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Abstract

In this paper, we discuss various aspects of using fuzzy classification with
a GIS. In particular, we show how fuzzy membership functions to particular
classes can be computed for composite regions composed of lots of smal-
ler regions belonging to different classes and how variables taking values in
ranges with different boundary conditions can be handled in a mathematically
rigorous way. We demonstrate our methodology for the problem of assessing
the risk of desertification of burned forest areas in the Mediterranean region.

1 INTRODUCTION

The objective of the present work is to assess the degree of risk of deserti-
fication of burned forest areas using a fuzzy classification technique. It is important to
estimate the risk of desertification in order to take proper measures for its prevention.
Since the parameters involved in the study are fuzzy in nature and have to be classified by
using fuzzy labels like low, medium, high etc., it is felt that it could be more appropriate
to use fuzzy logic. Moreover, the use of remote sensing techniques and GIS along with
fuzzy logic to evaluate the degree of risk would help an expert in a very efficient planning
of resource allocation and decision making.

Work that has already been done on forest fire includes mapping and monitor-
ing of forest fire areas [5], assessment of vegetation change [8] and restoration of burned
areas [2]. Though there have been published work on assessment of areas affected by
forest fire [8], the concept of vagueness has never been considered. Attempts have been
made to include uncertainty in the data [7], but only in terms of probability functions and
not partial membership functions. There have been attempts to use GIS for the classifica-
tion [6], but as on today no GIS package offers a facility to handle vague definitions.

The crux of any fuzzy logic problem lies in deriving the membership func-
tions. In most of the fuzzy control systems, membership functions are chosen arbitrarily



by the users based on their experience and perspectives [4]. Hence the membership func-
tions given by two users could be quite different. More recently, membership functions
have been designed using optimisation procedures [4] and fuzzy B-splines [9]. In image
analysis and pattern recognition problems, the derivation of membership functions is still
an issue, but attempts have been made to analyse the flexibility and uncertainty in mem-
bership function evaluation using bound functions and spectral fuzzy sets [3]. The most
commonly used shapes for membership functions are triangular, trapezoidal and Gaus-
sian.
In the present work, the membership functions have been derived by assuming Gaussian
error distributions and extra experiments have also been performed with uniform error
distributions. Arc/Info GIS has been used to store data and also to derive necessary sec-
ondary data and then the rules given by the experts have been implemented by using
simple fuzzy operators.

2 FUZZY MEMBERSHIP FUNCTIONS

2.1 STUDY PARAMETERS

The data that are used for the study pertain to a few sites in Attica, Greece. The variables
that influence the degree of desertification were defined by the experts as Soil Erosion
and Regeneration Potential. While the soil erosion is influenced by Ground Slope, Rock
Permeability and Soil Depth, the Regeneration Potential is influenced by Ground Aspect
and Soil Depth. Some of the data regarding slope and aspect could be derived from Digital
Elevation Models using the GRID module of Arc/Info GIS package.

2.2 MEMBERSHIP FUNCTIONS

Let us assume that the class membership of a fuzzy variable is determined by a measure-
ment concerning the variable performed with a given accuracy expressed by the standard
error in the measuring process. In other words, let us say that the value of a given variable
t is measured to be� and the error in this measurement is assumed to be Gaussian with
zero mean and standard deviation�. Our objective is to derive the membership functions
of classes defined for the variablet as ranges of its values. It is obvious, for example, that
if t is assigned to a certain classc if its value ranges betweent1 andt2, then the probability
of t belonging to this class is given by
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wheretmin andtmax are the minimum and maximum values thatt could take.

Thus, the probability of the variable t belonging to classc if its value was measured to
be� with standard error�, is given by
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To evaluate the error functions, the following rational approximation is used[1]: For
0 � x <1
erf(x) = 1� (a1t + a2t
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where
t = 1

1+px

p = 0:3275911 a1 = 0:254829592

a2 = �0:284496736 a3 = 1:421413741

a4 = �1:453152027 a5 = 1:061405429

The error of this approximation is less than1:5� 10�7

A membership function of a certain class to be used within the framework of fuzzy
logic is a function which when given as input a certain measurement, returns the prob-
ability with which the variable can be assigned to the particular class. Thus, we have to
define a membership function for each class we have and each of these functions should
be a function of the measurement value. It should also depend parametrically on the lim-
iting values that define the class and the error in the measurement. It is obvious from
the above that the membership function of classc is given by equation (3) when plotted
as a function of�. Also, it is clear from the definitions that the values of the functions
sum up to 1. Different membership functions could be used for the different variables if
extra information was available. Since the fuzzy variables we have in our problem have
their own peculiarities when it comes to defining class boundaries, we shall discuss each
variable separately.

