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Abstract

This paper investigates two aspects of using Fuzzy Logic with a GIS: The
use of non-conventional aggregation operators for conjunctive and disjunctive
reasoning and the use of weights when combining aggregates of different
significance to the classification. Two methods of weighting are used, weights
as powers of the membership functions, and the novel concept of membership
functions that take values greater than 1. The two approaches are investigated
in conjunction with 121 possible combinations of aggregation operators that
are used to reason in the disjunctive and conjunctive level of the problem of
assessing the risk of desertification after a forest fire.
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1 Introduction

In Geography and related sciences, a GIS package is often used for combining informa-
tion from various sources for the ultimate purpose of region classification. Most of the
commercially available GIS packages tend to simply superimpose the various informa-
tion layers in a heuristic way. Apart from the obvious problem that different factors may
combine in a non-linear way to influence the output classification, there is another major
drawback of this approach: the information obtained from each layer may be inaccurate
or uncertain to various degrees and this uncertainty should be taken into consideration
when the various items of information are combined. In order to preserve the flexibility
offered by a GIS in storing and retrieving geographical information, while taking into
consideration both the way the different factors influence the final classification and the
uncertainty in the value or class of each of them, we propose the use of a GIS system with
reasoning mechanisms that can cope with the above requirements.
We shall present our ideas in the context of the problem of burned forest management.
In particular, we are interested in ranking burned forests in order of risk of desertifica-
tion. There is a lot of work done on mapping and monitoring forest areas [1] [24] [8] [7]



[17], assessment of vegetation change [18], fire risk assessment [22] [9] [15] and restor-
ation of burned areas and vegetation recovery [3] [33] [25] [16]. Although the above ap-
proaches use traditional Remote Sensing and GIS techniques for spatial data integration,
there are plenty of other examples where uncertainty in the available information is taken
into consideration. The list of mechanisms, which have been proposed in Geographical
and Geological applications, that can handle uncertainty, includes Bayesian networks [6]
[21] [29], neural networks and genetic algorithms [41] [30], [31], Dempster-Shafer theory
[23] [21] [19] and fuzzy logic [4] [27]. In [21], Lee and Richards discuss both a conven-
tional statistical method and a Dempster-Shafer method for multisource data analysis and
suggest that a combination of the two approaches may be well suited when there are both
numerical and non-numerical data. In [6], Bonham-Carter et al use Bayesian statistics to
combine various geological factors in finding areas favourable for gold exploration. Moon
in [23] uses a Dempster-Shafer method to deal with incomplete information and also to
integrate geophysical and geological data sets of different resolution. In [41], Zhou and
Civco use an evolutionary learning algorithm in a Neural Network as a replacement and
an improvement over traditional methods of GIS for suitability analysis in order to find
all areas suitable for the location of a light manufacturing plant.

Of all the above soft-computing techniques, by far the most flexible one, both in terms
of implementation and intuitive understanding, is fuzzy logic [40]. In the problem we are
interested in, i.e., the assessment of the degree of risk of desertification of areas affected
by fire, the variables involved are fuzzy with a mixture of classes. Thus, fuzzy logic has
been chosen as the main reasoning mechanism. The decision making process involves im-
plementing rules that contain linguistic variables or fuzzy sets. This demands a procedure
for aggregation of fuzzy sets. There are several publications available on fuzzy aggrega-
tion operators, of which a few notable ones are [20] [2] [13] [38] [34] [14] [12] [5] [10]
[39] [32] [11]. In these papers, the properties of various aggregation operators are stated.
With a few exceptions, in most applications of fuzzy logic to the Environmental Sciences,
the classicalmin andmax aggregation operators are used, while the other options remain
largely unexplored. (For example, Binaghi and Rampini [4] use fuzzy aggregation in fire
risk determination, but mainly concentrate on themeanaggregation operator as an altern-
ative tomaxandmin). Choosing the right operator or sets of operators for a problem may
not be straightforward. To deal with the example problem we use in this paper, we need
a combination of two operators. If we take into consideration the nature of the various
operators, we end up with 121 possibilities. We advocate here a training-based approach,
during which the most appropriate set of operators is identified.
Another important issue that has to be considered, is the relative importance of the vari-
ous factors that are aggregated by the fuzzy logic mechanism. There have been a few
publications that say how relative importances of combined factors could be incorporated
in fuzzy reasoning. Of these, the most notable ones are by Yager [34] [35] [36] [37]. In
this paper, we introduce the novel idea of assigning relative importance to the aggregated
factors by allowing the membership functions to take values greater than 1. It must be
stressed that this is not the same as scaling the memberships functions with the help of
weights, because several of the aggregation operators used are non-linear and scaling their
arguments is not the same as allowing memberships functions greater than 1. For this pur-
pose, we also propose generalised forms of these operators where their input variables are



allowed to take values greater than 1. The properties of these generalised operators are
discussed in detail in [26]. The maximum value of each membership function is treated
as a parameter that is determined with the help of the training data. This approach is com-
pared with Yager’s basic approach, namely that of membership functions raised to some
power.
Briefly, the purpose of this paper is dual:
First, to explore a new mechanism for taking into consideration the relative importance of
the various factors that influence a decision, and second to investigate this mechanism in
conjunction with the various rules that have been proposed for evidence aggregation and
in the context of a specific application. Hence, this work is aimed at improving a conven-
tional GIS-based system in a decision making process that involves spatial data analysis.
This improvement will be exemplified by experimental comparison with a simple GIS
rule-based system.
Section-II of the paper introduces the problem. Section-III gives a brief overview of fuzzy
techniques including the properties of a few aggregation operators. Section-IV brings out
the issues related to the relative importances of the aggregates, reviews Yager’s work and
also describes our approach. Section-V describes the various experiments performed.
Section-VI discusses the results obtained, justifies why the choice of aggregation oper-
ators and inclusion of relative importances matter in a decision making problem, and
summarizes briefly the main points that have emerged as the outcome of the experiments
and analysis done.

2 Problem Background

Forest fires are a major concern throughout the world and though some times a burned
forest regenerates on its own in due course, many times the affected area becomes arid
if left uncared for. Since total afforestation is virtually impractical, timely and accurate
information on the sites that should have priority for reforestation could go a long way
in an efficient planning of resource allocation. This could be accomplished by using an
efficient reasoning model which could handle fuzzy data as well.

Since the uncertainty involved in the problem is mainly due to a mixture of classes
and not due to randomness, usage of partial membership functions is more appropriate
than probabilistic approaches. The data that are used in this study pertain to a few sites in
Attica, Greece, which have been chosen in such a way that they represent maximum site
variability.
The parameters that influence the risk of desertification as given by some experts are
shown in figure 1. From this figure, it can be seen that the ultimate variables involved
in the study are Ground Slope, Rock Permeability, Soil Depth and Aspect. It is true that
there are several other factors that influence desertification, but over the whole study area
of our project those factors could easily be assumed constant, and therefore irrelevant to
the relative ranking of the various sites. The spatial and attribute data pertaining to Soil
Depth, Rock Permeability and Digital Elevation Model (DEM) were fed into the Arc/Info
GIS package and the aspect and slope data were derived as secondary data using the raster



analysis facility of Arc/Info.
Slope has been classified into the following four classes based on the degree to which it
influences the risk of soil erosion.

