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Abstract—This paper considers the problem of designing an ac-
tive observer to plan a sequence of decisions regarding what target
to look at, through a foveal-sensing action. We propose a frame-
work in which a pan/tilt/zoom (PTZ) camera schedules saccades in
order to acquire high resolution images (at least one) of as many
moving targets as possible before they leave the scene. An intel-
ligent choice of the order of sensing the targets can significantly
reduce the total dead-time wasted by the active camera and, con-
sequently, its cycle time. The grabbed images provide meaningful
identification imagery of distant targets which are not recogniz-
able in a wide angle view. We cast the whole problem as a partic-
ular kind of dynamic discrete optimization. In particular, we will
show that the problem can be solved by modelling the attentional
gaze control as a novel on-line Dynamic Vehicle Routing Problem
(DVRP) with deadlines. Moreover we also show how multi-view
geometry can be used for evaluating the cost of high resolution im-
age sensing with a PTZ camera.
Congestion analysis experiments are reported proving the effec-
tiveness of the solution in acquiring high resolution images of a
large number of moving targets in a wide area. The evaluation
was conducted with a simulation using a dual camera system in a
master-slave configuration. Camera performances are also empir-
ically tested in order to validate how the manufacturer’s specifica-
tion deviates from our model using an off-the-shelf PTZ camera.

I. INTRODUCTION

Equipping machines with even a limited version of our own
visual abilities is proving a remarkable task. The image forma-
tion process of the eye alone can be emulated using a lens and
CCD array; it is argued as a result of the 3D to 2D mapping of
the real world to the visual retina that the major challenge for
for machine vision is perception.
Making the biological comparison, it is widely reported that the
human visual faculty is not a single comprehensive processing
unit, but a series of small task-specific processors whose output
can be combined. Image stabilization (fixation) occurs at a level
below the brains main visual processors, having direct connec-
tions from the ear and retina to the eye muscles. Eye and head
movements interact with the visual process, allowing maximum
resolution to be focused on specific areas of the scene. In hu-
mans this is achieved by either repeated saccade-fixate cycles
or by smooth motion tracking. So in reality, we do not scan a
scene in raster fashion, our visual attention tends to jump from
one point to another. These jumps are called saccade. Yarbus
[1] demonstrated that the saccadic patterns depend on the vi-
sual scene as well as the cognitive task to be performed. The
conclusion is that we do not see, we look [2]. In this paper the
focus is visual attention according to task at hand and the scene
content.
The lack of works addressing task-driven visual processing is
mainly motivated by the fact that its studying seems, as a first

sight, too specialized, non-generic, or bordering on hackery.
But active vision demands such processes; it is founded in the
idea of specialized processing for specialized tasks. Most of the
active vision literature is limited to studying low-level subcon-
scious reflexes. One wonders whether truly active and purpose-
ful vision systems will be realized. In other words, while active
tracking and visual attention was researched in the past years,
purposeful zooming is (and probably will remain) a largely un-
explored area in active vision [3]. Basically sensing was not a
major issue for computer vision as for example was perception.
However despite this for the particular task of object recogni-
tion notably works are reported in the literature [4] [5].
dire qui che active recognition is particular Our work is moti-
vated by the goal of reproducing the ability of humans to recog-
nize a person in a crowd of moving people for surveillance pur-
poses. In humans, the process of recognizing a person and that
of moving the eyes are served by almost two distinct subcorti-
cal brain areas: one specialized for recognizing faces and one
specialized for making decisions on whom look at next. The
eye acts as a foveal sensor that allows high resolution only at
the point of interest, avoiding the cost of uniform high resolu-
tion. Indeed during a scan-path in a moving crowd of walking
people it is normal to backtrack to a previous observed person
thinking ”oh that’s my friend”. This because the gaze plan-
ning task does not directly depend on the face recognition task.
Visual attention in this particular task is more affected by the
target position, the predicted time in exiting the scene and the
effort made in moving the head and the eyes from one direction
to another. In fact during a saccade, the redirection is so rapid
that the gaze lasts only a tenth of a millisecond. During that
time the few images obtained are typically blurred because of
the fast camera motion. As far as the deployment in sophisti-
cation in visual analysis is concerned, saccades are dead times.
So our brain avoids doing large redirection of the gaze while
undertaking this task, trying to minimize that dead time.
A direct application of that behavior of the human visual system
can be applied in Visual Surveillance. Automated surveillance
can be a powerful tool in deterrence of crime, but most of the
solutions and implementations proposed so far are unnecessar-
ily poor in evidential quality. In this sense, remote identification
of targets is and will be an important mandatory capability for
modern automated surveillance systems. In particular, recog-
nizing a person or a car license plate requires that high reso-
lution views must be taken before they leave the scene. Using
a large number of static or active cameras that operate cooper-
atively is an expensive and impractical solution. One way to
cope with this problem is to make better use of the capabilities
of the sensor.
We argue that one active pan/tilt/zoom (i.e. a foveal sensor)
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camera (the slave camera) together with a wide angle camera
(the master camera) and a good strategy for visiting the targets
can be used instead. The fixed camera is used to monitor the
scene estimating where targets are in the surveilled area. The
active camera then follows each target to produce high resolu-
tion images. In this configuration, we show that the visual sig-
nal from the master camera provides the necessary information
to plan the saccades sequence. Moreover, the introduction of
an appropriate scheduling policy allows to maximize the num-
ber of targets that can be identified from the high resolution
images collected. Indeed, this is achieved by continuously gaz-
ing at the most appropriate targets, where the appropriateness
strongly depends on the task considered. In fact, tasks may
have conflicting requirements, as in the case where different
tasks would direct the fovea to a different point in the scene.
For systems with multiple behaviors, this scheduling problem
becomes increasingly paramount.
The key contributions of this part of the thesis are: (1) We
propose a novel formulation for the remote target identifica-
tion problem in terms of saccadic gaze planning. (2) We give a
general framework in which an active camera can be modelled.
(3) The use of uncalibrated methods makes the proposed frame-
work function in any planar scene. (4) We extend previous ap-
proaches on PTZ greedy scheduling proving through simulation
that our framework yields better system performance.

