principle, that lies at the heart of any primal-dual tech-
nique, the following iterative schema can be used for deriving an f -approximate
solution (this schema is also illustrated graphically in Fig. 1(b)):

Primal-Dual Schema 1 Keep generating pairs of integral-primal, dual so-
lutions {(xk,yk)}t

k=1, until the elements xt, yt of the last pair are both feasible
and have a primal-dual gap which is less than f , i.e. condition (19) holds true.

In order to apply the above schema to MRF optimization, it suffices that we
cast the MRF optimization problem as an equivalent integer program. To this
end, the following integer programming formulation of (17) has been used as
the primal problem:
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min
∑
p∈G

∑
l∈L

Vp(l)xp(l) +
∑

(p,q)∈E

∑
l,l′∈L

Vpq(l, l
′)xpq(l, l

′) (20)

s.t.
∑

l
xp(l) = 1 ∀ p ∈ G (21)∑

l
xpq(l, l

′) = xq(l
′) ∀ l′ ∈ L, (p, q) ∈ E (22)∑

l′
xpq(l, l

′) = xp(l) ∀ l ∈ L, (p, q) ∈ E (23)

xp(·), xpq(·, ·) ∈ {0, 1}

Here, in order to linearize the MRF energy, we have replaced the discrete
variables up with the binary variables xp(·) and xpq(·, ·). More specifically,
the {0, 1}-variable xp(l) indicates that node p is assigned label l (i.e., up = l),
while the {0, 1}-variable xpq(l, l

′) indicates that vertices p, q are assigned labels
l, l′ respectively (i.e., up = l, uq = l′). Furthermore, the constraints in (21)
simply express the fact that each node must receive exactly one label, while
constraints (22), (23) maintain consistency between variables xp(·), xq(·) and
variables xpq(·, ·), in the sense that if xp(l) = 1 and xq(l

′) = 1 holds true, then
these constraints force xpq(l, l

′) = 1 to hold true as well (as desired).

The linear programming relaxation of the above integer program is then taken
(by relaxing the binary constraints to xp(·) ≥ 0, xpq(·, ·) ≥ 0), and the dual of
the resulting LP is used as our dual problem. The Fast-PD algorithm is then
derived by applying the primal-dual schema to this pair of primal-dual LPs,
while using f=2dmax

dmin

1 as the approximation factor in (19).

3.2 Advantages of the primal-dual approach

Fast-PD has many nice properties, which makes it a perfect candidate for our
image registration task. In particular, it offers the following advantages: 1)
Generality: Fast-PD can handle a very wide class of MRFs, since it merely
requires Vpq(·, ·) ≥ 0. Hence, by using Fast-PD, our image registration frame-
work can automatically incorporate any dissimilarity measure, as well as a
very wide class of smoothness penalty functions. 2) Optimality: Further-
more, Fast-PD can always guarantee that the generated solution will be an
f -approximation to the true optimum (where f=2dmax

dmin
). 3) Per-instance ap-

proximation factors: In fact, besides the above worst-case approximation
factor, Fast-PD can also continuously update a per-instance approximation
factor during its execution. In practice, this factor drops to 1 very quickly,
thus allowing the global optimum to be found up to a user/application bound.
4) Speed: Finally, Fast-PD provides great computational efficiency, since it
can reach an almost optimal solution very fast and in an efficient manner.

1 dmax≡maxa 6=b d(a, b), dmin≡mina 6=b d(a, b)
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4 Implementation Details & Parameter Setting

In order to prove the concept of our framework, we implemented a deformable
registration application in C++. We follow the widely used approach of multi-
resolution registration in a course-to-fine manner. The control grid is succes-
sively refined by decreasing the grid point spacing while at the same time
we use a Gaussian pyramid for the image data. As before mentioned, the
deformation grid is reseted after each optimization cycle and the resulting dis-
placement fields are concatenated in a compositional fashion. The resolution
of the control grid depends on the image dimensions as well as the present
deformations. However, a general setup of starting with 20 mm grid spacing
and refinements to 10 and 5 mm is usually sufficient for many applications.
Even if we usually assume a rigid or affine pre-registration of the image data,
the use of a very coarse grid can efficiently compensate for global anisotropic
scaling, translation and shearing in advance to the local registration.