2.2.1 SLOPE

Slope has been classified into the following 4 classes based on the degree to which they
influence soil erosion. It is obvious that the steeper the slope, the greater is the soil erosion.

1. Gentle:0� 20%

2. Moderate:21� 40%



3. Moderately steep:41� 70%

4. Steep:> 70%

The membership function for each class of slope can be derived with the help of
equation (3) for various values oft within the class interval [t1,t2]. Now, the probability
of slope belonging to any particular class for a given value of� can be evaluated from the
membership function. The slope can be expressed in degrees or percent. When expressed
as a percentage, the slope is100% when the angle is45� and approaches infinity as the
angle approaches the vertical which is90�. From the mathematical point of view, for
every direction there is a twofold ambiguity in estimating a slope as the ground may slope
upwards or downwards. If we assume that one of these directions is positive slope, the
other can be thought of as the negative slope. However, for the purpose of evaluating the
risk of soil erosion, positive or negative slope does not matter. Thus, we do not need to
consider negative values of the measurement� as this is always going to be given to us as a
positive number and the negative value case is the mirror image of the positive value case.
What matters is how we treat the error distribution when class boundaries are crossed.
The choice of Gaussian error probability density function implies that we have infinite
tails which must influence all membership functions. In practice, ifG(�);M1(�);M2(�)

andS(�) indicate the membership functions for the classes gentle, moderate, moderately
steep and steep respectively, we have:
G(�) = f(�;�20; 20)
M1(�) = f(�; 20; 40) + f(�;�40;�20)
M2(�) = f(�; 40; 70) + f(�;�70;�40)
S(�) = f(�; 70;1) + f(�;�1;�70)
where the functionf(�; t1; t2) is defined by equation (3).
These functions are plotted in Figure-1 for� = 4:5. Note that for any particular value of
the slope, the values of the membership functions sum up to 1.
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Figure 1: MEMBERSHIP FUNCTIONS FOR SLOPE



2.2.2 SOIL DEPTH

This is classified into 3 classes.

1. Bare:< 5cm

2. Shallow:5� 30cm

3. Deep:> 30cm

The Gaussian distribution of the error in measuring soil depth is truncated at x = 0 as soil
depth cannot have negative values. Thus, ifB(�); S(�) andD(�) are the membership
functions for the classes Bare, Shallow and Deep respectively, we have:
B(�) = f(�; 0; 5)

S(�) = f(�; 5; 30)

D(�) = f(�; 30;1)

wheref(�; t1; t2) is given by equation (3) withtmin = 0 andtmax =1. These functions
are plotted in Figure-2 for� = 2:5
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Figure 2: MEMBERSHIP FUNCTIONS FOR SOIL DEPTH

2.2.3 ASPECT

The aspect or orientation of a ridge can be expressed as the angle the normal to the ridge
forms with the north direction. This angle could take a value from0� to 360� and it could
belong to any of the following classes.

1. North:0� 45�, 315� 360�

2. East:45� 135�

3. South:135� 225�

4. West:225� 315�



The aspect takes a range of possible values with cylindrical boundaries. The implic-
ation of this is that theoretically, since the tails of the Gaussian distribution are infinitely
long, each class membership function would be the sum of an infinite number of contri-
butions from segments of these tails that are360� apart i.e., an infinite sum of evaluations
of function (3) between limits that differ by360�. In practice, of course, the contribu-
tion from these tails is insignificant from the mathematical point of view and meaningless
from the point of view of the particular application that we are considering here. Thus
the membership functionsN(�); E(�); S(�) andW (�) for the four classes North, East,
South and West respectively are
N(�) = f(�; 0; 45�) + f(�; 315; 360�) + f(�; 360; 405�) + :::::

E(�) = f(�; 45; 135�) + f(�; 405; 495�) + :::::

S(�) = f(�; 135; 225�) + f(�; 495; 585�) + :::::

W (�) = f(�; 225; 315�) + f(�; 585; 675�) + :::::

with tmin = �1 andtmax =1.