II. RELATED WORK

Recent years (especially after 9/11) have seen a continued in-
crease in the need for and use of automatic video surveillance
for remote identification problems. The few works addressing
this subject do not address the planning problem or do not fully
exploit all the information intrinsically present in the structure
of the problem. In [6] the problem of deciding which camera
should be assigned to which person was addressed and some
general approaches are given. It should also be noted that there
is no work except [7] on objectively evaluating the performance
of multi-camera systems for acquiring high resolution imagery
of people. Most results are presented in the form of video ex-
amples or a series of screen captures without explicit system
performance evaluations. Very little attention is given to the
problem of what to do when there are more people in the scene
than active cameras available.

Many works in literature uses a master/slave camera sys-
tem configuration with two [8][7][9][10][11] or more cameras
[12][13][14][6][15]. The remote target identification problem
is also termed as distant human identification (DHID). In [8], a
single person is tracked by the active camera. If multiple peo-
ple are present in the scene, the person who is closest to the
position of the previous tracked individual is chosen. In [7] the
authors use greedy scheduling policies taken from the network
packet scheduling literature. They are the first to describe the
problem formally and propose a solution. In particular, in this
work the authors, albeit mentioning that there is a transition
cost measured in time to be paid whenever the camera switches
from person to person, do not explicitly model this cost in their
problem formulation. The consequence is that their analysis
wrongly motivates an empirically determined watching time in-
stead of at least a single video frame. Moreover the work uses

greedy policies instead of policies with a time horizon. Also in
[12] the authors propose a form of collective camera scheduling
to solve surveillance tasks such as acquisition of multi-scale im-
ages of a moving target. They take into account the camera la-
tency and model the problem as a graph weighted matching. In
the paper there are no experimental results and no performance
evaluation for the task of acquiring as many multi-scale images
of many targets as possible in real time. In [10] another similar
approach with a dual camera system was recently proposed in
indoor scenes with walking people. No target scheduling was
performed, targets are repeatedly zoomed to acquire facial im-
ages by a supervised learning approach driven by skin, motion
and foreground features detection. In [16] a ceiling mounted
panoramic camera provides wide-field plan-view sensing and a
narrow-field pan/tilt/zoom camera at head height provides high-
resolution facial images. The works in [17][9] concentrate on
active tracking. In both works the respective authors propose a
simple behavior (a policy) with a finite state machine in order
to give some form of continuity when the currently tracked tar-
get is changed. In [13] two calibration methods to steer a PTZ
camera to follow targets tracked by another camera are pro-
posed. The authors give some criteria of optimization leaving
the formal optimization as future research. Though performing
coarse registration the methods [13] and [8], generally suffice
to bring the target object within a narrow zoomed field of view.

