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1 Introduction

The purpose of this article is to review the main approaches described in the litera-

ture to 3D motion estimation with multiple cameras. The review assumes that the

initial 3D geometry of the scene has already been estimated using techniques such

as laser-scanners [20], time-of-flight cameras [27], structured light measurements

[44] or multiple view reconstruction [45]. This review concentrates on passive tech-

niques that do not require manipulation of the scene, such as the addition of active

LEDs markers or ‘ultraviolet paint’ [3], although some passive optical-marker tech-

niques are included as a reference baseline. It is also important to note that this

review focuses on recovering the dense motion of the scene, rather than tracking

a single 3D object with methods such as [2, 22, 42].

The dense three-dimensional motion of the scene is often referred to as the scene

flow [51], and is analogous to the concept of optical flow for describing the motions

within a 2D image. There are several approaches to estimating scene flow: some

∗This article is taken from chapter 2 of my thesis [41] available at:
www.dcs.warwick.ac.uk/∼tpopham/thesis.pdf
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methods require very specific conditions, whilst other methods are very general.

This property forms the structure for this review: the most constrained approaches

are reviewed first and the most general approaches are reviewed last.

The classical method used by the entertainment industry, optical marker mo-

tion capture, relies on placing reflective markers in the scene to be tracked using

standard computer-vision techniques [56]. Although the motion can be tracked for

long sequences, the approach is highly restrictive, since markers must be manually

inserted into the scene. The next group of methods attempt to overcome this prob-

lem by using a model-based approach to achieve markerless motion capture, and

although accurate results may be obtained for short sequences, even this method is

restrictive: the scene motion model must be known beforehand. The most general

set of motion estimation methods do not use a specific motion model of the scene,

and instead rely on a more general assumption: motion coherency. This assump-

tion means that we expect the neighbouring points of a scene (or image) to move

smoothly with respect to one another. This leads to the optical flow approaches,

which make the assumption that the neighbouring image pixels move together.

Although the motion of general scenes may be estimated using this approach, the

assumption does not always hold (e.g. at object boundaries). The last category

of techniques to be reviewed are the surface-based approaches, which assume that

neighbouring surface points move smoothly with respect to one another. Each of

these motion estimation approaches is now reviewed in detail.

2 Passive Optical-Marker Approaches

Passive motion capture techniques [1] use multiple cameras to track a set of re-

flective markers, such as the ones shown in figure 1. Since the markers provide

clear targets in each image, they can be tracked easily using standard computer
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vision techniques [56]. The main problem in tracking the markers is ensuring that

the 2D tracks from each camera are correctly triangulated, so that the full set of

3D tracks is recovered. Since a marker may only be visible from a narrow range

of viewing angles, multiple cameras are required (up to a hundred) for tracking

a wide range of motions. However, due to the data association problem [4], the

number of markers is limited, which means motions may be only be captured at

the general skeleton level. Despite these problems, optical-marker techniques are

probably still the only current reliable vision-based solution for motion capture in

‘real-world’ applications such as the film and video-game industries.

(a) (b)

Figure 1: Two examples of a passive optical markers for motion capture [1].

3 Model Based Approaches

Since the motion of a scene can be very complex, introducing a specific motion

model of the scene significantly reduces the number of parameters to be estimated.

Of course, the accompanying limitation is that the scene motions can only be

estimated if they are included in the motion model. Usually the model is in the
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form of a human skeleton [34, 35], although there are other possibilities such as

a hand model [32, 46]. There are three aspects to a model-based approach: the

form of the model; the method of estimating the conditional probability of the

model given the images (the measurement model); and the method of tracking the

model with the given measurement model. The most common human-body model

is composed of cylinders [25], although many other forms are possible, such as

boxes, ellipsoids [38], cones [16], spheres [15] and superquadrics [21]. An obvious

limitation of these models is that they assume that the subject is not wearing

loose clothing, which would mean that the underlying cylinders or cones cannot

be observed. More recently, attempts have been made to incorporate a mesh

model, which is linked to the underlying skeleton model, in order to overcome the

‘loose garment’ problem [20, 9].