Figure-3 shows these membership functions for� = 18.
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Figure 3: MEMBERSHIP FUNCTIONS FOR ASPECT

2.2.4 ROCK PERMEABILITY

Rock permeability refers to the ease with which water may run through the rock. The
higher the rock permeability, the lower is the risk of soil erosion. The different types of
rocks found in the study area are Hard Limestone, Schists, Metamorphic, Calcareous ter-
tiary deposits, Siliceous tertiary deposits and Colluvium. While the metamorphic rocks
and schists (which is an advanced grade of metamorphic rock) are impermeable, the rest
are permeable. In the data that is available, rock permeability is defined for a sample site
as a whole. Since the information given is only whether a sample site consists of either
permeable rocks or impermeable rocks, rock permeability is considered as a non-fuzzy
variable, even though it need not necessarily be. We shall see later that, in cases where



we are concerned with the classification of a composite site, i.e., a site that consists of
several patches each one having its own geology, the membership of the composite region
into each one of the classes represented by the subregions is calculated as the proportional
area each class of the subregions occupies within the composite region.

3 FUZZY CLASSIFICATION WITH GIS

3.1 THE ROLE OF GIS

The primary data to be used in the study to assess the degree of risk of desertification were
provided on the Arc/Info GIS. Some secondary data were derived from the primary data
using the potentialities of Arc/Info. This GIS is better described in [6]. Data included
four test areas of different sizes chosen based on the availability of relevant satellite data.
From these test areas, 53 sample sites had been chosen in such a way that they would rep-
resent maximum site variability. The various GIS layers were of rock permeability, soil
depth and a Digital Elevation Model. The GIS data consisted of both vector and raster
data types. Table 1 shows the different GIS layers used in the study.

PRIMARY DATA

GIS LAYERS DATA TYPE
Sample site boundariesvector
Soil depth vector
Rock permeability vector
DEM raster

DERIVED DATA

GIS LAYERS DATA TYPE
Slope raster
Aspect raster

Table 1: GIS DATA AND DATA TYPES

Since the data regarding rock permeability, soil depth and DEM were provided for
the entire study area, the required data were extracted by clipping with the sample site
boundaries. Pixel-wise slope and aspect values were obtained from the DEM using the
GRID module of Arc/Info. GRID was used to derive the slope and aspect values as it can
accurately portray continuous surfaces. GRID is a raster based geo-processing system
integrated with Arc/Info. A grid in Arc/Info represents a single theme and is made up
of cells of a particular size representing the resolution of the data and the cell values
representing the class within the theme to which it belongs. Each integer grid would have



an associated Value Attribute Table which stores the cell values.
Slope is evaluated as the maximum rate of change in value from each cell to its neighbours
and an output slope grid could have slope values in degrees or percent. Aspect is evaluated
as the direction of slope. The pixel based slope values were generalised to each sample
site by averaging the slope values of all pixels in the sample site. Since the aspect has
cylindrical boundaries, evaluating the mean aspect value of all the pixels in a site could
result in the aspect falling into a completely wrong class. For example, if a site contained
aspect values belonging to North i.e., between0 to 45� and315 to 360�, then evaluating
the aspect value of the site as the mean of all pixel values could classify it even into the
class ‘South’. In order to eradicate this problem, the following methodology has been
adopted.

1. All N pixel values of a site were sorted in ascending order of aspect value.

2. A new sequence of N numbers was created by subtracting360� from each pixel
value.

3. The old and the new sequences were concatenated, thus creating a single sequence
of 2N numbers i.e., twice as long as the previous one, the first half of which is the
same as the second half shifted by�360�.

4. Mean and variance were then calculated in a sliding window of length N.

5. The mean corresponding to the minimum variance was chosen as the mean aspect
value of the site.
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Figure 4: INDUCING CONTINUITY IN ASPECT

Figure 4 gives an example of how this trick solves the problem of discontinuity at
360�=0�. Suppose thatN = 7 and the valuesX1; :::::X7 are placed as shown along the
positive real axis of Figure 4. Clearly, the average of these aspects should be either near
0� or 360�: However, if we compute it by straight averaging , we shall find a number
near180�. By shifting the sequence360� to the left, we create the ghost members of
the sequenceX 0

1; :::::X
0
7. We then consider every 7 successive members of this extended

sequence and compute their average and their variance. The variance will be minimum
when the sliding window of length 7 contains numbersX 0

4; X
0
5; X

0
6; X

0
7; X1; X2; X3. The

average of these numbers will be around0 which is the correct value.