REGENERATION POTENTIAL                              RISK   OF   SOIL   EROSION

ASPECT                       SOIL  DEPTH                       SLOPE                     ROCK    PERMEABILITY

     RISK       OF      DESERTIFICATION

FACTORS    THAT    INFLUENCE    DESERTIFICATION

Figure 1: Factors that influence the risk of desertification of a burned forest

1. Gentle:0� 20%

2. Moderate:21� 40%

3. Steep:> 40%

Slope can be expressed in degrees or percentage. When expressed as a percentage the
slope is 100% when the angle is45� and approaches1 as the angle approaches the ver-
tical which is90�.
Soil Depth has been classified into the following 3 classes.

1. Bare:< 5cm

2. Shallow:5� 30cm

3. Deep:> 30cm

Aspect or orientation of a ridge can be expressed as the angle the normal to the ridge
forms with the north direction. This angle could take a value from0� to 360� and it could
belong to any of the following classes.

1. North:0� 45�, 315� 360�



2. East:45� 135�

3. South:135� 225�

4. West:225� 315�

Rock Permeability refers to the ease with which water may run through the rock. The
higher the rock permeability, the lower the risk of soil erosion is. The different types
of rock found in the study area are Hard Limestone, Schists, Metamorphic, Calcareous
tertiary deposits, Siliceous tertiary deposits and Colluvium. However, the classes used in
this study were just ‘permeable’ and ‘impermeable’.

The Arc/Info GIS package was used for performing a few intermediate spatial func-
tions with the data, before any reasoning could be done. While the data regarding Rock
Permeability, Soil Depth and DEM were provided for the entire study area, we were con-
cerned with only a few sample sites. Hence, the required data for these sites were extrac-
ted by clipping with the sample site boundaries. Slope and aspect values were obtained
from the DEM using the GRID module of Arc/Info. GRID is a rule based geo-processing
system integrated with Arc/Info.

The reasoning part of the problem under consideration involved the implementation
of the hard rules provided by the expert in terms of fuzzy concepts. The rules as given by
the expert are shown in Table-I .

RULES FOR NATURAL REGENERATION POTENTIAL

SOIL DEPTH
BARE SHALLOW DEEP

NORTH SG SL NL
A
S EAST SG SL NL
P
E WEST SE ML SL
C
T SOUTH SE ML SL

NL - No Limitation
SL - Slight Limitation
ML - Moderate Limitation
SG - Strong Limitation

SE - Severe limitation



RULES FOR RISK OF SOIL EROSION
PERMEABILITY & SOIL DEPTH

PERMEABLE IMPERMEABLE
BARE SHALLOW DEEP BARE SHALLOW DEEP

S GENTLE * SR NSR * HR SR
L
O MEDIUM * MR SR * VHR MR
P
E STEEP * MR SR * VHR HR

* The land with bare soil is already eroded. No further erosion can occur.
NSR - No to slight risk
SR - Slight risk
MR - Moderate risk
HR - High risk
VHR - Very high risk

RULES FOR RISK OF DESERTIFICATION
REGENERATION POTENTIAL (RP)

NL SL ML SG SE

NSR NR LR LR MR MR
E
R SR LR LR MR MR HR
O
S MR LR MR MR HR HR
I
O HR MR MR HR HR VHR
N

(SE) VHR MR HR HR VHR VHR

NR - No risk
LR - Low risk
MR - Moderate risk
HR - High risk
VHR - Very high risk

Table 1: EXPERT RULES



3 An overview of Fuzzy Techniques

Since Zadeh defined fuzzy concepts in 1965 [40], fuzzy logic has been established as the
ideal method of dealing with various kinds of uncertainty and vagueness like the ones
stated below.

� Experts often express their knowledge in terms of linguistic variables like shallow,
medium, deep etc.

� A variable is often characterized by a measurement that takes continuous values.
Forcing this variable into one of two or three classes according to the value of its
measurement, is too gross and ignores the fact that the transition from one class to
the other may be gradual and the boundaries between classes fuzzy.

� There is uncertainty in the measurement of variables especially when many pixel
values have to be aggregated together to yield a representative figure.

� There is a mixture of classes within each individual site that is to be classified.

In the problem in question, the fact that each individual site consists of a mixture of
classes has been the major motivation for using fuzzy reasoning techniques. Hence, the
fuzzy membership values to any particular class of a variable, have been evaluated as the
proportion of pixels falling in that class within a particular sample site.

Aggregation operations on fuzzy sets are operations by which several fuzzy sets are
combined in a desirable way to produce a single fuzzy set. An aggregation operation on
n fuzzy sets wheren � 2 is formally defined by a function
f : [0; 1]n �! [0,1]
When applied to fuzzy sets, this function produces an aggregate fuzzy set by operating on
the membership grades of these sets [20]. The nature of aggregation of two variables say
x and y, could be any of the following [5].

1. Aggregation is conjunctive if
f(x; y) � min(x; y)
which states that a conjunctive operator has confidence at most as high as the smal-
lest membership value and looks for a simultaneous satisfaction of all criteria that
are being combined.

2. Aggregation is disjunctive if
f(x; y) � max(x; y)
which states that a disjunctive operator has confidence at least as small as the
greatest membership value and looks for a redundancy between the criteria that
are being combined.

3. Aggregation is a compromise if
min(x; y) � f(x; y) � max(x; y)
which is a cautious behaviour.



The aggregation operators themselves fall under 4 classes, namely

� T-norms

� T-conorms

� Means

� Symmetric Sums

Functions like T-norms and T-conorms have been extensively studied in the literature
[5] [2] [20]. The most commonly used T-norms and T-conorms are

Standard Intersection:min Standard Union:max

Algebraic Product:xy Probabilistic Sum:x+ y � xy

Bounded Difference:max(0; x+ y� 1) Bounded Sum:min(1; x+ y)
Min is the smallest T-norm andMax is the largest T-conorm and henceMin is the
weakest fuzzy intersection andmax is the strongest fuzzy union. T-norms are conjunct-
ive operators and T-conorms are disjunctive operators.
Apart from these union and intersection operators, there are also other aggregation operat-
ors likesymmetrical sumsandmean operatorswhich are found to be more suitable when
we have to deal with aggregation of fuzzy variables refering to different concepts [28]
[13] which is also the case in the problem under consideration. By different concepts, we
mean aggregation of completely different variables of different scales and nature.
Symmetric Sums take the general form

f(x; y) = g(x;y)
g(x;y)+g(1�x;1�y)

and their behaviour as to whether they are conjunctive or disjunctive depends on the
values ofx andy. The symmetric sums that have been used in the present study are

�0 �
xy

1�x�y+2xy
corresponding tog(x; y) = xy

�+ �
x+y�xy

1+x+y�2xy
corresponding tog(x; y) = x+ y � xy

min3 �
min(x;y)
1�jx�yj

corresponding tog(x; y) = min(x; y)

max3 �
max(x;y)
1+jx�yj

corresponding tog(x; y) = max(x; y)

where the nature of�0 and�+ depends on the values ofx andy while min3 andmax3
are compromise operators. Not all symmetric sums are associative.
The most commonly used mean operators arearithmetic mean, harmonic meanandgeo-
metric meanand all the mean operators yield a value in between the maximum and min-
imum and hence have a compromise behaviour.