We mentioned the crucial part of defining the set of labels and the correspond-
ing quantized version of the displacement space. Setting these parameters can
for instance be done by visually inspecting the images and the present de-
formations. The user has to define the maximum displacement 2 dmax and
the number of sampling steps N in each dimension. In 2D we discretize the
continuous domain within the rectangular range defined by the maximum dis-
placement and thus we form a set of (2N +1)× (2N +1) labels (including the
zero-displacement vector). In 3D we use a sparse sampling along the six main
directions and thus we form a set of 6N + 1 labels. In our software, we visu-
alize the capture range at every grid node such that the user can make sure
that the important deformations are covered. Another parameter controls the
capture range refinement after each cycle which is defined as a simple scaling
of dmax. The refinement allows us to keep the number of sampling steps quite
small while achieving sub-pixel accuracy. In practice it turned out that setting
N = 5 is mostly sufficient (resulting in 121 labels for 2D, and 31 labels for
3D). We think that this intuitive adjustment of the space of solutions turns
out to be another advantage compared to gradient-descent approaches where
the user can hardly control the search space. Additionally, prior information
on the present deformations can be easily incorporated in our framework.

The last important parameter regards the regularization control. In order to
make this parameter more independent from the input data (and its absolute
intensity values) we can use intensity normalization of an image pair. Still,
tuning is sometimes needed depending on the used dissimilarity measure.

We believe that besides the need for fast and efficient deformable registration

2 dmax can also be set automatically to the bounds for diffeomorph transformations
of 0.42 times the control point spacing [29].
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methods in medical applications with hard time constraints such methods are
also extremely valuable in the stage of development and for parameter tuning.
Our framework can provide direct visual feedback to the user at run time
thanks to its efficiency. We will give more details about the running times in
the experiments section.

5 Experiments on Known and Unknown Deformations

In order to demonstrate the flexibility of our framework, we implemented a
range of well-known dissimilarity measures 3 , namely the Sum of Absolute Dif-
ferences (SAD) [16], the Sum of Squared Differences (SSD) [16], the Normal-
ized Cross Correlation (NCC) [16], the Normalized Mutual Information (NMI)
[24], the Correlation Ratio (CR) [26], and a measure involving an intensity-
based and a geometric-based term which combines the Sum of Absolute Dif-
ferences and image gradient information (GRAD). An additional weighting
factor γ is used to control the influence of these two terms. The GRAD is
defined as

ρGRAD(g(x), f(T (x))) = (1− γ)|g(x)− f(T (x))|+

+ γ

(
∇g(x)

|∇g(x)|
· ∇f(T (x))

|∇f(T (x))|

)
.

(24)

Note that, by setting γ = 1, this dissimilarity measure can also be used for
multi-modal registration.

We evaluate our framework on several data sets. In general, the evaluation
and thus, validation of non-rigid image registration methods is a difficult task.
Usually, ground truth data for real deformations, especially, in medical appli-
cations is not available. Therefore, we perform several experiments hopefully
illustrating the great potentials of our approach.

5.1 Realistic Synthetic Registration

The first experiments are concerning the nature of the free choice of the dissim-
ilarity measure inherent in our framework. In order to evaluate the efficiency of
different measures we test our method on simulated realistic data. The target
image is generated from the 2D MRI source image by randomly displacing the
control points of an superimposed FFD grid. For the experiments we use three
different grid resolutions in order to simulate different degrees of deformations

3 We use the term dissimilarity measure for consistency reasons since any similarity
measure (e.g. 1−NMI) can be converted to a dissimilarity.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Realistic synthetic data. (a) The source image, and (b)-(d) generated target
images with different degree of deformation. (e) The inverse squared source image
used for multi-modal tests. (f)-(h) Deformation fields corresponding to the upper
target images.