Another body of literature, concerning the mathematical op-
timization framework, comes from the motion planning liter-
ature and in particular from the context of rapid deployment
automation. Specifically, those problems related to rearranging
parts by a robot in an industrial assembly line setting. A repre-
sentative work in this context is [18]. In that work the problem
is: given n identical parts initially located on a conveyer belt,
and a robot arm of capacity k parts, compute the shortest route
for the robot arm to grasp and deliver the parts, handling at most
at k a time. A PTZ-camera can be interpreted as a robot arm,
we will use such analogy in our problem formulation.

The other important work related to our problem is [19], in
which the authors study the problem in which a vehicle moves
from point to point (customers) in a metric space with constant
speed, and at any moment a request for service can arrive at a
point in the space. The objective is to maximize the number
of served customers. They analyze several policies showing
that in such a problem lower bounds on system performance
can be obtained analytically. This work is reminiscent of our
problem, the main differences are that our customers (targets)
are moving and have deadlines. A further important difference
is that the nature of our particular vehicle (a PTZ-camera) does
not allow us to model the cost of moving from target to target
in the euclidean space.

III. PROBLEM FORMULATION

In this section we formulate and discuss the three main fea-
tures that characterize this problem: targets motion, arrivals as
a continuous process, and deadlines. Once a subset of moving
target is selected the correct camera tour can be optimized as a
Kinetic Travelling Salesperson Problem (KTSP). The problem
of how choosing the best permutation subset from the currently
tracked targets is an instance of the Time Dependent Orienteer-
ing (TDO) with deadlines.
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Fig. 1. An instance of Kinetic-TSP with four targets. The shortest-time tour
(light line).

A. Kinetic Travelling Salesperson Problem

As cameras can be calibrated with automatic or manual
methods such as in [13] it is possible to associate to each point
in the plane where targets are moving a vector of PTZ-camera
parameters. According to this, at each point in the world plane
it is possible to issue camera commands in order to bring a
moving target in a close up view by giving to the camera the
3D vector (p, t, z), specifying pan, tilt and zoom values to be
applied. In our formulation we model the PTZ-camera as an
intercepter with restricted resources (e.g., limited speed in set-
ting its parameter). The dynamics of the targets are assumed
known or predictable (i.e., for each target one can specify its
location at any time instant). The problem is expressed as that
of finding a policy for the PTZ-camera which allows to ”visu-
ally hit” (with a saccade sequence) as many targets as possible
in accordance with the device speed. This allows to cast the
problem as a Kinetic Travelling Salesperson problem (KTSP)
[20]. In fig.1 are shown four targets A, B, C, D moving on a
plane. The shortest-time tour is shown with the respective in-
terception points. At each interception point is also shown the
time instants of the sequence when the intercepter visually hits
the targets. Formally this problem is formulated as follow:

KTSP : Given a set S = {s1, s2, ..., sn} of moving targets,
each si moving with known or predictable motion xi(t), and
given an active camera intercepter starting at a given position
and having maximum speed Vptz ≥ Vi ∀i , find the shortest-
time tour starting (and ending) at the origin, which intercepts
all targets. Vi indicates the imaged speed of target i and Vptz

indicates the maximum speeds of the pan-tilt-zoom device. The
solution is defined as the permutation of the discrete set S that
has the shortest travel time.

It is necessary that the intercepter run faster than the targets.
This is not generally a problem even for slower PTZ-cameras.
By imagining the PTZ-camera as a robot manipulator with two
revolute (pan-tilt) and one prismatic (zoom) joint, it is possi-

ble to view the principal axis of the camera as a robot arm
which rotates and move forward to reach a point in the space. In
such settings, due to the typically high distance at which PTZ-
cameras are mounted, the speeds of the virtual end-effector are
generally higher than common moving targets such as cars or
humans.

B. Time Dependent Orienteering (TDO)
In a typical surveillance application, targets arrive as a con-

tinuous process, so that we must collect ”demands to observe”,
plan tours to observe targets, and finally dispatch the PTZ cam-
era. In a such dynamic-stochastic setting there is a lot of inter-
dependency between the state variables describing the system.
Moreover, tours must be planned while existing targets move or
leave the scene, and/or new targets arrive. Basically the whole
problem can be viewed as a global dynamic optimization. Since
for such a problem no a-priori solution can be found, an effec-
tive approach is to determine a strategy to specify the actions
to be taken as a function of the state of the system. In prac-
tice, we consider the whole stochastic-dynamic problem as a
series of deterministic-static subproblems, with the overall goal
of tracking the time progression of the objective function as
close as possible. In our problem, targets are assumed to enter
the scene at any time from a finite set of locations. The camera
must steer its foveal sensor to observe any target before it leaves
the scene. Assuming with no loss of generality that the paths
of the targets are straight lines and that targets move at con-
stant speeds, the time by which a target must be observed by
the camera can be estimated. Moreover, real-time constraints
may impose bounds on the total amount of time needed to plan
the target observation tour. According to this, given a fixed ref-
erence time, KTSP can be reformulated as a Time Dependent
Orienteering (TDO) problem [21]. In the classical formulation
of the static orienteering problem there is a resource constraint
on the length of the tour; the problem solution is the one that
maximizes the number of sites visited. The time dependent ori-
enteering problem for a single PTZ-camera can be formulated
as follows:

TDO : Given a set S = {s1, s2, ..., sn} of moving tar-
gets, each si moving with a known or predictable motion
xi(t) , the deadline t, and a time-travel function l : S ×
S × N 7−→ IR+ ∪ {0} the salesperson’s tour to intercept
a subset T = {s1, s2, ..., sm} of m targets is a sequence of
triples: (s1, t

+
1 , t−1 ), (s2, t

+
2 , t−2 ), ...(sm, t+m, t−m), such that: for

i ∈ {1, 2, ..., m}, t+i , t−i ∈ N ∪ {0} with 0 = t+1 ≤ t−1 ≤ t+2 ≤
... ≤ t+m ≤ t−m ≤ t . The subset T is composed by the maximum
number of targets interceptable within the time t, imposed by
the real-time constraint.

Orienteering problems are classified as path-orienteering or
cycle-orienteering problems depending on whether the network
to be induced by the set of pairs of consecutive targets visited is
supposed take the form of a path or of a cycle, respectively. The
deadline t breaks the dynamic problem into a sequence of static
problems. Such a formulation has a great advantage which is
computationally helpful. Since there is no polynomial time al-
gorithms to solve the KTSP, it is impossible to solve an instance
of the KTSP problem with more than eight or nine targets in a
fraction of a second, by the exhaustive search. However even
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Fig. 2. A symbolic scheme representing a saccade from the target A to the tar-
get B. The φi,i+1, ψi,i+1 are respectively the pan and tilt angles as seen from
the slave camera when the camera leaves target A at time t−i and intercepts B

at time t+i+1.

if such an algorithm did exist the time needed to switch to all
the targets would be so large that novel targets would not be
observed due to the time needed to complete the tour. So, the
brute force approach enumerating and evaluating all the sub-
sets permutations perfectly fits with the nature of our dynamic
incremental formulation.

C. Deadlines

Based on the tracking predictions targets are put in a queue,
according to their residual time to exit the scene. TDO is in-
stantiated for the first k targets in the queue. If Ak is the set of
the permutations of the subsets of k targets then it can be shown
that:

|Ak| =
k∑

i=0

k!
(k − i)!

(1)

where |Ak| is the cardinality of the set Ak. So for example
with a queue of k = 7 targets we have |A7| = 13700. In
this case the exhaustive enumeration requires 13700 solutions
evaluations. As remarked in the previous section, solutions with
a large number of scheduled targets would not be practical for
an incremental solution, since the time needed to switch to all
the targets would be so large that novel targets would not be
observed due to the time needed to complete the tour.

The framework is fairly general and more elaborated poli-
cies can be estimated by changing optimization cost and/or the
sorting used in the queue (priority in the queue can be specified
according to some combined quality measure of the imagery
of the targets, for example preferring targets moving in certain
specified directions). Here we want to maximize the number of
targets taken at high resolution. With the deadlines the TDO
becomes a constrained combinatorial optimization, where the
feasible set can be defined as follow (see the TDO definition in
the previous section):

t−i < tdi , ∀i = 1..|T | (2)

Where T ∈ Ak is an instance of the permutations of the subsets,
and tdi is the deadline for the target at position i in T . That
means the the camera must leaves the target i in T at time t−i
before the target leaves the scene at time tdi .

The TDO solution is calculated by assuming a constant speed
for the pan-tilt-zoom camera motors as specified by the manu-
facturer. There is no need for an exact specification of these
speeds, in that they are used only for the prediction of the cost
of the saccadic sequences. In order to keep the computation
tractable the number of target in the queue k should not be
greater than 8 (9 with optimized code). For example on a Pen-
tium IV 2.0 GHz running Matlab, computing and evaluating
the permutations of the subsets of 8 targets takes a fraction of a
second.