There are many methods of evaluating the conditional probability of the model

pose given the available images. Edges are a commonly used cue [25, 32, 46], as

they can usually be reliably extracted from the images and are invariant to lighting

conditions. In order to derive a suitable measurement model, the chamfer distance

between the actual edges and the predicted edges (from the model parameters) is

frequently used [46]. Silhouettes are also a common image cue [20, 9], as they lead

to a straightforward measurement model: the pixelwise difference between the real

silhouettes and the predicted silhouettes from the model parameters. There are

many other image cues for forming a measurement model, including colour [46],

optical flow [32], stereo [38] and scale-invariant features [20].

Although the form of the human body model and measurement model are

important factors in this approach, the key challenge is finding the most likely

state (over time), given the measurement model. The challenge comes from the

fact that even with a relatively simple model, the set of possible poses is very large,

and there is often more than one model pose that explains the observed images.
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Earlier solutions to the problem tended to use a gradient descent technique for

updating the model parameters at every frame [35, 37]. This was then developed

by taking a probabilistic approach to modelling the system state, using a Gaussian

density to describe the uncertainty at each frame (the Kalman Filter) [24, 53]. The

problem with these approaches is that there is no adequate handling of multiple

explanations for the observed data. The use of a particle filter [28] for tracking the

model overcomes this problem by using a set of weighted particles to model general

state probabilities, including multimodal distributions [16, 20]. Other methods

which use a multimodal model of the system state include the work of Han et

al., who model the state of each limb using a Gaussian Mixture Model, which is

propagated to neighbouring skeleton nodes using belief propagation [23].

Modern model-based human trackers are usually demonstrated on sequences

that are several hundred frames long, and may even contain subjects wearing loose

garments [20]. However, there are several difficulties with model-based approaches.

The first problem is that the initial subject pose has often to be entered manually,

although some methods to find the human pose in images do exist [17]. The second

problem is that, due to the large variation in subject appearance and size, the

human-skeleton model must be customized to each subject [20]. A third problem

is that the subject must not interact with any other objects (such as props or

equipment), as these are unaccounted for in the model.

In recent years, techniques have emerged for estimating a scene motion model

by finding an articulated model (such as a skeleton) that explains the observed

motions in the scene [49, 10, 11]. Many of these methods tend to adopt a volumetric

approach, which involves estimating the object volume at each time point, and then

corresponding the estimated volumes to provide the motion model. The visual hull

is a common choice for the modelling the scene volume, presumably due to its ease

of computation. However, other methods attempt to segment a mesh model in
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Figure 2: An example skeleton from the model-based approach of Deutscher and
Reid [16].

order to find the articulated components.

Theobalt et al. fit a set of superquadric shapes to a set of voxels at each

time step [49]. A superquadric is able to model cubes, spheres, ellipsoids and

octahedrons, making it a very flexible tool for modelling the scene components.

A hierarchical, top-down approach is taken for fitting the superquadrics to the

voxel model at each frame. The set of superquadrics at time t is then matched

with the set of superquadrics at time t+1 by minimising the distance between the

matched superquadric centres. Since the superquadrics are independently fitted

to the voxels at time t, a one-to-one mapping between the superquadrics is not

guaranteed, and therefore some superquadrics are either split or merged to ensure

a one-to-one mapping. Since a rigid body part may be composed of more than one

superquadric, the paths of superquadrics are compared and if they are sufficiently

similar, then they are labelled as belonging to the same body part and are therefore

merged.

In [49], results for the method are demonstrated on 3 synthetic sequences and

one ‘real’ sequence. The fitted superquadrics only provide a very high-level ap-

proximation to voxel models and do not provide an accurate representation of the
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voxels (e.g. a snowman comprised of 3 spheres and a hat is approximated by 2

superquadrics). Since the joint positions are only estimated for the upper body,

it is questionable whether the proposed method would be able to estimate a full

human skeleton from voxel data.