3.2 FUZZY CLASSIFICATION

The domain expert’s knowledge was implemented over the framework of GIS and then,
the fuzzy classification technique was used for decision making. The domain expert’s
knowledge is expressed by two sets of rules, one for natural regeneration potential and
the other for risk of soil erosion. Both the antecedents and the consequents in the rules are
fuzzy. Rock permeability, soil depth, slope and aspect were the fuzzy variables involved
in the rules. The rules are shown in the following Table 2 and Table 3.

SOIL DEPTH (SD)
BARE SHALLOW DEEP

NORTH SG SL NL
A
S EAST SG SL NL
P
E WEST SE ML SL
C
T SOUTH SE ML SL

(A)

NL - No Limitation
SL - Slight Limitation
ML - Moderate Limitation
SG - Strong Limitation

SE - Severe limitation

Table 2: TABULATED RULES FOR NATURAL REGENERATION POTENTIAL



PERMEABILITY (R) & SOIL DEPTH (SD)
PERMEABLE IMPERMEABLE

BARE SHALLOW DEEP BARE SHALLOW DEEP

S GENTLE * SR NSR * HR SR
L
O MEDIUM * MR SR * VHR MR
P
E STEEP * MR SR * VHR HR

(S)

* The land with bare soil is already eroded. No further erosion can occur.
NSR - No to slight risk
SR - Slight risk
MR - Moderate risk
HR - High risk
VHR - Very high risk

STEEP includes MODERATELY STEEP

Table 3: TABULATED RULES FOR RISK OF SOIL EROSION

Let x1 be the value of slope in a site. Then,

fx1; �S(G); �S(M); �S(S)g
would represent the membership grades ofx1 to the classes gentle, medium and steep of
the fuzzy variable Slope(S). Letx2 be the aspect of a site in degrees. Then,

fx2; �A(N); �A(E); �A(W ); �A(S)g
would represent the membership grades ofx2 to the classes North, East, West and South
of the fuzzy variable Aspect(A). Ifx3 is the value of Soil Depth, then

fx3; �SD(B); �SD(S); �SD(D)g
represents the membership grades ofx3 to the classes bare, shallow and deep of the fuzzy
variable Soil Depth(SD). Ifx4 is the permeability of rock in the site, then

fx4; �R(P ); �R(I)g
would represent the membership grades ofx4 to the classes permeable and impermeable
of the variable Rock Permeability(R).
The actual membership grades were evaluated from equation (3) of section 2.



Once the membership grades to the fuzzy variables are evaluated, the membership
grades to the natural regeneration potential and risk of soil erosion are obtained from the
fuzzy relations given in Table 2 and Table 3 using the fuzzy equivalents of Logical AND
and OR namely, Max and Min. Hence, the membership grades for natural regeneration
potential could be defined as

�RP (NL) = [�A(N) ^ �SD(D)] _ [�A(E) ^ �SD(D)]

�RP (SL)) = [�A(S) ^ �SD(D)] _ [�A(N) ^ �SD(S)] _ [�A(W ) ^ �SD(D)] _ [�A(E) ^ �SD(S)]

�RP (ML) = [�A(S) ^ �SD(S)] _ [�A(W ) ^ �SD(S)]

�RP (SG) = [�A(N) ^ �SD(B)] _ [�A(E) ^ �SD(B)]

�RP (SE) = [�A(S) ^ �SD(B)] _ [�A(W ) ^ �SD(B)]

where RP represents the ‘Regeneration Potential’,^ and_ represent the Minimum and
Maximum operators respectively. While the Minimum operation would give the largest
fuzzy subset contained in the sets, the Maximum operation would give the smallest fuzzy
subset contained in the sets. In other words, any chain connected in a series position is
associated witĥ and a chain connected in a parallel position is associated with_.
The membership grades to the risk of soil erosion could be derived from the following
operations.

�SE(NSR) = [�S(G) ^ �SD(D) ^ �R(P )]

�SE(SR) = [�S(M) ^ �SD(D) ^ �R(P )] _ [�S(S) ^ �SD(D) ^ �R(P )] _

[�S(G) ^ �SD(S) ^ �R(P )] _ [�S(G) ^ �SD(D) ^ �R(I)]

�SE(MR) = [�S(M) ^ �SD(S) ^ �R(P )] _ [�S(S) ^ �SD(S) ^ �R(P )] _

[�S(M) ^ �SD(D) ^ �R(I)]

�SE(HR) = [�S(S) ^ �SD(D) ^ �R(I)] _ [�S(G) ^ �SD(S) ^ �RP (I)]