4 Issues of relative importance

In many applications of fuzzy logic, all variables were considered equally important
which may not be true in reality. For example, the two variables Soil Depth and As-
pect could affect the Regeneration Potential in different degrees and moreover Soil Depth
could influence Regeneration Potential and Soil Erosion also in different degrees. Hence,
it may be crucial to include the relative importances of the variables as well in the reas-
oning process. Yager has studied the issue of inclusion of relative importance in a great
detail and has suggested various ways of incorporating it in a multi-criteria decision mak-
ing problem. In [37], Yager defines an aggregation operatorF : Rn �! R as an ordered
weighted aggregation operation of dimensionn if it has associated with it a weighting
vector(w1; w2; :::; wn)

T such that
1. wi 2 [0; 1],
2.
Pn

i=1 wi = 1 and
F (a1; a2; ::::an) =

Pn
j=1 bjwj wherebj is the jth largest element of(a1; a2; :::::an).

In [34], Yager evaluated the importance of the objectives in a multi-objective decision
making problem by finding the eigenvector of the maximum eigenvalue of a matrix of
pairwise comparisons of the importance of each objective. He included the relative im-
portance in the problem by raising each objective to a power representing the respective
importance obtained from the eigenvector. When a weight is more than 1, the higher the
weight, the stricter the condition, while when the weight is less than 1 the condition is
loosened. Hence, large membership values would be reduced to much smaller than the
small ones if their weights are greater than 1, while small membership values will be-
come larger when their weights are smaller than 1. This ensures that the membership
values of less important classes are reduced more, thereby reducing the likelihood of the
decision being dominated by those classes, or the membership of more important classes
is increased so that the decision is dominated by these classes. In [35], [36] and [34],
Yager suggests two other methods of including importances. In each of these, he suggests
different ways of doing it, based on whether the nature of fusion is a conjunction or a dis-
junction. In [35] and [36], Yager states that, a conjunction operation could be performed
as

min[I(�i; Ci)], i = 1; 2; :::; n
wheremin is used as the conjunction operator,�i is the importance of criterioni andCi

is the degree of satisfaction of criterioni. I indicates the function relating importance and
satisfaction and is defined as

I(a; b) �max[(1� a); b]
Similarly for a disjunction, he suggests

max[U(�i; Ci)], i = 1; 2; :::; n
wheremax is used as the disjunction operator and

U(a; b) �min(a; b)
In [34], Yager generalises the method of inclusion of importances. He states that an ‘and’
operation could be performed asA[I(�i; Ci)] whereA stands for any T-norm operator
and I stands for any T-conorm operator. Similarly, for an ‘or’ operation, he suggests
O[U(�i; Ci)], whereO stands for any T-conorm operator andU stands for any T-norm
operator.



In this paper, we explore a new way of incorporating relative importance of the vari-
ables: the membership values of two variables sayx and y vary between0 andw1

and0 andw2 respectively rather than0 and1. Note that this is not the same as using
multiplicative weights for the membership functions, as most of the aggregation oper-
ators used are non-linear inx andy. Hence most of the operators had to be modified
appropriately in order to handle the incorporation of weights. Therefore, the defini-
tion of the aggregation function given byf : [0; 1]n �! [0; 1] has been extended to
f : [0; w1]:[0; w2] : : : [0; wn] �! [0; max(w1; w2; : : : wn)] in order to accomodate the
weights. The operators as they are originally defined and after the incorporation of
weights are shown in Table - II.
For comparison, we also follow Yager and associate weights as powers of the member-
ship values. When this method of weighting is used, the membership values vary between
0 and 1 only andf : [0; 1]n �! [0; 1] and hence there was no necessity to modify the
aggregation operators.
Since no quantitative information on the relative importance of the aggregates is avail-
able, in both cases, different weight combinations were experimented with. The operators
were first used on a training set comprising of 39 sites and the combination of weights
which gave the best results when compared with the expert’s classification was used in
the evaluation with the 14 test sites.



OPERATOR GENERALISED DEFINITION(for 4 variables)
0 � xi � wi; i = 1 to 4

max1 maximum(x1; x2; x3; x4)

sum

4P
i=1

(
4Q

l=1
l6=i

wl)xi�
4P

i=1

4P
j=1
j 6=i

(
4Q

l=1
l6=i
l6=j

wl)xixj+
4P

i=1

4P
j=1
j 6=i

4P
k=1
k 6=i
k 6=j

4P
l=1
l6=i
l 6=j
l6=k

wlxixjxk�
4Q

i=1

xi

4Q
i=1

wi=min(w1;w2;w3;w4)

min2 min2[min2fmin2(x1; x2); x3g; x4]
min1 minimum(x1; x2; x3; x4)

prod
4Q

i=1
xi

max2 max2[max2fmax2(x1; x2); x3g; x4]

am 1
4

4P
i=1

xi

gm 4

q
(

4Q
i=1

xi)

hm
4

4Q
i=1

xi

4P
i=1

4P
j=1
j 6=i

4P
k=1
k 6=i
k 6=j

xixjxk

min3
min(x1;x2;x3;x4)

min(x1;x2;x3;x4)+min(w1�x1;w2�x2;w3�x3;w4�x4)

max3
max(x1;x2;x3;x4)

max(x1;x2;x3;x4)+max(w1�x1;w2�x2;w3�x3;w4�x4)

�0

4Q
i=1

xi

4Q
i=1

(wi�xi)+
4Q

i=1

xi

�+
sum(x1;x2;x3;x4)

sum(x1;x2;x3;x4)+sum(w1�x1;w2�x2;w3�x3;w4�x4)

Table 2: Generalised Definition of operators

5 Application

It is obvious from table 1, that there are two levels of aggregation of variables, namely
and andor and hence two operators have to be combined in various ways to create the
composite operator needed: one operator to be used for combining the membership val-
ues to the various classes of the independent variables, say for example, Soil Depth and
Aspect, and one operator to be used for combining the confidences of the various rules



that lead to the same classification of the dependent variable, say for example Regenera-
tion Potential. The nature of fusion of information in these two levels is disjunctive and
conjunctive respectively i.e., the fusion of information is a conjunction when we combine
conditions for certain situations to arise and it is a disjunction when we combine evidence
from different rules to lead to the same conclusion. This is schematically represented in
figure 2. When the variables involved are fuzzy, these two levels of aggregation could be
dealt with fuzzy union and intersection operators.
In this paper, a comparison of the behaviour of all types of aggregation operator is per-
formed. The operators with a conjunctive (disjunctive) nature are applied in the con-
junctive (disjunctive) level of the expert rules, and the symmetrical sums and the mean
operators are used in both levels. Thus, we have 10 operators each for the conjunctive
and the disjunctive levels, creating a total of 100 combination operators when we use the
power weighting method. When we use the weighting method proposed here we have
11 operators each creating a total of 121 combination operators as the operatorssum and
prod behave like a compromise operator and a symmetric sum respectively when general-
ised. Moreover, since some of the rules involve 3 variables, the operators are generalised
to take care of that. All these operators are applied to evaluate the Risk of Soil Erosion,
Natural Regeneration Potential and Risk of Desertification independently.