Cheung et al. also use the visual hull to estimate the components of an articu-

lated object but also incorporate coloured surface points as an additional cue for

resolving correspondences between body parts [10]. Expectation Maximisation is

used to simultaneously cluster and estimate the motion parameters of each cluster

component. Since only two body parts may be segmented at once, a separate

sequence must be captured for each body joint, whereby all other body joints

remain rigid. Once the body model is estimated, it may be tracked with full move-

ment. The tracking is performed in a hierarchical manner, starting with estimating

the torso position, and then proceeding to estimate the position of neighbouring

limbs. The position of each body part is estimated by maximising a consistency

score for the body part’s coloured surface points and the input images. As with

many methods, successful tracking is demonstrated on real-world sequences, but

short sequences are used (up to 200 frames), which shows the potential difficulty

of long-term human motion capture, even when a strong prior model is available.

4 Optical Flow Approaches

This class of methods estimate the scene flow by combining optical flow estimates

from several cameras. Scene flow is defined as a three-dimensional flow field de-

scribing the motion at every point in the scene [51]. It is necessary to define

some notation in order to explain this concept. A three-dimensional point in the

scene is q = (x, y, z)T and a two-dimensional point on a camera image plane is

p = (m,n)T . The scene flow is then: dq
dt

=
(

∂x
∂t

, ∂y
∂t

, ∂z
∂t

)T
and the optical flow is
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∂p
dt

=
(

∂m
∂t

, ∂n
∂t

)T
. The optical flow is therefore a projection of the scene flow onto

an image plane:

dp

dt
=

∂p

∂q

dq

dt
(1)

where ∂p
∂q

is the effect of a change of a scene point upon the projected image point.

This leads to a system of linear equations for each point in the scene:

B
dq

dt
= U (2)

where:

B =



∂m1

∂x
∂m1

∂y
∂m1

∂z

∂n1

∂x
∂n1

∂y
∂n1

∂z

· · ·

· · ·
∂mN

∂x
∂mN

∂y
∂mN

∂z

∂nN

∂x
∂nN

∂y
∂nN

∂z


, (3)

and:

U =



∂m1

∂t

∂n1

∂t

·

·
∂mN

∂t

∂nN

∂t


. (4)

The matrix B may be obtained either numerically or analytically from the

camera projection matricies, and matrix U is the optical flow from each camera.
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An advantage of this approach is that state-of-the-art optical flow techniques can

easily be applied, and the algorithm is ideal for parallel implementation. A dis-

advantage is that any regularization must be applied in the images without any

knowledge of the depth. This is a suboptimal approach for three reasons: first,

without the knowledge of depths, motion smoothing across object boundaries be-

comes unavoidable unless robust cost functions are applied; secondly, a uniform

regularization in the image space is likely to result in a non-uniform regularization

in the scene, due to the fact that objects lie at different depths from each camera;

and thirdly, the approach ignores that the fact that the optical flows should be

consistent with each other.

Several methods ensure that the optical flow estimates are consistent with one

another, by jointly estimating the optical flow in both a left image and a right

image [54, 26, 29]. This leads to a 2.5D framework, in which the motion of a 3D

point is parameterised by a change in image co-ordinates plus a change in depth.