IV. SACCADES PLANNING GEOMETRY

In order to show the advantages of adopting this framework
for our research objective, we consider the classic camera sys-
tem in a master/slave configuration [8][7]. In this configuration
a static, wide field of view master camera is used to monitor a
wide area and track the moving targets providing the position
information to the foveal camera. The foveal camera is used to
observe the targets at high resolution. We estimate the intercep-
tion times of a target for each of the three foveal camera control
signals (respectively tφ, tψ , tz for pan, tilt, zoom). Since the
effects of the three control signals are independent from each
other (i.e. the pan motor operates independently from the tilt
motor) the time needed to conclude a saccade is dominated by
the largest one. The largest time is taken as the time spent by the
foveal camera to observe the target and is taken into account to
derive the overall time needed to complete the tour in the TDO
formulation.

With reference to fig.2 the estimated tφ, tψ, tz are assumed
as the times needed to make the foveal camera gaze at the target
at position i + 1, leaving the target at position i in the sequence
S = {s1, ..., si, si+1, ..., sm} (in fig.2 the targets at position
i and i + 1 are respectively indicated as A and B). In other
words they represent the times needed for changing the pan and
tilt angles and zoom respectively by φi,i+1, ψi,i+1 and zi,i+1

(not shown in the figure) in order to intercept the new target
at time t+i+1 while leaving the old target at time t−i . The time
t? = max{tφi,i+1 , tψi,i+1 , tzi,i+1} is the travel time needed to
change the gaze.

By assuming targets moving on a calibrated plane, these
times can be computed, at least in principle, by solving for t
from each of the following equations:

φ(t) = ωφt + φt−i
ψ(t) = ωψt + ψt−i

(3)

Where φ(t) and ψ(t) are time varying functions, representing
the angles between rays from the image points corresponding
to the target trajectory w.r.t to a reference ray in the foveal cam-
era. The ωφ and ωψ are, respectively, the pan and tilt angular
speeds and the angles φt−i

and ψt−i
represent the angle posi-

tions at time t−i . By separately solving the two equations in
t we estimate the interception times tφ and tψ , needed to in-
tercept the target through pan and tilt camera motion. Each of
the above equations is non-linear due to the image formation
process. In order to make the TDO problem solvable, a closed
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Fig. 3. The geometry of a PTZ camera viewing a world plane in which the pan
axis coincides with the normal of the plane. Also shown are the angles φ and
ψ travelled by the pan-tilt device gazing from the target P1 to the target P2.

form solution is obtained by assuming that during the camera
interception process, the target motion is negligible. Now the
TDO can be solved by exhaustive enumeration without an itera-
tive root finder for the eq.3. With this assumption eq.3 becomes
time independent and simplifies:

φt+i+1
= ωφt + φt−i

ψt+i+1
= ωψt + ψt−i

(4)

defining the values for

tφi,i+1 =
φt+i+1

− φt−i

ωφ
tψi,i+1 =

ψt+i+1
− ψt−i

ωψ
(5)

In order to keep tractable the estimate of the angles of the
targets as seen by the slave camera we assume that the PTZ-
camera is not mounted oblique w.r.t. the world plane. The cam-
era pan axis it is approximately aligned with the normal of the
world plane. This is generally the case when PTZ-cameras are
mounted on top of a pole (see fig.3). This means that during
continuous panning while keeping a fixed angle for the tilt, the
intersection of the optical axis with the 3D plane approximately
describes a circle. The principal axis sweeps a cone surface
so its intersection with the 3D world plane is in general an el-
lipse with an eccentricity close to one. In the same sense during
continuous tilting while keeping a fixed angle for the pan, the
intersection of the optical axis with the 3D plane describes ap-
proximately a line. The swept surface is a plane (see fig.3). In
such conditions the tilt angle between a reference ray and the
ray emanating from the image point corresponding to a target
trajectory can be measured once the intrinsic internal camera
parameters for the slave camera are known as [22]:

cos(ψ) =
x′1

T
ωx′0√

x′1
T ωx′1

√
x′0

T ωx′0
(6)

where ω = K−TK−1 is the image of the absolute conic an imagi-
nary point conic directly related to the internal camera matrix K.
While x′1 and x′0 (as also shown in fig.4) are, respectively, the
projection of the world point X1 as seen by the master camera
and transformed through H′ to the slave camera, and the projec-
tion of the point C′

0.
C′

0 is the orthogonal projection of the camera center of the
slave camera C′ onto the world plane. By choosing as reference

C C′

H

H′ 0C′

Π

1x 1X

∞′l

1′x

∞l
ψ

φ

(a)

∞′l

∞v

ω

(b)

Fig. 4. (a) The geometry used for computing the pan φ and tilt ψ angles of a
target X1 as seen from the slave camera C′ in its home position between. (b)
Pole-polar relationship between vanishing point v∞ of the plane normal and
its the vanishing line l′∞ used to compute the tilt angle ψ. The IAC is shown
dashed to remind that it is a pure imaginary conic.