This approach presents two options: We may train the system so that for each sub-

CLASS

    -  Disjunction

 -  Conjunction

OBJECT

-  Conditions

Figure 2: Conjunctive and Disjunctive levels of reasoning

classificaton the best combination of operators is used. This combination could be dif-
ferent for each of the three subproblems. Alternatively, we train the system using for all
three subproblems at any one time the same combination of operators for the conjunctive
and the disjunctive reasoning. We call these methods Methods I and II respectively.
In yet another approach, the rules supplied by the expert may be combined to form rules
that directly relate the attributes of a site with the risk of desertification, omitting the inter-
mediate assessment of risk of erosion and regeneration potential. These composite rules
are given in table 3. We call this method Method III.
Each of the three methods was applied with weights used either as membership function
powers or as non-unit maximal values of the membership functions, as proposed here. In
every case, the weight of one of the variables was fixed to be1 and different combinations
of weights ranging from0:1 to 10 were experimented with, with the rest of the variables.
The operators and the weights that gave the best results in each case with the 39 training



sites when compared with the expert’s classification were then used on the 14 test sites.

Soil depth Aspect Rock Permeability SlopeROD
Deep North Permeable Gentle NR
Deep East Permeable Gentle NR
Deep South Permeable MediumLR
Deep West Permeable MediumLR
Deep South Permeable Steep LR
Deep West Permeable Steep LR
Deep South Impermeable Gentle LR
Deep West Impermeable Gentle LR

Shallow South Permeable MediumMR
Shallow West Permeable MediumMR
Shallow South Permeable Steep MR
Shallow West Permeable Steep MR

Deep South Impermeable Steep MR
Deep West Impermeable Steep MR

Shallow South Impermeable Gentle HR
Shallow West Impermeable Gentle HR
Shallow South Impermeable MediumVHR
Shallow West Impermeable MediumVHR
Shallow South Impermeable SteepVHR
Shallow West Impermeable Steep VHR

ROD - Risk of Desertification
NR - No risk
LR - Low risk
MR - Moderate risk
HR - High risk
VHR - Very high risk

Table 3: Combined rules for Risk Of Desertification

5.1 Method I:

The results of method I are presented in tables 4, 5 and 6. The operators and the weights
that gave the best results with the training sites were used for the testing sites with no
further adjustment. The first column of each set of results gives the number of sites that
end up with exactly the same classification as that obtained by the expert, while in the
second column we also include sites which were� 1 class (out of five possible classes)
off from the expert’s classification.
In table 4 we list the combination of disjunctive and conjunctive operators and the cor-



responding weights that produced the best results for the Natural Regeneration Potential.
It is interesting to note that both weighting approaches placed higher significance to Soil
Depth than to Aspect.

WEIGHTING OPERATOR WEIGHTS TRAINING SITES TEST SITES
PROCEDURE DISJUNCTIVE CONJUNCTIVE SD AS CCS CCSE CCS CCSE

min2 sum 1 0.1,0.2,0.4,0.8 21 36 8 14
PROPOSED sum sum 1 0.1,0.2,0.4 21 36 8 14

HERE min2 max3 1 10 19 29 8 12
sum max3 1 7-10 13 27 7 12

POWER sum max3 1 2 21 37 7 14
min2 max3 1 2 21 37 7 14

SD - Soil Depth, AS - Aspect, CCS - Correctly Classified Sites, CCSE - Correctly Classified
Sites with�1 class error

Table 4: Method I: Results for Limitation to Natural Regeneration Potential

For the risk of soil erosion (table 5), the weighting method we propose gave the best
results with the operatorsmax3 andsum for the disjunctive and the conjunctive level
respectively, while with power weighting the best results were obtained withmax1 and
max3 operators. For comparison, we also include in the table the results obtained when
the combination of operators that worked best for one of the weighting methods was
used with the other weighting method. However, while the operatorsum behaved as the
best conjunctive operator in our weighting method, it is not used in the power weighting
method for comparison because the standardsum operator is only a disjunctive operator.
We notice that the weighting method proposed here gave slightly better results with the
test sites, even though the power method gave slightly better results with the training sites.
Relative importances given by the two methods are not consistent. Soil depth appears to
be the least important in the weighting method proposed here, while it appears as the most
important in the power method.
The results obtained by using the best aggregation operators and weights for Natural Re-
generation Potential and Soil Erosion were then used to evaluate the ROD (Risk of Deser-
tification) and the results are given in table 6. The best set of operators for our weight-
ing method wasmin2�+ with Regeneration Potential considered5 times more important
than Risk of Soil Erosion, while the best set of operators for the power weighting method
wasmax1max3 with Risk of Soil Erosion considered more important than Regeneration
Potential. For comparison, we also present in table 6 the results obtained when we ex-
changed the set of best operators between the two weighting methods. The results show
that there is not a significant difference between the results obtained by our weighting



WEIGHTING OPERATOR WEIGHTS TRAINING SITES TEST SITES
PROCEDURE

DISJUNCTIVE CONJUNCTIVE SD Rp SL CCS CCSE CCS CCSE

PROPOSED max3 sum 1 9 9 27 35 7 8
HERE max1 max3 1 0.9-7 0.1 20 36 3 10

POWER max1 max3 1 5-10 4-(Rp-1) 29 39 6 12

SD - Soil Depth, ASP - Aspect, Rp - Rock Permeability, SL - Slope, CCS - Correctly Classified
Sites, CCSE - Correctly Classified Sites with�1 class error

Table 5: Method I: Results for Risk of Soil Erosion

method and the power method.



WEIGHTING PROPOSED HERE
ROD NRP SE TRAINING TEST

DISJ CONJ WEIGHTS DISJ CONJ DISJ CONJ CCS CCSE CCS CCSE
NRP SE

min2 �+ 1 0:2 min2 sum max3 sum 26 33 7 14
max1 min1 1 0.2 min2 max3 max max3 23 33 5 10

ROD NRP SE TRAINING TEST
DISJ CONJ DISJ CONJ WEIGHTS DISJ CONJ CCS CCSE CCS CCSE

NRP SE

max1 max3 1 0.7 sum max3 max1 max3 25 37 7 13
max1 min1 1 0.3 sum max3 max1 max3 25 37 7 13
max1 �+ 1 6 sum max3 max1 max3 25 37 7 13

SD - Soil Depth, Rp - Rock Permeability, SL - Slope, CCS - Correctly Classified Sites, CCSE -
Correctly Classified Sites with 1 class error, ROD - Risk of Desertification, NRP - Natural

Regeneration Potential, SE - Risk of Soil Erosion

Table 6: Method I: Results for Risk of Desertification

5.2 Method II:

In this method, the same set of aggregation operators was used at all levels of conjunct-
ive/disjunctive reasoning everytime. The best results obtained are given in table 7. The
results obtained are much better than those obtained with Method I. It can be noticed
that our weighting approach gave better results than the power method by correctly clas-
sifying 9 out of the 14 test sites. Guided from the performance with the training data,
one would choosemin2am combination of operators for our weighting approach and the
min2max3 combination for the power approach and achieve 9 and 6 correctly classified
sites out of the 14 test sites respectively. The combinationmin2max3 that performed the
best with power method gave better results with our weighting method. In this case, it is
not possible to draw any conclusions about the relative importance of the various factors,
as the reasoning is performed in two levels that involve non-linear processing. Note that
the Soil Depth attribute was incorporated with separate weights when entered through the
Regeneration Potential and Soil Erosion.