The scene flow is estimated using an energy model consisting of a data term and

a smoothness term:

E(u, v, d′) = Edata(u, v, d′) + Esmooth(u, v, d′). (5)

where (u, v) are the motions in the m- and n-directions, and d′ is the change

in disparity. The data term consists of three components1 : (1) the brightness

consistency in the left image; (2) the brightness consistency in the right image;

and (3) the brightness consistency between left and right images for the moved

1 Isard and MacCormick [29] use three slightly different data terms, but the principle remains
the same.
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point. This is expressed mathematically as follows:

Edata =

∫
Ω

Ψ
(
(Il,t+1(m + u, n + v)− Il,t(m, n))2) dmdn

+

∫
Ω

Ψ
(
(Ir,t+1(m + d + u + d′, n + v)− Ir,t(md, n))

2
)

dmdn

+

∫
Ω

Ψ
(
(Il,t+1(m + d + u + d′, n + v)− Ir,t+1(m + u, n + v))

2
)

dmdn,

(6)

where Il,t(m, n) and Ir,t(md, n) are the intensity values in the left and right images

at time t, Ω is the domain of each image, Ψ is a robust cost function and d is the

disparity between the left and right images (which are assumed to be rectified, so

that changes in depth only relate to a change in the m image co-ordinate). The

smoothness term penalizes differences in neighbouring image motions:

Esmooth =

∫
Ω

Ψ
(
λ(|∇u|2 + |∇v|2) + γ|∇d′|2

)
dmdn. (7)

where λ controls the strengths of smoothness constraint for changes in image co-

ordinates and γ controls the strength of the smoothness constraint for changes in

depth. Note that robust cost functions are required for both the data and smooth-

ness terms to prevent smoothing across object boundaries. This is necessary, since

the same level of motion smoothing is applied between two pixels, even if they

have totally different disparities.

There are two main approaches to minimizing the energy in equation (5): a con-

tinuous variational approach [54, 26] and a discrete Markov Random Field [29].

For the variational approach, the use of robust cost functions leads to a rather

complicated energy minimization, with three nested loops: the outer loop imple-

ments the multiresolution aspect of the minimization strategy; the middle loop

warps the images towards the final solution; and the inner loop uses successive

over-relaxation alongside a linearization of the robust cost function to calculate
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the parameters for the next warp. Such an approach is strongly related to modern

optical flow techniques such as [7, 47]. For a discrete Markov Random Field ap-

proach [29], a relatively straightforward MAP estimation technique such as Belief

Propagation can be used. The disadvantage of the discrete approach is that it is

computationally expensive, as a set of data term costs has to be evaluated at fixed

intervals within the solution space.

5 Surface Based Approaches

Several methods estimate the scene motion using a surface model, which can be

represented using either a piecewise model [8, 36], a mesh model [18, 19, 12, 14]

or a level-set framework [39]. The major difference between these methods is

the notion of connectivity: with a piecewise description, there is no knowledge of

which elements are connected to each other, but for a mesh model this knowledge is

made explicit. There are many approaches to estimating the surface motion, which

include: comparing images of the surface at time t and t + 1 [8, 36, 39]; using the

silhouettes at time t and time t + 1 to derive a set of constraints upon the surface

motion [12]; feature and descriptor based approaches [12, 57]; and optical flow

constraints [14]. We begin by reviewing the methods that use a piecewise surface

description, and then proceed to the level-set and mesh techniques.

Carceroni and Kutulakos [8] use a set of surface elements or surfels to form a

piecewise description of the surface. Each surfel is represented by the following

components: the time t, the shape S, a reflectance model R, the curvature B

and a motion component M. It is immediately obvious that this is a complex

description: 25 parameters are necessary to describe each surfel. Each surfel is

fitted to the surface using a volumetric approach, in which every voxel in the

model is tested for the presence of a surfel using a combination of sampling an
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optimization steps.