C

H

H′

Π

1x 1X

C′

HΠ

Fig. 5. The slave camera is internally calibrated and the inter-image homog-
raphy H′ between the master camera C and the slave camera C′ is computed
in its home position (image plane ΠH ). We can consider the slave camera as
an angle measurement device using the extended image plane composed of the
planar image mosaic having ΠH . as a reference plane.

ray to represent tilt angles of the ray passing through C′
0 and

C0 as shown in fig.4, the value of x′0 can be computed directly
using the pole-polar relationship as:

x′0 = ω−1l′∞ (7)

Where l′∞ is the vanishing line of the plane Π as seen from
the slave camera and it can be computed by transferring the
vanishing line l∞ in the master camera to the slave camera as
l′∞ = H′−Tl∞. The above formula can be applied because x′0
coincides with the vanishing point of the directions normal to
the plane Π (see [23]). Summarizing, in this configuration the
slave camera, in addition to its foveal capability also uses cal-
ibration (in its home position) as angle measurement device.
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Internal camera parameters necessary for the PTZ-camera can
be computed very accurately as recently shown in [24] using
the method originally described in [25].

The pan angle of a world point in the plane can be computed
directly from the master camera once the world to image ho-
mography H is known and the point C′

0 is measured from the
master camera. If that point cannot be measured because it is
not visible from the master camera, it can also be computed
using the inter-image homography H′. In fact since the slave
camera is internally calibrated at its home position, it is possi-
ble to obtain its pose and so its camera center w.r.t. the world
reference once the world to image homography H′0 is known
from the slave camera. This can be computed as: H′0 = H′H (see
fig.4).

The same approach of eq.4 is followed to obtain the zoom
control, once the amount of zoom needed to obtain the de-
sired close-up is calibrated for each point in the world plane.
A look-up table using an equispaced grid of points can be used
to perform this calibration manually or automatically as shown
in [13]. The equation for the estimation of the time needed for
changing the zoom to intercept the new target can be written
similarly as for pan and tilt:

zt+i+1
= vzt + zt−i

(8)

where vz is the zooming speed and zt−i
is the zooming value at

time t−i , when the target is left and zt+i+1
is the zooming value

at time t+i+1 when the next target is intercepted.

V. SIMULATION RESULTS

A. Estimating Camera Speeds

We ran several experiments to empirically estimate the
pan/tilt/zoom speeds of our cameras in order to validate the con-
stant velocity kinematic models used in the eq.4 and eq.8. The
results of these experiments are shown figure 6. In particular
we have conducted several trials and then we have averaged
the results in fig.6(a) are shown the pan and tilt speeds while in
fig.6(b) are reported the zoom speeds. Worthy of note is the fact
that, contrary to manufacturer specification, the cameras do not
move at a constant speed. Indeed, there are situations in which
either panning or tilting might be the slowest of motions, as in-
dicated by the crossover point of the two curves in figure. When
moving such short distances, camera motion is nearly instanta-
neous and we found that assuming a constant camera velocity
when planning a saccade sequence worked just as well as the
more complex camera performance model.

B. Congestion Analysis

Evaluating different planning strategies using a video surveil-
lance system installed in a real context is a very complicated
task. In fact, while we can easily collect video from a static
camera, and use it for target tracking, it is almost impossible to
collect all the information needed to plan tours in a master-slave
camera configuration with a foveal slave camera. To address
these difficulties, we have created a Monte Carlo simulation for
evaluating scheduling policies using randomly generated data.
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Figure 4: Policy performance versus arrival rate λ. (a) Our methods and simple earliest deadline first policy.
(b) Three different PTZ-cameras under with various pan-tilt-zoom speeds. (b) Performance variation by
varying service time ts (the specified time to watch a target).

Figure 5: Test area with some suspicious individuals.

are very different in performance, such differences are less
evident for the observing task under examination. This is
mostly caused by the camera position w.r.t. the scene plane;
the performance in tilt speed was practically never employed
because of the latency of the other controls w.r.t. the im-
aged motion pattern of targets. The control which delayed
most of the saccades, employing the largest setup time, was
the zoom control (mostly caused by the scene depth). This
explains why the two fastest cameras exhibit similar perfor-
mances. This type of analysis can be useful for determining
the type of cameras and ultimately the cost needed to mon-
itor an area with a multi-camera system.

Figure 4(c) shows the performance degradation w.r.t. the
service time (or the watching time) ts. This time is directly
related to the quality of the acquired images and can po-
tentially affect recognition results. The figure also shows
that varying ts does not affects the performances in direct
proportion.