Measure AE Mean AE Median AE Std MOD Mean MOD Median MOD Std

SSD 1.16 0.38 6.12 0.12 0.06 0.38

SAD 1.16 0.35 6.43 0.10 0.05 0.33

GRAD γ = 0.5 0.95 0.39 3.70 0.10 0.06 0.21

GRAD γ = 1.0 0.78 0.49 1.10 0.10 0.08 0.10

CR 0.75 0.38 2.19 0.09 0.06 0.21

NCC 0.73 0.42 1.82 0.08 0.06 0.09

NMI 0.57 0.39 0.67 0.07 0.06 0.05

GRAD γ = 1.0 2.22 0.58 4.56 0.72 0.09 2.02

CR 1.00 0.48 3.07 0.12 0.07 0.35

NMI 0.61 0.43 0.61 0.08 0.07 0.05

Table 1
60 mm control point spacing and a maximum displacement of 10 mm used for
target generation (see Fig. 2b). The upper part shows the results for the mono-
modal experiment, the lower part is for the multi-modal experiment.

(see Fig. 2). We should note that none of these resolutions is later used within
the registration. We also perform an experiment where the three multi-modal
measures are compared namely the NMI, CR, and GRAD (γ = 1.0). There-
fore, we use the inverse squared source image (see Fig. 2e) such that no linear
relation between the intensities is given.

The image resolution in the first experiments is 256 × 256 pixels with an
isotropic pixel spacing of 1 mm. The registration is performed using a three-

15



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (`)

Fig. 3. Exemplary results for the realistic synthetic data experiment. (a)-(f) Differ-
ence images before and after mono-modal registration using SAD. (g)-(`) Checker-
board visualization before and after multi-modal registration using NMI.

level image and grid pyramid. For the grid we start with a control point spacing
of 20 mm, successively refined to 10 and 5 mm. The maximum displacement
dmax for each level is set to the bounds for diffeomorph transformations [29]
while using 5 sampling steps in each direction (121 labels in total). The label
refinement parameter is set to 0.5 meaning that the displacement range is
halved after each cycle. On each level we perform 5 optimization cycles.

One complete registration takes between 5-60 seconds depending on the used
dissimilarity measure (SAD is the fastest, NMI the slowest). The results are
shown in Tab. 1-3. For the evaluation, two error metrics are considered, namely
the angular error (AE) [8] measured in degrees and the magnitude of difference
(MOD) measured in millimeters. We only consider the deformation field within
a region of interest containing the brain tissue. In the mono-modal experiment,
all of the used measures are able to recover the unknown transformations quite
well. For multi-modal the NMI performs best in our experiments. However, it
turned out that the GRAD measure purely based on gradient information is
also usable in the case of our multi-modal setting. Note that the computation
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Measure AE Mean AE Median AE Std MOD Mean MOD Median MOD Std

NCC 1.81 0.91 5.13 0.12 0.08 0.26

SSD 1.72 0.95 3.73 0.12 0.08 0.22

SAD 1.64 0.85 3.89 0.11 0.08 0.22

CR 1.47 0.88 3.03 0.10 0.08 0.12

GRAD γ = 0.5 1.47 0.84 2.74 0.11 0.08 0.21

GRAD γ = 1.0 1.36 0.87 2.00 0.10 0.08 0.08

NMI 1.05 0.71 1.11 0.08 0.07 0.05

GRAD γ = 1.0 3.51 0.98 12.58 0.22 0.09 0.73

NMI 2.33 0.84 9.10 0.15 0.08 0.49

CR 2.20 1.00 7.37 0.15 0.09 0.37

Table 2
30 mm control point spacing and a maximum displacement of 7.5 mm used for
target generation (see Fig. 2c). The upper part shows the results for the mono-
modal experiment, the lower part is for the multi-modal experiment.

Measure AE Mean AE Median AE Std MOD Mean MOD Median MOD Std

GRAD γ = 1.0 4.64 1.86 11.97 0.20 0.09 0.55

GRAD γ = 0.5 4.08 1.47 12.57 0.20 0.07 0.64

NCC 3.29 1.57 9.79 0.16 0.07 0.51

CR 2.83 1.60 6.31 0.13 0.08 0.30

SSD 2.68 1.37 7.54 0.13 0.06 0.45

SAD 2.16 1.18 5.84 0.10 0.06 0.34

NMI 1.66 1.24 1.72 0.07 0.06 0.08

CR 3.20 1.80 6.70 0.17 0.09 0.52

GRAD γ = 1.0 2.69 1.83 2.69 0.11 0.09 0.09

NMI 2.42 1.45 5.98 0.10 0.07 0.27

Table 3
15 mm control point spacing and a maximum displacement of 5 mm used for target
generation (see Fig. 2d). The upper part shows the results for the mono-modal
experiment, the lower part is for the multi-modal experiment.

of the GRAD measure is slightly slower than the SAD and much faster than
NMI or CR.