Once a surfel has been fitted to the surface, the motion across a single frame

is estimated. The motion M consists of nine components: three for translation;

three for rotation and three for shearing and scaling effects. These parameters

are estimated using least-squares to minimize ||Ax − b||2, where A contains the

image gradients with respect to each motion component, x contains the motion

parameters to be estimated, and b contains the change of image on the surfel

surface with respect to time. Since the reflectance properties of each surfel are

estimated, it is possible to consider the effect of changing surface normal upon

the change of illumination of the patch surface. For a Lambertian surface, the

intensity of an imaged point q ∈ R3 as a function of the point surface normal

n(q; t) ∈ R3, albedo a and net illumination radiance r(q; t) ∈ R3 is:

I(p) = −Ka[n(q; t).r(q; t)], (8)

where the image point p is obtained by the projection of the scene point q. Now

differentiating equation (8) with respect to time gives:

dI
dt

= −Ka
d

dt
[n.r] =

∂I
∂p

dp

dt
+

∂I
∂t

. (9)

Some explanation of the notation is helpful: dI
dt

means the change in brightness

of the moving image point, whereas ∂I
∂t

means the change in brightness at a fixed

image point. In most motion estimation algorithms, it is assumed that the bright-

ness of the same point in the image remains constant, to give the optical flow

constraint:

∂I
∂p

dp

dt
+

∂I
∂t

= 0, (10)

This makes the assumption that the surface normal and illumination conditions
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are not changing, since d
dt

[n.r] = 0. However, since the surfel models the surface

normal and radiance, then a more general constraint can be made:

−Kar.
∂n

∂t
=

∂I
∂q

dq

dt
+

∂I
∂t

. (11)

Very few motion estimation methods incorporate the effect of changing surface

normal upon the surface illumination, and perhaps this goes some way to justifying

the complex nature of the model.

Mullins et al. use a simpler piecewise description of the scene surface: a set

of planar patches, where each patch is description by a centroid q and a surface

normal n [36]. In order to track these patches over time, they are clustered us-

ing a Gaussian Mixture Model, with the assumption that the patches within a

component move in a rigid manner. The clustering is achieved through the use

of a Multiresolution Gaussian Mixture Model [55], which means that the patches

are clustered using a hierarchical structure. This hierarchical nature of the model

implies that rigid-body motion can expected at various ‘resolutions’ of the scene,

whether at the global object level or at the finer detail level. Each component is

then tracked using a particle filter [43], which is a numerical method for tracking

‘targets’ with nonlinear measurement functions and non-Gaussian noise densities.

The final motion field is obtained by interpolating between the estimated motions

at neighbouring cluster components.

Applying a local rigid-body motion model to a scene is potentially a powerful

method of constraining the range of possible motions, since it ensures that the

3D tracking problem is not ill-posed. However, in reality, finding such a motion

model is a ‘chicken-and-egg’ problem: the scene motions are required to build

the rigid-body model, but the rigid-body model is required to estimate the scene

motions. The result of this limitation is that the clustered patch components do

not necessarily reflect the rigid components within the scene, which means the
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Gaussian mixture model must be reinitialized at regular time intervals.

We now consider the algorithms using mesh and level-set representations. Pons

et al. estimate the scene flow using a variational approach to ‘evolve’ a surface

model to its position at the next frame [39]. This is achieved using an image-based

matching score, which is summed over all cameras. Many surface-based methods

estimate the motion at each surface point, but Pons et al. take a different approach

by directly estimating the dense scene flow field. Let l be a function that maps

every point in the scene to a 3D motion vector: l : q ∈ R3 → f ∈ R3, where f is

the motion vector (u, v, w)T . The cost function to be minimized as a function of

the scene flow l is:

E(l) =
∑
c∈C

f(Ic,t, Ic,t+1 ◦ Πc ◦ d(l) ◦ Π−1
c,St), (12)

where ◦ denotes function composition, Ic,t is the image in camera c at time t, Πc is

a function mapping a point on the surface into camera c, d(l) is a function applying

the effects of the scene flow, Π−1
c,St is a function mapping a point from the camera

image plane onto the surface S, and f(Ii, Ij) is a general matching function (such

as cross-correlation), between images i and j. This is an interesting approach,

since a surface model is used with an image-based matching to score to estimate

a dense motion field. In order to regularize the solution, the Laplace-Beltrami

operator is used on the surface. As with many other scene flow papers, only a

single frame of motion is estimated.