5.3 Method III:

In this method, instead of evaluating the Risk of Desertification from Regeneration Poten-
tial and Soil Erosion, the rules of Regeneration Potential and Soil Erosion were combined
to evaluate the Risk of Desertification directly from the fuzzy memberships of the four



WEIGHTING METHOD PROPOSED HERE
OPERATOR WEIGHTS TRAINING SITES TEST SITES

DISJ. CONJ. SD1 ASP Rp SL SD2 NRP SE CCS CCSE CCS CCSE

min2 am 1 0.3 0.1 1 0.5 1 1 37 39 9 12
min2 am 1 0.3 0.1 1 0.6 1 10 38 39 9 13
min2 max3 1 0.1 3 1 0.1 1 10 32 39 8 12

POWER WEIGHTING
OPERATOR WEIGHTS TRAINING SITES TEST SITES

DISJ. CONJ. SD1 ASP Rp SL SD2 NRP SE CCS CCSE CCS CCSE

min2 max3 1 2 6 1 4 1 1 35 38 6 13
min2 am 1 0.5 0.5 1 6 1 10 33 39 5 14

SD1 - Soil Depth as a factor of NRP, ASP - Aspect,SD2 - Soil Depth as a factor of SE, Rp -
Rock Permeability, SL - Slope, NRP - Limitation to Natural Regeneration Potential, SE - Risk of

Soil Erosion, CCS - Correctly Classified Sites, CCSE - Correctly Classified Sites with 1 class
error

Table 7: Method II: Results for Risk of Desertification

basic variables, according to the rules shown in table 3. The results are given in table 8.
The generalised aggregation operators for four variables presented in table 2 were used in
this case. From table 8, it can be seen that the maximum number of correctly classified
sites obtained in the training phase is as low as 22 sites out of 39, with our weighting ap-
proach and 24 sites with the power approach. This method did not produce good results
with the test sites either. Further, the generalisation of the system is not very good. There
is also some inconsistency in the ranking of the various factors in order of decreasing im-
portance: Our weighting method gives highest importance to Rock Permeability followed
by equal importance to Soil Depth and Aspect followed by Slope. The power weighting
gives maximum importance to Slope.

6 Discussion

It can be observed that of the above three methods, Method II gave the maximum number
of correctly classified sites, when compared with the expert’s opinion, but with not very
good generalization capabilities. The weighting method proposed here gave marginally
better results than the power weighting method. By far, the worst properties were ex-
hibited by Method III. From the fact that Method III did not perform well, we conclude



WEIGHTING OPERATOR WEIGHTS TRAINING SITES TEST SITES
PROCEDURE DISJ CONJ SD ASP Rp SL CCS CCSE CCS CCSE

PROPOSED sum am 1 1 4 0.1 22 25 3 8
HERE min2 �+ 1 1 1 0.1 17 34 4 10

POWER min2 �+ 3 1 2 0.1 24 31 4 8
sum am 0.1 1 0.1 0.1 13 28 0 6

SD - Soil Depth, ASP - Aspect, Rp - Rock Permeability, SL - Slope, CCS - Correctly Classified
Sites, CCSE - Correctly Classified Sites with 1 class error
* - many combinations of weights give the same result

Table 8: Method III: Results for Risk of Desertification

that, at least the expert who evaluated the data we used, used the intermediate steps of
evaluating Regeneration Potential and Soil Erosion in his reasoning on the problem, and
the non-linearities of these two steps of reasoning cannot be modelled satisfactorily with
the type of nonlinearity we introduce with our operators and the weighting process.
The importance of using weighting is assessed by presenting in table 9 the results obtained
by all three methods when all factors are given equal weight (i.e., by using the classical
fuzzy logic approach). The results presented in the table are the best from each method
over all possible combinations of operators. It can be seen that the best result achieved
with equal weights was by using Method I, that classified correctly 23 out of the 39 train-
ing sites and 5 out of the 14 test sites.These results have to be compared with the weighted
Method II results: A total of 37 out of 39 training sites were correctly classified and all 39
sites were correctly classified if we allow an error of 1 class deviation, by method II and
by the weighting procedure proposed in this paper. For the testing sites one could achieve
the correct classification of 9 out of the 14 sites. This proves that the use of weighting
greatly improves the performance of the approach.
Since Method II seems to be so much better than all others, we investigated it in more
detail. In all the work presented here, memberships are calculated as fractional class
components of composite sites. For example, if a site consists of 150 pixels, 30 of which
have slope attribute in class ‘steep’ and 120 have slope attribute ‘medium’, the site is
given20% membership to class ‘steep’ and80% to class ‘medium’. It has been explained
elsewhere [27], how the membership functions can be calculated as integrals of the Gaus-
sianly distributed errors in the measurements. The mean and variance of each Gaussian
is estimated from the (numerical) attributes of each region. We used this type of mem-
bership function in combination with all possible operators and both ways of weighting,
for Method II. We present the results obtained in detail in tables 10 and 11 for the two
weighting approaches respectively. The numbers in brackets are the results obtained with
membership functions calculated as described in [27]. In general these membership func-



tions improved the results without altering the conclusion as to which operators are best.
With the proposed weighting withmin2am operators,38 (instead of37) out of the 39
training sites were correctly classified and11 (instead of9) out of the14 test sites. With
the power weighting, the best achieved was withmin2max3 operators with37 (instead of
35) training sites correctly classified and7 (instead of6) testing sites.
It can also be seen from table 10 that all compromise operators perform quite badly both
as disjunctive and conjunctive operators, exceptam, a compromise operator which gives
good results when used as a conjunctive operator. Thougham as conjunctive operator
performs reasonably well combined with most of the other operators, it gives the best
results when combined withmin2 as the disjunctive operator. Symmetrical sums do not
seem to perform well in either level. Though some of the combinations of disjunctive and
conjunctive operators perform reasonably, none of them performs as well asmin2am i.e.,
with min2, in the disjunctive level andam in the conjunctive level. When the weights
are used as power of membership values,max3 performs well as a conjunctive operator,
though it gives the best results when combined withmin2. If we allow one class er-
ror, thenmin2am, min2�+ andmin2max3 correctly classify all the sites in both cases.
Though the same disjunctive operatormin2 works well in the disjunctive level of both
cases, two different compromise operators perform well in the conjunctive level.