5.2 Inter and Intra Subject Registration

The next experiment is aiming at the registration accuracy. An automatic
segmentation should be performed by mapping a template segmentation to
an image to be segmented. The mapping is done by registration of the origi-
nal intensity images. The recovered transformation is then used to warp the
template segmentation and compared to manual expert segmentation. For the
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Image OR Sens Spec

1 0.6959 / 0.8752 (26%) 0.7466 / 0.8752 (17%) 0.9650 / 0.9847 (2%)

2 0.7188 / 0.8365 (16%) 0.7082 / 0.8365 (18%) 0.9796 / 0.9894 (1%)

3 0.6964 / 0.8053 (16%) 0.6402 / 0.8053 (26%) 0.9821 / 0.9878 (1%)

4 0.7261 / 0.8927 (23%) 0.7803 / 0.8927 (14%) 0.9718 / 0.9851 (1%)

5 0.6959 / 0.8672 (25%) 0.7252 / 0.8672 (20%) 0.9695 / 0.9828 (1%)

6 0.7001 / 0.8012 (14%) 0.6214 / 0.8012 (29%) 0.9854 / 0.9901 (0.5%)

7 0.6900 / 0.8601 (25%) 0.6554 / 0.8601 (31%) 0.9779 / 0.9867 (1%)

Table 4
Brain registration results for gray matter tissue. The left values are the results after
using an affine registration. The right values are the results after using our method.
In brackets is the improvement in percentage.

Image OR Sens Spec

1 0.6426 / 0.8390 (31%) 0.6109 / 0.7969 (30%) 0.9845 / 0.9945 (1%)

2 0.6201 / 0.8006 (29%) 0.6236 / 0.8018 (29%) 0.9863 / 0.9929 (1%)

3 0.6336 / 0.7913 (25%) 0.5997 / 0.8040 (34%) 0.9882 / 0.9908 (0%)

4 0.6839 / 0.8440 (23%) 0.6831 / 0.8174 (20%) 0.9867 / 0.9950 (1%)

5 0.6382 / 0.8373 (31%) 0.6062 / 0.8244 (36%) 0.9857 / 0.9929 (1%)

6 0.6526 / 0.7869 (21%) 0.6486 / 0.8762 (35%) 0.9882 / 0.9877 (0%)

7 0.6411 / 0.8289 (29%) 0.5865 / 0.8293 (41%) 0.9888 / 0.9921 (0%)

Table 5
Brain registration results for white matter tissue. The left values are the results
after using an affine registration. The right values are the results after using our
method.

following experiments, we set the maximum displacement corresponding to the
diffeomorphism bounds while scaling the range after each cycle by 0.75. The
deformation space is sub-sampled in 5 steps in each of the six main directions
(yielding 31 labels in total). We perform 5 optimization cycles per pyramid
level. The warped template segmentation is compared to the manual expert
segmentation by computing the overlap ratio (OR), sensitivity, and specificity.
The comparison of the segmentations is done using the tool 4 described in [13].

The first set of data targets an inter subject segmentation task of MRI brain
images. The data sets and their manual segmentations were provided by the
Center for Morphometric Analysis at Massachusetts General Hospital and are
available at http://www.cma.mgh.harvard.edu/ibsr/. MR images often vary
a lot in the range of intensities depending on the used protocol and scanner
device. Thus, intensity based inter subject registration becomes a difficult task.
In this experiment, 8 data sets are available each with gray and white matter
segmentations performed by experts. The image resolution is 256× 256× 128
with a voxel spacing of 0.9375×0.9375×1.5 mm. We use the NCC measure and

4 Available on http://www.ia.unc.edu/dev/download/valmet/
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Fig. 4. Color encoded visualization of the surface distance between warped template
and expert segmentation after affine (left) and deformable (right) registration using
our method.

Image OR Sens Spec ASD

1 0.913 0.924 0.999 0.229

2 0.904 0.918 0.999 0.248

3 0.915 0.942 0.999 0.210

4 0.908 0.946 0.999 0.237

5 0.886 0.905 0.999 0.282

6 0.893 0.922 0.999 0.280

Table 6
Results for the cartilage segmentation experiment.

a four-level image pyramid with 40, 20, 10, and 5 mm control point spacing.
A significant improvement of the segmentation could be achieved compared
to affine registration. The results are shown in Tables 4 and 5. Here, one
deformable registration using our framework takes about 550 seconds.