The use of a discrete Laplacian operator for ensuring motion smoothness is

typical for mesh-based algorithms since it preserve the fine mesh details [14, 12,

5, 50, 52]. If the vertices belonging to a 3D triangular mesh are denoted {qi}N
i=1,
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then we may define the Laplacian mesh operator as follows:

D(qi) = qi −
1

Nm

∑
j∈Mi

qj, (13)

where Mi is a set containing the indexes of the neighbours to mesh node i and

Nm is the number of elements in Mi. The Laplacian mesh operator is a linear

transformation and can be described by the matrix L:

Lij =


1 i = j

−α j ∈Mi

0 otherwise

(14)

The differential co-ordinates of the mesh are now obtained using Lm = k, where

m = (q(x),q(y),q(z))) is a vector of mesh vertices and k = (k(x),k(y),k(z)) is a vec-

tor of differential co-ordinates. Note that by solving the linear system, it is possible

to recover the original mesh co-ordinates, given the differential co-ordinates and

the Laplacian operator. It is also possible to introduce some constraints upon the

final mesh vertex positions by adding a second set of equations: wiqi = wibi,

where wi is a weight, qi is the vertex of mesh node i to be constrained and bi is

the constraint. This results in the following least-squares minimization:

arg min
m

||Lm− k||2 + ||Am− b||2 (15)

where A is a matrix of constraint weights (wi) and b is a vector of the mesh-node

constraints.

A major question is how the predicted mesh positions should be obtained.

Furukawa and Ponce [18, 19] use texture-based constraints to estimate the motions

at each node of a mesh model. Their algorithm begins by estimating the rigid-body

motion at each node i of a mesh. This is achieved by using a conjugate gradient
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method to maximise the normalized cross-correlation score between a reference

texture and a predicted texture from the images, given the motion of mesh node

i. The reference texture is mapped onto the mesh faces surrounding the node i at

the beginning of the sequence and remains fixed throughout the sequence.

The next step of the algorithm is to perform a global mesh deformation, based

upon the local motions calculated at the first step. The global energy to be mini-

mized consists of three terms: a data term, a motion smoothness term, and a local

rigidity term:

E =
∑

i

||qi − q̂i||2 + α|[ζ2D
2 − ζ1D]qi|2 + β[ε(i)− ε(i0)]2, (16)

where {qi}N
i=1 is the set of mesh node locations to be globally optimized, q̂i is the

mesh node location estimated at the first stage of the algorithm, α, β, ζ1, ζ2 are

‘tunable’ parameters of the algorithm, D is the discrete Laplacian operator, D2 is

the discrete Laplacian operator applied twice, ε(i) is the mean length of the edges

connected to node qi and ε(i0) is the mean length of the edges connected to node

i at the initial frame. The final step of the algorithm is a filtering stage, which

involves repetitions of the following steps: (i) detecting and removing erroneous

motion estimates and (ii) re-running of the global optimization process described

at the second stage. With this approach, a sequence of high-quality meshes is

generated across time for sequences of around 100 frames. It is worth noting that

the method seems to require highly textured scenes, such as fabrics containing fine

patterns and human faces that have been painted with fine textures.

In a similar series of papers that all used Laplacian mesh deformation [5, 30],

Aguiar et al. presented a set of methods that did not estimate the motions directly

from the image textures, but instead used optical flow [14], SIFT features [13, 31],

silhouettes [12], and stereo [12] constraints. These constraints may be divided into

two groups: motion constraints and position constraints. Although the silhouette
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and stereo positional constraints obviously help to determine the mesh positions

at each step, it is questionable whether they lead to accurate motion estimation.

For example, a rotating sphere or cylinder (rotating around its centre axis) will be

considered to be stationary by stereo and silhouette algorithms. For this reason

it is more likely that these methods are producing time-consistent meshes rather

than accurate motion estimates.