METHOD RISK OPERATOR TRAINING SITES TEST SITES
DISJUNCTIVE CONJUNCTIVE CCS CCSE CCS CCSE

I NRP min2 mean 18 27 8 12
min2 am 18 27 8 12
min2 �+ 18 27 8 12
min2 max3 18 27 8 12

SE gm mean 20 27 4 5
gm am 20 27 4 5
hm mean 20 27 4 5
hm am 20 27 4 5

ROD min2 gm 23 32 3 12
min2 �+ 23 32 5 14

II ROD (prop) sum mean 17 33 3 10
sum am 17 33 3 10

ROD (gauss) sum max3 16 32 3 13

III ROD min2 �+ 17 34 4 10
min2 max3 17 34 4 10

CCS - Correctly Classified Sites, CCSE - Correctly Classified Sites with 1 class error

Table 9: Results with all variables considered equally important



RESULTS WITH DIFFERENT COMBINATIONS OF AGGREGATION OPERATORS
- (with proposed weights)

OPERS TR TT OPERS TR TT
CCS CCSE CCS CCSE CCS CCSE CCS CCSE

max1sum 24 (27) 33 (35) 5 ( 8) 11 (14) hmmax3 9 ( 9) 22 (23) 0 ( 1) 3 ( 7)
max1am 18 (12) 30 (35) 4 ( 5) 8 ( 8) hmmin3 0 ( 0) 22 (23) 0 ( 0) 1 ( 1)
max1gm 9 ( 8) 22 (27) 4 ( 3) 8 ( 7) hmprod 0 ( 0) 22 (23) 0 ( 0) 1 ( 1)
max1hm 9 ( 9) 22 (27) 4 ( 3) 8 ( 7) hmmin1 0 ( 0) 22 (23) 0 ( 0) 1 ( 1)
max1�0 10 (14) 26 (29) 6 ( 5) 8 ( 7) hmmax2 3 ( 3) 29 (28) 1 ( 2) 5 ( 8)
max1�+ 15 (17) 30 (28) 5 ( 4) 11 ( 9) �0sum 26 (31) 35 (38) 3 ( 3) 9 (13)

max1max3 18 (18) 32 (36) 6 ( 4) 11 (11) �0am 20 (17) 31 (35) 2 ( 4) 8 (10)
max1min3 11 (14) 26 (29) 6 ( 5) 8 ( 7) �0gm 0 ( 0) 31 (35) 0 ( 0) 1 ( 1)
max1prod 9 ( 8) 22 (27) 4 ( 3) 8 ( 7) �0hm 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1)
max1min1 12 (12) 26 (29) 5 ( 4) 9 ( 7) �0�0 0 ( 0) 3 ( 2) 0 ( 0) 1 ( 1)
max1max2 17 (11) 31 (32) 3 ( 3) 8 (10) �0�+ 20 (19) 28 (31) 3 ( 2) 6 ( 7)
min2sum 32 (34) 34 (36) 7 ( 8) 13 (14) �0max3 19 (20) 28 (33) 2 ( 3) 6 ( 9)
min2am 37 (38) 39 (39) 9 (11) 12 (14) �0min3 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1)
min2gm 10 (11) 25 (24) 4 ( 3) 8 ( 6) �0prod 0 ( 1) 3 ( 2) 0 ( 0) 1 ( 1)
min2hm 10 (10) 22 (26) 3 ( 2) 7 ( 6) �0min 0 ( 0) 3 ( 2) 0 ( 0) 1 ( 1)
min2�0 10 (13) 27 (29) 6 ( 5) 8 ( 7) �0max2 1 ( 1) 6 ( 4) 0 ( 0) 1 ( 1)
min2�+ 35 (32) 39 (39) 10 ( 6) 12 (14) �+sum 20 (20) 37 (38) 2 ( 2) 11 (14)

min2max3 19 (19) 39 (39) 9 ( 8) 14 (14) �+am 18 (19) 32 (32) 1 ( 4) 9 ( 9)
min2min3 11 (13) 27 (29) 6 ( 5) 8 ( 7) �+gm 8 ( 9) 24 (24) 3 ( 2) 7 ( 6)
min2prod 10 (11) 22 (24) 5 ( 3) 7 ( 6) �+hm 8 ( 9) 23 (27) 4 ( 3) 8 ( 7)
min2min1 11 (12) 23 (29) 4 ( 3) 9 ( 7) �+�0 7 ( 9) 20 (25) 4 ( 2) 6 ( 6)
min2max2 18 (17) 32 (35) 2 ( 3) 7 (10) �+�+ 22 (18) 30 (30) 2 ( 1) 7 ( 8)
sumsum 26 (29) 39 (37) 0 ( 2) 9 (12) �+max3 18 (19) 26 (29) 0 ( 2) 6 ( 7)
sumam 25 (24) 34 (33) 4 ( 5) 9 ( 8) �+min3 8 (10) 21 (25) 4 ( 2) 6 ( 6)
sumgm 9 ( 9) 23 (26) 4 ( 3) 8 ( 6) �+prod 9 ( 9) 23 (24) 4 ( 2) 8 ( 6)
sumhm 10 ( 9) 22 (27) 4 ( 3) 8 ( 7) �+min 10 ( 9) 23 (27) 3 ( 2) 7 ( 6)
sum�0 10 (13) 26 (29) 6 ( 5) 8 ( 7) �+max2 7 (11) 24 (27) 2 ( 1) 6 ( 9)
sum�+ 20 (18) 32 (34) 4 ( 3) 10 (10) max3sum 15 (20) 32 (32) 2 ( 2) 10 (12)

summax3 22 (23) 36 (37) 5 ( 3) 11 (11) max3am 16 (17) 29 (32) 1 ( 3) 8 ( 9)
summin3 11 (14) 26 (29) 6 ( 5) 8 ( 7) max3gm 9 ( 8) 22 (26) 3 ( 2) 7 ( 7)

contd ...

TR - Training Sites
TT - Test Sites
CCS - Correctly Classified Sites
CCSE - Correctly Classified Sites with 1 class error



OPERS TR TT OPERS TR TT
CCS CCSE CCS CCSE CCS CCSE CCS CCSE

sumprod 10 ( 9) 22 (23) 4 ( 3) 8 ( 7) max3hm 10 ( 9) 22 (27) 4 ( 3) 8 ( 7)
summin1 11 (12) 23 (29) 4 ( 3) 9 ( 7) max3�0 7 ( 9) 20 (24) 4 ( 2) 6 ( 6)
summax2 16 (18) 27 (35) 1 ( 4) 7 (11) max3�+ 16 (18) 29 (26) 1 ( 1) 7 ( 6)
amsum 16 (18) 33 (31) 2 ( 2) 11 (12) max3max3 14 (17) 28 (32) 0 ( 3) 7 ( 9)
amam 21 (21) 30 (31) 1 ( 2) 5 ( 9) max3min3 8 (10) 21 (25) 4 ( 2) 6 ( 5)
amgm 5 ( 7) 21 (24) 3 ( 2) 7 ( 6) max3prod 9 ( 8) 22 (27) 4 ( 3) 8 ( 7)
amhm 7 ( 9) 21 (24) 3 ( 2) 7 ( 6) max3min1 11 (10) 22 (26) 4 ( 2) 7 ( 6)
am�0 6 ( 8) 20 (25) 3 ( 2) 7 ( 6) max3max2 5 ( 5) 22 (22) 2 ( 4) 3 ( 6)
am�+ 19 (18) 28 (27) 1 ( 2) 5 ( 7) min3sum 19 (22) 37 (34) 5 ( 5) 11 ( 8)