5.2 Preliminary Experiments on Live Video
In order to assess the potential of the type of predictive
saccades planning proposed, we have created a small-scale
experimental testing environment. We use two Sony SNC-
RZ30 network cameras positioned with a very short baseline.

A frame from the master camera view of our experimental
area of surveillance is shown in figure 5. The scene consists of
a small courtyard viewed from the third floor window of our
laboratory. The experiments described here are not intended
to fully evaluate the performance of the saccades planning
framework described above. The examples given here merely
describe the challenges encountered when implementing the
framework on live cameras.
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Figure 6: Empirically estimated pan and tilt times
for the Sony SNC-RZ30), averaged over thirty trials.

We do not fully calibrate the two cameras, but rather sim-
ply estimate the master image to slave image homography
using four point correspondences on the ground plane. This
allows us to associate points in the master view, where the
tracker will be running, with points in the original calibra-
tion position of the slave camera. In calibration position,
at a zoom factor of zero, a single pixel in the slave camera
image subtends approximately 1

14

◦

in both the pan and tilt
directions, making it possible to compute the relative pan
and tilt offsets required to center any pixel on the ground
plane in the slave camera view. This number was derived
by empirical experiments and analysis of the manufacturer
specifications. It is related to the internal camera param-
eters, specifically the focal length and CCD element size.
Zoom factors for points on the ground plane were computed
manually with respect to a human figure for several points.
Linear interpolation is used to compute the zoom factor to

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000

S
ec

on
ds

Internal Zoom Factor

Zoom Time

(b)

Fig. 6. Empirically estimated pan-tilt (a) and zoom (b) times for the Sony
SNC-RZ30, averaged over thirty trials.
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But there is also another main reason for using randomly gen-
erated data. The use of randomly generated data often enables
more in-depth analysis, since the datasets can be constructed
in such a way that other issues could be addressed. For exam-
ple the arrival rate parameter, generally denoted λ, describes the
”congestion” of the system. This is basically the only important
parameter which is worth of testing in a similar scenario. We
stress the importance of this kind of testing: real data testing
cannot evaluate the algorithm performance in this context.

We performed a Monte Carlo simulation that permits evalu-
ating the effects of different scheduling policies in a congestion
analysis setting. We used in our simulator a particular scene in
which our framework could be of invaluable benefit. A large
area of approximatively 50x60 meters (half of a soccer field)
is monitored with the slave camera placed as shown in fig.7 at
position (30, 0, 10). The master camera views the monitored
area at a wide angle from above (more suitable for tracking
due low occlusion between target). Arrivals of targets are mod-
elled as a Poisson process. The scene is composed of two tar-
get sources situated at opposite positions in the area. Targets
originate from these two sources S1 and S2 from initial posi-
tions that are uniformly distributed in given ranges of length
10 meters positioned as shown in fig.7. The starting angles for
targets are also distributed uniformly with the range [−40, 40]
degrees. Target speeds are generated from a truncated Gaussian
with a mean of 3.8 meter/sec and standard deviation of 0.5 me-
ter/sec. (typical of a running person) and are kept constant for
the duration of target motion. Targets follow a linear trajectory.
This is not a restrictive assumption since each TDO has in this
simulation a deadline of t = 5 seconds, and the probability of
maneuvering for targets with a running-human dynamic in an
interval of five seconds is very low. So the overall performance
of the system is not generally affected. The deadline t has a
role similar to a sampling time for traffic behavior and can be
generally tuned depending on the speeds of the targets. In our
simulated scene it is quite improbable that a target enters and
exits the scene before five seconds are elapsed.

The used scene can represent a continuous flow of people, in
a crisis situation. An example is people exiting from a stadium
or from the subway stairs. It can be interesting, for crime de-
tection purposes, to acquire as many high resolution images of
such running people as possible before they leave the scene.

We assume that all targets have the same size in the scene
(average humans height) and a specific size is fixed at which
the target must be observed by the foveal camera. For pin-
hole cameras, as the focal length of the camera changes, the
pinhole model predicts that the images will scale in direct pro-
portion to the focal length [26]. By assuming a constant speed
for the zooming motor and a linear mapping of focal length to
zoom it is possible to build a look-up table in the simulator as:
Zoom[x, y] = M · dist(C′,X) where x and y are the imaged
coordinates of the world plane point X as seen by the master
camera, C′ is the camera center of the slave camera and M is
the constant factor which depends on the size at which targets
are imaged and on the target size in the scene. We want to col-
lect human imagery with an imaged height of approximatively
350 pixels using an image resolution of 720 × 576. In fig.8,
plots indicate the number of targets that are observed by the