6 Discussion

A wide range of approaches has been reviewed and there seems clearly to be a

trade-off between performance and generality. This is borne out in figure 3 which

shows the number of frames that can be tracked against the generality of each

method. Table 1 shows some of the limitations imposed on the scene by each

method. The optical-marker approaches offer the best performance but require the

most restrictive set-up. The next best performing approach is the model based

one, which has been demonstrated on sequences of up to 1000 frames, yet still

requires specific knowledge of the subject to be tracked. This leaves the general

scene motion estimation algorithms, which vary a great deal in terms of their

form and performance; some algorithms are demonstrated for a single frame of

motion, whereas others are tested on sequences containing more than 100 frames.

Some detailed analysis is required to explore this discrepancy, and to this end, the

general scene motion estimation algorithms will be examined from a Bayesian point

of view. This means that we can view the algorithms according to the following

factors: the form of the state model (x), the prior knowledge that is used p(x), the

measurement likelihood p(z|x), and finally the MAP estimation method. Table 2

shows the details of each factor for the approaches reviewed in this article. The

methods are ordered according to the number of frames for which they can track
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sequences (without performing a reconstruction).

The form of the model is extremely important, since it determines which pa-

rameters must be estimated. There is a clear link between the form of the model

and the performance and it is interesting to note that only surface based mod-

els have been demonstrated on more than a single frame of motion. The likely

explanation for this trend is that only a surface model allows accurate enough

data likelihood and prior models (modelling a surface with anything but a sur-

face will be sub-optimal). Even within the surface model category, there are some

differences. The mesh model is probably the most informative, since it not only

describes the surface but also describes the connections between surface points.

The patch-based models are probably less informative as the notion of connectiv-

ity is lost, although the surfel model of Carceroni and Kutulakos [8] is unique in

that a surface lighting model is also estimated.

Figure 3: The trade-off between performance and generality.
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Method Authors Limitations on scene

Optical-Marker Many e.g [1] Requires optical markers within scene
Model-based Gall et al. [20] Requires human skeleton model

Mesh (texture) Furukawa and Ponce [18] Highly textured scenes only
Mesh (optical flow) Aguiar et al. [14] Requires Laser-scan of subject

Mesh (optical flow and SIFT) Aguiar et al. [13] Requires Laser-scan of subject
Combine optical flows Vedula et al. [51] None

Surfels Carceroni and Kutulakos [8] None
Patches plus MGMM Mullins et al. [36] The clustered components are rigid

Table 1: Comparison of limitations placed on scene by the main tracking methods.
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Aguiar et al.

[13]

Mesh X X X X Xa Xb 102

Furukawa and

Ponce [18]

Mesh X X X X 102

Aguiar et al.

[14]

Mesh X X X Xa Xb 102

Mullins et al.

[36]

Patches plus

MGMM

X X X X 30

Pons et al. [39] Level-Set X X X 1

Wedel et al.

[54]

Depth-map X X X 1

Huguet and

Devernay [26]

Depth-map X X X 1

Isard and Mac-

Cormick [29]

Depth-map X X X 1

Vedula et al.

[51]

3D points X X Xa Xb 1

Carceroni and

Kutulakos [8]

Surfels X X X 1

a For optical flow estimates only.

b For mesh deformation only.

Table 2: Analysis of general motion estimation algorithms from a Bayesian per-

spective.
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Nearly all of the reviewed methods use a texture-based data likelihood model,

but there are several differences in how the model is implemented. Either an image-

based or surface-based texture score can be used. The techniques which use an

image-based score tend to use an optical flow algorithm for estimating the projected

scene flows. The use of surface-based texture scores means a fixed texture model

can be acquired at the beginning of the tracking process, and therefore can be used

throughout the sequence to prevent tracking drift. However, assuming that exactly

the same texture is projected into different cameras across time is problematic for

several reasons, including non-Lambertian surfaces, changing lighting conditions,

changing surface normal orientations, and the use of cameras which have not been

photometrically calibrated. There are several strategies to improve the reliability of

the data-likelihood model in the presence of these factors, including: photometric

normalization of image textures; use of robust cost functions; and incorporation of

an illumination model. It should be noted that the mesh-based approaches contain

a significant number of ‘robustness heuristics’, which means that it is difficult to

judge how well these techniques generalize to different datasets.