�SE(V HR) = [�S(M) ^ �SD(S) ^ �R(I)] _ [�S(S) ^ �SD(S) ^ �R(I)]

where SE represents the ‘Risk of Soil Erosion’.
While evaluating the membership grades of risk of soil erosion, slope has been classified
into 3 classes only, as for all practical purposes, slopes> 40% are considered steep. Since
only linguistic data were available for soil depth and rock permeability and also since a
sample site could consist of more than one type of rock permeability and more than one
type of soil depth, the membership grade to a particular class of these variables was eval-
uated as the proportion of a sample site belonging to that class.
Finally, to obtain the degree of risk of desertification based on the natural regeneration
potential and risk of soil erosion, the fuzzy relations given in Table 4 were used.



REGENERATION POTENTIAL (RP)
NL SL ML SG SE

NSR NR LR LR MR MR
E
R SR LR LR MR MR HR
O
S MR LR MR MR HR HR
I
O HR MR MR HR HR VHR
N

(SE) VHR MR HR HR VHR VHR

NR - No risk
LR - Low risk
MR - Moderate risk
HR - High risk
VHR - Very high risk

Table 4: TABULATED RULES FOR RISK OF DESERTIFICATION

The membership grades to the risk of desertification were evaluated from the follow-
ing equations.

�D(NR) = �RP (NL) ^ �SE(NSR)

�D(LR) = [�RP (SL) ^ �SE(NSR)] _ [�RP (ML) ^ �SE(NSR)] _ [�RP (NL) ^ �SE(SR)] _

[�RP (SL) ^ �SE(SR)] _ [�RP (SL) ^ �SE(MR)]

�D(MR) = [�RP (SG) ^ �SE(NSR)] _ [�RP (SE) ^ �SE(NSR)] _ [�RP (ML) ^ �SE(SR)] _

[�RP (SG) ^ �SE(SR)] _ [�RP (SL) ^ �SE(MR)] _ [�RP (ML) ^ �SE(MR)] _

[�RP (NL) ^ �SE(HR)] _ [�RP (SL) ^ �SE(HR)] _ [�RP (NL) ^ �SE(V HR)]

�D(HR) = [�RP (SE) ^ �SE(SR)] _ [�RP (SG) ^ �SE(MR)] _ [�RP (SE) ^ �SE(MR)] _

[�RP (ML) ^ �SE(HR)] _ [�RP (SG) ^ �SE(HR)] _ [�RP (SL) ^ �SE(V HR)] _

[�RP (ML) ^ �SE(V HR)]

�D(V HR) = [�RP (SE) ^ �SE(HR)] _ [�RP (SG) ^ �SE(V HR)] _ [�RP (SE) ^ �SE(V HR)]

The results obtained by using input values from the GIS were compared with the expert’s
classification. These results are given in Table 5. The values in bold represent the category
into which the expert had classified a site.



SAMPLE SITE RISK OF DESERTIFICATION
SITE No. SITE NAME NR LR MR HR VHR

1 B-2 0.000 0.000 0.038 0.567 0.130
2 B-6 0.000 0.000 0.000 0.000 0.875
3 B-5 0.000 0.000 0.037 0.624 0.000
4 B-3 0.000 0.048 0.154 0.627 0.000
5 B-1 0.000 0.000 0.049 0.470 0.200
6 B-4 0.000 0.000 0.000 0.0001.000
7 P-11 0.000 0.000 0.998 0.000 0.000
8 P-9 0.000 0.000 0.520 0.480 0.000
9 P-12 0.000 0.000 0.711 0.000 0.000
10 PD2-4 0.000 0.000 0.000 0.0001.000
11 PD2-3 0.000 0.000 0.000 0.0001.000
12 P-10 0.000 0.253 0.531 0.000 0.000
13 PD2-2 0.000 0.000 0.027 0.090 0.803
14 PD2-1 0.000 0.000 0.000 0.0001.000
15 P-8 0.000 0.830 0.170 0.000 0.000
16 P-7 0.160 0.284 0.631 0.352 0.080
17 P-1 0.001 0.740 0.000 0.000 0.000
18 P-6 0.000 0.937 0.000 0.000 0.000
19 PD1-7 0.000 0.000 0.021 0.752 0.000
20 PD1-6 0.000 0.000 0.144 0.617 0.000
21 P-3 0.000 0.991 0.000 0.000 0.000
22 P-14 0.000 0.790 0.000 0.000 0.000
23 P-13 0.000 0.914 0.000 0.000 0.000
24 PD1-5 0.000 0.000 0.094 0.648 0.030
25 PD1-4 0.000 0.000 0.098 0.581 0.020
26 P-5 0.000 0.992 0.000 0.000 0.000
27 PD1-3 0.000 0.000 0.012 0.515 0.00
28 P-4 0.284 0.710 0.000 0.000 0.000
29 PD1-2 0.000 0.000 0.000 0.0001.000
30 P-16 0.042 0.582 0.000 0.000 0.000
31 PD1-1 0.000 0.000 0.079 0.764 0.000
32 P-15 0.091 0.639 0.000 0.000 0.000
33 P-2 0.001 0.670 0.000 0.000 0.000
34 L-1 0.000 0.000 0.558 0.436 0.000
35 L-2 0.000 0.000 0.061 0.525 0.000
36 L-3 0.000 0.000 0.008 0.709 0.000
37 L-5 0.000 0.455 0.545 0.010 0.000
38 L-4 0.240 0.050 0.240 0.004 0.000
39 L-6 0.000 0.000 0.503 0.175 0.000
40 TB-1 0.000 0.000 0.146 0.496 0.360
41 TB-2 0.000 0.000 0.123 0.458 0.000