ammax3 18 (19) 26 (30) 1 ( 2) 5 ( 7) min3am 18 (15) 29 (32) 3 ( 5) 6 ( 9)
ammin3 7 ( 9) 21 (25) 3 ( 2) 7 ( 6) min3gm 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1)
amprod 7 ( 8) 21 (26) 3 ( 2) 7 ( 6) min3hm 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1)
ammin1 8 ( 9) 21 (25) 3 ( 2) 7 ( 6) min3�0 0 ( 0) 3 ( 2) 0 ( 0) 1 ( 1)
ammax2 5 ( 3) 23 (21) 0 ( 1) 5 ( 6) min3�+ 17 (19) 29 (35) 1 ( 2) 9 (10)
gmsum 16 (18) 32 (31) 2 ( 3) 11 (12) min3max3 14 (16) 26 (33) 0 ( 4) 6 ( 9)
gmam 15 (18) 23 (28) 0 ( 2) 4 ( 8) min3min3 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1)
gmgm 0 ( 0) 23 (28) 0 ( 0) 1 ( 1) min3prod 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1)
gmhm 0 ( 1) 23 ( 2) 0 ( 0) 1 ( 1) min3min1 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1)
gm�0 0 ( 0) 23 ( 2) 0 ( 0) 1 ( 1) min3max2 0 ( 0) 3 ( 2) 0 ( 0) 0 ( 0)
gm�+ 18 (19) 25 (28) 1 ( 2) 5 ( 7) prodsum 14 (13) 32 (29) 1 ( 2) 10 ( 7)

gmmax3 17 (19) 23 (30) 1 ( 2) 5 ( 7) prodam 21 (23) 30 (35) 2 ( 4) 6 ( 8)
gmmin3 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1) prodgm 0 ( 1) 30 ( 2) 0 ( 0) 1 ( 1)
gmprod 0 ( 0) 3 ( 2) 0 ( 0) 1 ( 1) prodhm 0 ( 1) 30 ( 2) 0 ( 0) 1 ( 1)
gmmin1 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1) prod�0 0 ( 0) 30 ( 2) 0 ( 0) 1 ( 1)
gmmax2 0 ( 1) 3 ( 4) 0 ( 0) 0 ( 1) prod�+ 5 ( 6) 19 (19) 3 ( 3) 6 ( 7)
hmsum 13 (13) 31 (29) 3 ( 2) 5 ( 7) prodmax3 0 ( 3) 19 (22) 0 ( 2) 4 ( 9)
hmam 18 (18) 27 (29) 2 ( 3) 6 ( 7) prodmin3 0 ( 0) 19 (22) 0 ( 0) 1 ( 1)
hmgm 0 ( 0) 27 (29) 0 ( 0) 1 ( 1) prodprod 0 ( 1) 19 ( 2) 0 ( 0) 1 ( 1)
hmhm 0 ( 1) 27 ( 2) 0 ( 0) 1 ( 1) prodmin1 0 ( 0) 19 ( 2) 0 ( 0) 1 ( 1)
hm�0 0 ( 0) 27 ( 2) 0 ( 0) 1 ( 1) prodmax2 11 (11) 32 (32) 3 ( 5) 5 ( 8)
hm�+ 12 (12) 25 (23) 1 ( 2) 4 ( 7)

TR - Training Sites
TT - Test Sites
CCS - Correctly Classified Sites
CCSE - Correctly Classified Sites with 1 class error

Table 10: Results for different combinations of aggregation operators (proposed weights)



RESULTS WITH DIFFERENT COMBINATIONS OF AGGREGATION OPERATORS
- (with power weights)

OPERS TR TT OPERS TR TT
CCS CCSE CCS CCSE CCS CCSE CCS CCSE

max1am 15 ( 9) 29 (37) 4 ( 5) 9 ( 9) hmam 3 ( 9) 16 (24) 1 ( 1) 8 ( 7)
max1gm 9 ( 9) 22 (27) 4 ( 3) 8 ( 6) hmgm 0 ( 0) 16 (24) 0 ( 0) 1 ( 1)
max1hm 9 ( 9) 22 (27) 4 ( 3) 8 ( 6) hmhm 0 ( 0) 16 (24) 0 ( 0) 1 ( 1)
max1�0 12 (15) 27 (29) 5 ( 4) 8 ( 7) hm�0 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1)
max1�+ 23 (25) 33 (34) 2 ( 4) 10 (12) hm�+ 17 (18) 33 (29) 3 ( 2) 8 ( 7)

max1max3 26 (26) 37 (36) 7 ( 8) 11 (10) hmmax3 3 ( 6) 13 (22) 1 ( 1) 7 ( 7)
max1min3 11 (14) 27 (29) 3 ( 5) 8 ( 7) hmmin3 2 ( 2) 4 ( 3) 0 ( 0) 1 ( 1)
max1prod 9 ( 9) 22 (27) 4 ( 3) 8 ( 6) hmprod 0 ( 0) 4 ( 3) 0 ( 0) 1 ( 1)
max1min1 12 (11) 24 (29) 4 ( 4) 9 ( 7) hmmin1 0 ( 0) 4 ( 3) 0 ( 0) 1 ( 1)
max1max2 17 (16) 29 (26) 6 ( 5) 8 ( 9) hmmax2 0 ( 1) 4 ( 3) 0 ( 0) 1 ( 1)
min2am 12 (13) 39 (39) 7 ( 6) 14 (14) �0am 11 (15) 29 (35) 3 ( 4) 7 (10)
min2gm 10 ( 9) 26 (27) 4 ( 3) 8 ( 7) �0gm 0 ( 1) 29 ( 2) 0 ( 0) 1 ( 1)
min2hm 10 ( 9) 25 (27) 4 ( 3) 8 ( 6) �0hm 0 ( 1) 29 ( 2) 0 ( 0) 1 ( 1)
min2�0 12 (14) 26 (28) 7 ( 4) 8 ( 7) �0�0 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1)
min2�+ 33 (33) 39 (39) 8 (12) 11 (14) �0�+ 19 (16) 28 (30) 3 ( 2) 7 ( 8)

min2max3 35 (37) 38 (39) 6 ( 7) 13 (14) �0max3 19 (20) 31 (37) 2 ( 4) 9 (12)
min2min3 15 (14) 28 (26) 5 ( 3) 8 ( 7) �0min3 2 ( 2) 4 ( 2) 0 ( 0) 1 ( 1)
min2prod 9 ( 9) 24 (27) 4 ( 3) 8 ( 6) �0prod 0 ( 0) 4 ( 2) 0 ( 0) 1 ( 1)
min2min1 12 (11) 24 (29) 4 ( 3) 9 ( 7) �0min1 0 ( 1) 4 ( 2) 0 ( 0) 1 ( 1)
min2max2 21 (12) 29 (38) 2 ( 4) 8 (10) �0max2 1 ( 1) 6 ( 3) 0 ( 0) 4 ( 1)
sumam 17 (15) 33 (38) 3 ( 2) 10 (13) �+am 13 (12) 26 (27) 1 ( 2) 7 ( 8)
sumgm 9 ( 9) 24 (27) 4 ( 3) 8 ( 6) �+gm 8 ( 9) 22 (24) 3 ( 2) 7 ( 6)
sumhm 9 ( 9) 24 (27) 4 ( 3) 8 ( 6) �+hm 9 ( 9) 22 (26) 3 ( 2) 7 ( 6)
sum�0 12 (14) 27 (29) 6 ( 5) 9 ( 7) �+�0 9 (12) 22 (23) 3 ( 1) 6 ( 5)
sum�+ 24 (23) 29 (31) 2 ( 3) 7 (13) �+�+ 23 (22) 36 (31) 3 ( 4) 9 ( 9)

contd ...