Pan Speed Tilt Speed Zoom Speed
deg/sec deg/sec #mag/sec

Sony EVI-D30 80 50 0.6
Sony SNC-RZ30 170 76.6 8.3

Directed Perception 300 300 11.3

TABLE I
OFF THE SHELF PTZ-CAMERAS PERFORMANCE. THE #MAG MEANS

MAGNIFICATION FACTOR PER SECOND AND IS CALCULATED DIVIDING

THE MAXIMUM OPTICAL ZOOM (FOR EXAMPLE 25X) BY THE ZOOM

MOVEMENT TIME FROM WIDE TO TELE (FOR EXAMPLE 2.2 SECONDS).
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Fig. 8. Policy performance versus arrival rate λ. (a) Our methods and simple
earliest deadline first policy. (b) Three different PTZ-camera under test with
different pan-tilt-zoom speed. (b) Performance variation at varying service time
ts (the specified time to watch a target).

foveal camera (ordinates) as a function of the arrival rate λ (ab-
scissa) for three different situations. Since there are two sources
with the same arrival rate, λ actually refers to half the number
of arrivals per second. The size of the queue is six elements
which guarantees that the enumeration of all the subsets with
their permutations is generated in a fraction of a second (basi-
cally a negligible time). Performance is measured by running a
scenario in which 500 targets are repeatedly generated one hun-
dred times and the performance metric was estimated by taking
the mean. The metric corresponds to the fraction of people ob-
served in the scene. In particular we take the mean (over the
experiments) of the number of observed target divided by num-
ber of all the targets.

Fig.8(a) shows a comparison of our methods with the earli-
est deadline first policy studied in [7]; it evident that our policy,
using long term planning plus the cost of moving the sensor,
outperforms a simple greedy strategy. While there is no need
for planning in very modest traffic scenes, traffic monitoring,
in large, wide areas would receive an invaluable great advan-
tage of more than 40% by adopting the proposed techniques.
Fig.8(b) shows experiments conducted using different speeds
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for PTZ motors typical of off-the-shelf active cameras. Three
cameras were selected using their respective performance as in-
dicated by the technical specification (see tab.I). Using this per-
formance values in the simulator produce the plots of fig.8(b).
Although the three models are very different in performance,
such differences are less evident for the observing task under
test. This is mostly caused by the camera position w.r.t. the
scene plane; the performance in tilt speed was practically never
employed because of the latency of the other controls w.r.t. the
imaged motion pattern of targets. The control which delayed
most of the saccades, employing the largest setup time, was the
zoom control (mostly caused by the scene depth). This explains
why the two fastest cameras exhibit similar performances. This
type of analysis can be useful for determining the type of cam-
eras and ultimately the cost needed to monitor an area with a
multi-camera system.

Fig.8(c) shows the performance degradation w.r.t. the service
time (or the watching time) ts. This time is directly related to
the quality of the acquired images and can potentially affect
recognition results. The figure also shows that varying ts does
not affects the performances in direct proportion.

VI. SUMMARY

Automated high resolution imaging of targets using PTZ
cameras is an important and mandatory capability for modern
automated surveillance. In such systems, and especially in the
case of wide area surveillance applications, to view multiple
moving targets each camera must share observation time. We
have presented a solution for planning saccade sequences using
a single foveal camera in a master-slave camera system con-
figuration. The system models the attentional gaze planning,
with a novel approach combining ideas from Dynamic Vehi-
cle Routing Problem (DVRP) and multiview geometry. Results
are presented using a simulator that indicates how many targets
are missed as a function of the arrival rate, camera speed pa-
rameters and watching time. Results have been derived under
realistic assumptions in a challenging scene. We proved that
our framework gives good performance in monitoring wide ar-
eas with little extra effort with respect to other cumbersome
approaches coordinating a large number of cameras doing the
same task.

The same principles presented here can also be applied to
camera-networks to build large surveillance systems; the frame-
work is open and may be extended easily in several different
ways; e.g. a real-time face recognition/detection can be incor-
porated in the optimization.

One main limitation of the presented method is that it does
not take advantage of persistent motion patterns generally
present in common scenes, for example an intersection with
moving cars. Such knowledge would be of invaluable benefit
in cases where targets are following pre-defined paths. Ongo-
ing research will address on-line learning algorithms capable of
finding more long-term policies. Moreover, further research can
apply supervised machine learning methods to a simulated data
set (as generated by our approach) to understand the behaviors
of complex saccadic patterns for the task under consideration.
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