contd..



SAMPLE SITE RISK OF DESERTIFICATION
SITE No. SITE NAME NR LR MR HR VHR

42 TP-2 0.000 0.022 0.040 0.040 0.000
43 TP-1 0.000 0.000 0.000 0.000 1.000
44 TP-3 0.000 0.071 0.570 0.000 0.000
45 TPD2-1 0.000 0.000 0.000 0.000 1.000
46 TPD1-3 0.000 0.000 0.002 0.614 0.000
47 TP-4 0.187 0.813 0.000 0.000 0.000
48 TPD1-2 0.000 0.000 0.000 0.872 0.000
49 TP-6 0.000 0.798 0.027 0.190 0.000
50 TPD1-1 0.000 0.000 0.000 0.591 0.000
51 TP-5 0.113 0.490 0.000 0.000 0.000
52 TL-1 0.000 0.366 0.572 0.330 0.000
53 TL-2 0.000 0.000 0.186 0.381 0.000

Table 5: RESULTS

4 DISCUSSION AND CONCLUSIONS

From the above table it can be seen that the fuzzy classification system agrees with the
expert in 21 out of the 53 sites when the input data are read from the GIS. If we allow up
to one neighbouring class disagreement, the fuzzy classification system agrees with the
expert’s classification in 45 out of the 53 sites. The fuzzy classification system becomes
a simple rule-based hard classifier when the input data are the field data with which no
uncertainty value can be associated. In fact, the classification obtained by the field data
agrees everywhere with the expert (an indication that the rules provided by the expert
have been correctly implemented). The disagreement we observe between the GIS clas-
sification and the other two, may stem from one of the following reasons:

� The regions that are totally wrongly classified are the regions for which the GIS
data are in complete disagreement with the field data. Clearly the GIS data are
much more unreliable than the field data, mainly due to the difference in scale.
(The test sites were only of size250 � 250 m2.) Our approach is aimed exactly
at modelling this uncertainty, but the approximation of the error distributions by
Gaussians may not be the best one. However, when we repeated the calculations
assuming uniform distributions, i.e., triangular or trapezoidal membership functions
which are commonly used, the results became much worse. The correct modelling
of this uncertainty is part of our future work.

� We believe that by far the most significant reason of disagreement between the fuzzy
classification and the expert’s assessment is the expert’s assessment itself. This was
not done using some sort of accumulated experience and background knowledge



which should have been elicited by some Knowledge Engineering techniques. It
was rather done using a linear superposition rule of class labels, which is the very
type of rule which we argue should be replaced by fuzzy classification! Thus, there
is no guarantee that the expert’s classification is more correct than the fuzzy clas-
sification. Only the study of historical data retrospectively could determine the
correct classification method, but that is beyond the scope of this project.

In summary, we have shown in this paper how the fuzzy membership functions can
be derived from the error distributions in the measurement data and in the information
provided by the GIS layers. In particular, we dealt with the case of free boundary condi-
tions, as is the case of measuring the soil depth, mirror image boundary conditions, as is
the case of ground slope, and cylindrical boundary conditions, which is the case in aspect.
It must be emphasised that although in the work presented here, we assumed Gaussian dis-
tributions of errors, the approach could be used with any type of error probability density
function.
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