TR - Training Sites
TT - Test Sites
CCS - Correctly Classified Sites
CCSE - Correctly Classified Sites with 1 class error



OPERS TR TT OPERS TR TT
CCS CCSE CCS CCSE CCS CCSE CCS CCSE

summax3 26 (24) 36 (36) 2 ( 3) 10 (13) �+max3 26 (24) 36 (35) 2 ( 3) 10 (12)
summin3 11 (13) 22 (28) 1 ( 5) 5 ( 6) �+min3 11 (14) 25 (25) 4 ( 4) 7 ( 6)
sumprod 9 ( 9) 23 (27) 4 ( 3) 8 ( 6) �+prod 10 ( 9) 22 (27) 4 ( 3) 7 ( 6)
summin1 12 (11) 24 (29) 4 ( 3) 9 ( 7) �+min1 10 (10) 22 (29) 4 ( 3) 8 ( 7)
summax2 16 ( 8) 31 (34) 4 ( 3) 7 ( 8) �+max2 10 ( 6) 28 (29) 3 ( 1) 7 ( 6)
amam 12 (12) 27 (27) 1 ( 3) 7 ( 9) max3am 13 (12) 25 (27) 1 ( 3) 7 ( 9)
amgm 8 ( 9) 22 (24) 3 ( 2) 7 ( 6) max3gm 8 ( 9) 22 (24) 3 ( 2) 7 ( 5)
amhm 9 ( 9) 22 (26) 3 ( 2) 7 ( 5) max3hm 9 ( 9) 22 (26) 3 ( 2) 7 ( 6)
am�0 9 (10) 24 (24) 4 ( 2) 7 ( 6) max3�0 10 (12) 23 (25) 4 ( 2) 8 ( 5)
am�+ 22 (20) 35 (32) 0 ( 3) 6 (12) max3�+ 20 (20) 27 (30) 4 ( 2) 6 ( 8)

ammax3 17 (20) 28 (30) 2 ( 2) 8 ( 9) max3max3 18 (17) 28 (32) 1 ( 3) 7 ( 9)
ammin3 11 (12) 22 (24) 4 ( 5) 8 ( 5) max3min3 10 (10) 20 (23) 3 ( 2) 6 ( 4)
amprod 10 ( 9) 22 (26) 3 ( 2) 7 ( 5) max3prod 10 ( 9) 22 (27) 4 ( 3) 7 ( 6)
ammin1 10 ( 9) 22 (27) 3 ( 2) 7 ( 5) max3min1 11 (10) 22 (29) 4 ( 4) 7 ( 7)
ammax2 8 ( 5) 24 (25) 2 ( 1) 7 ( 7) max3max2 10 ( 6) 28 (30) 3 ( 1) 7 ( 6)
gmam 11 (12) 27 (26) 0 ( 1) 6 ( 7) min3am 11 (14) 24 (27) 2 ( 2) 5 ( 9)
gmgm 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1) min3gm 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1)
gmhm 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1) min3hm 0 ( 1) 3 ( 2) 0 ( 0) 1 ( 1)
gm�0 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1) min3�0 3 ( 2) 6 ( 3) 0 ( 0) 1 ( 1)
gm�+ 19 (19) 28 (26) 0 ( 1) 6 ( 6) min3�+ 20 (21) 29 (29) 2 ( 1) 6 ( 6)

gmmax3 16 (16) 28 (32) 2 ( 2) 7 ( 8) min3max3 16 (18) 28 (35) 2 ( 3) 4 (12)
gmmin3 2 ( 2) 3 ( 3) 0 ( 0) 1 ( 1) min3min3 5 (12) 10 (17) 2 ( 1) 5 ( 3)
gmprod 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1) min3prod 0 ( 1) 10 ( 2) 0 ( 0) 1 ( 1)
gmmin1 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1) min3min1 1 ( 1) 3 ( 2) 0 ( 0) 1 ( 1)
gmmax2 0 ( 1) 3 ( 3) 0 ( 0) 0 ( 1) min3max2 0 ( 1) 3 ( 4) 0 ( 0) 0 ( 1)

TR - Training Sites
TT - Test Sites
CCS - Correctly Classified Sites
CCSE - Correctly Classified Sites with 1 class error

Table 11: Results for different combinations of aggregation operators (power weights)

As a final comparison, we would like to compare all the above discussed results with
those that would have been obtained if the fuzzy nature of the problem had been totally
ignored. The Arc/Info GIS was used for a simple rule-based reasoning. A Digital Eleva-
tion Model (DEM) was used to create the Slope and Apsect layers with the GRID analysis
facility of Arc/Info. The layers on Aspect and Soil depth were integrated using the over-



lay facility and the rules given in table 1 were used to create the output layer reflecting the
ranking of ‘Limitation to Natural Regeneration Potential’. Similarly, the layers on Soil
Depth, Slope and Rock Permeability were integrated and the rules were used to create the
layer on ‘Risk of Soil Erosion’. The two layers on ‘Limitation to Natural Regeneration
Potential’ and ‘Risk of Soil Erosion’ were integrated and the rules for Risk of Desertific-
ation were used to create the output layer on ‘Risk of Desertification’. Since there is no
training procedure involved, all 53 sites were lumped together and experimented without
distinguishing between the training and the test sites. The comparison showed that only
17 out of53 sites were correctly classified.

7 Conclusions

The results presented in this paper advocate the following points:
1. The use of Fuzzy Logic when reasoning with a GIS, as opposed to a rule-based ap-
proach. This conjecture is proved by the fact that when a rule-based approach was used
with the GIS data, only 17 out of 53 sites could be correctly classified.
2. The use of integrals of Gaussians as membership functions [27] in preference to the
aggregate membership functions calculated as fractions of pixels of each site that belong
to a certain class. The former method gave marginally better results than the latter.
3. The use of weights of importance for the various aggregates. This point was proved by
comparing the results with those obtained by the classical no-weighting approach.
4. The use of operators other than the conventionalmin andmax operators. The import-
ance of this can be judged by the variety of results obtained with different operators.
The last two points introduce the necessity of a training stage for each problem, when the
best operators and the best set of weights can be chosen.
This work was partly supported by a British Council grant and the European grant number
EV5V 0025 under the Environment and Climate programme.
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