The medical application in the second segmentation task is similar to the one
described in [9]. An automatic segmentation of the cartilage should be per-
formed. Assuming that manual segmentations are available, one may create
statistical models for an atlas-based segmentation procedure [14]. In our ex-
periment, 7 data sets (256×256×20 voxels / 0.625×0.625×3.0 mm spacing),
all manually segmented by medical experts, are available. The MRI data was
acquired for a follow-up experiment. We are able to achieve a fully automatic
segmentation of one data set in less than 30 seconds. We use a three-level
pyramid (20, 10, and 5 mm control point spacing) and the SAD measure.
The registration is restricted to a narrow band of interest obtained by the
template segmentation. After registration we achieve an average OR of 0.903,
an average sensitivity and specificity of 0.926 and 0.999, and an average sur-
face distance (ASD) of 0.248 mm (see also Table 6 and Fig. 5). In [14], we
also present an approach for creating a statistical cartilage model using our
framework for atlas-based segmentation.
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(a) (b) (c) (d)

Fig. 5. Exemplary slice for the MRI cartilage registration. (a) Difference image
before and (b) after registration. (c) In comparison, the overlay of the the warped
template segmentation and (d) the expert segmentation.

5.3 Comparison to State-of-the-Art.

Schnabel et al. [31] propose a non-rigid image registration method 5 based on
B-Spline FFD together with a gradient-descent optimization. Their approach
can be seen as the state-of-the-art in FFD based registration. In order to obtain
meaningful comparable results we try to set the registration parameters as
similar as possible. Both algorithms are using the same deformation model and
the SSD measure. The test data are two CT volumes showing the heart of a pig.
The image resolution is 128×128×88 with a voxel size of 0.848×0.848×1.25
mm. Due to the heart beat a deformation of the shape is clearly visible. We
run both methods on a deformation grid with 10 mm control point spacing.
Within the region of interest enclosing the heart and an average SSD error
of 12278 before registration, we achieve an average SSD error of 3180, where
the other method converges to a value of 3402. Also, by visual perception of
the difference images we can achieve better results (see Fig. 6). Last but not
least, the running time of our algorithm is less than 2 minutes in contrast to
a running time of more than 2 hours for the other method (AMD Athlon64
2.21 GHz). We should note, that this experiment was not performed to obtain
the best registration of the two data sets, but rather to compare the two
algorithms. With our standard pyramidal approach we obtain a SSD error of
1233 by same running time of about 2 minutes.

6 Discussion

In this paper we have proposed a novel framework for deformable image reg-
istration that bridges the gap between continuous deformations and optimal
discrete optimization. Our method reformulates registration using an MRF
definition, and recovers the optimal solution to the designed objective function

5 Available on http://wwwhomes.doc.ic.ac.uk/∼dr/software/
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. (a) Checkerboard visualization before registration, (b) after registration using
the method in [31], (c) after registration using our method, and (d) after registration
using our approach with a pyramidal settings. In the same order, the difference
images are shown in (e)-(h).

through efficient linear programming. Towards capturing important deforma-
tions, we propose an incremental estimation of the deformation component.
These objectives are met through a discrete labeling problem defined over an
MRF graph. Graph edges introduce smoothness on the deformation field, while
the singleton potentials encode the image support for a given deformation hy-
pothesis versus another. Therefore, the method is gradient free meaning no
computation of the derivative of the cost function is needed, can encode any
dissimilarity measure and can recover the optimal solution up to a bound.

In several applications, building anatomical atlases and models of variations
between training examples is feasible. In such a context, one can consider a
partial graph where connection hypotheses are determined according to the
density of expected deformations. Such a direction will introduce prior knowl-
edge in the registration process and will make the optimization step more
efficient. Moreover, the use of shape and appearance models can be consid-
ered to perform segmentation through registration. Assuming a prior model
that involves both geometry and texture, and given a new volume one can de-
fine/recover segmentation through the deformation of the model to the image
that is a natural registration problem which can be optimally addressed from
the proposed framework.
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