An alternative approach to texture-based scores is scale invariant feature match-

ing. This approach is appealing, since the matching of feature descriptors is com-

putationally inexpensive, due to the fact that relatively small numbers of features

tend to be matched. Since the information obtained from feature matching is

sparse, this approach only works well with a smooth motion prior, since motion

estimates must be propagated into featureless regions.

In order for motions to be reliably estimated, it is important that the data like-

lihood model accurately reflects the real world processes. It is therefore important

that visibility constraints are effectively handled. Ensuring that only the correct

set of cameras is used strongly depends on the model that is used to represent the

scene, and the mesh, voxel and level-set methods excel in this respect.
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All methods employ some form of regularization to ensure that the problem

is well-posed. Image-based regularizations are common [51, 54, 13] but are a

sub-optimal approach, as smooth neighbouring pixel motions do not necessarily

imply smooth surface motions. Patches are commonly used to ensure that the

problem is well-posed by imposing a local smoothness prior on the solution [36, 8,

18]. However, for small patches containing no texture, it is still possible that the

problem is ill-posed and a multiresolution technique is therefore often required.

An alternative solution is to introduce a global regularization of the motion in

the scene domain. This can be carried out in two ways: either the motion is

regularized between neighbouring nodes of a mesh [13, 18] or the entire motion

field is regularized [39].

It is obvious that the models discussed so far will be useless unless there is an

efficient method of finding a Maximum A Posteriori (MAP) probability estimate,

or its equivalent. Nearly all of the general motion estimation algorithms take a

variational approach to finding the MAP estimate. Variational approaches tend

to go hand-in-hand with motion estimation algorithms for the reason that, with

small enough motions, there is always a close approximate solution to the problem.

This is fortunate, since it means that the solution can often be found using a small

number of iterations.

There are two other methods for MAP estimation. The first method is to

use a discrete Markov Random Field technique such as graph-cuts or loopy be-

lief propagation, which have been effectively used in applications such as stereo

matching. The problem with these techniques is that they become computation-

ally prohibitive as the number of dimensions increases. The second method is to

use a Monte Carlo technique such as particle filtering, which is able to update

a full state posterior density across time. The disadvantage is that it is difficult

to incorporate global smoothness constraints, since more particles are needed as
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the number of state parameters increases. The variational approach is well suited

for surface tracking as it does not suffer from the disadvantages of the Markov

Random Field and Monte Carlo techniques: it is efficient and a global motion

smoothness prior can easily be accommodated.

Given the preceding analysis of general scene motion algorithms, it is worth

noting some weaknesses in the presented methods, which will become important

for the contributions to be made in this thesis [41, 40]. It seems that most methods

take a deterministic approach to modelling the surface state over time, which is

remarkable given the fact that in the object tracking community, a statistical model

of the target state is very common [48, 28, 33, 56, 16, 6]. There are two main reasons

for incorporating a probability model of the target state: the measurement noise

may be accounted for; and prior statistical knowledge about the target movements

can be incorporated. This insight leads to the contribution presented in chapter

4, which provides a stochastic model of the likely surface movements across time.

Another weaknesses arises when the motion smoothness constraints in the spa-

tial domain are examined. First, the smooth motion constraint is broken under

rotations, which leads to difficulties when regularizing the motion between neigh-

bouring surface points. The other problem is that it is often assumed that each

motion estimate (whether from comparing textures or matching features) on the

surface model is disturbed by a uniform level of measurement noise. In other

words, most authors ignore the fact that some surface textures provide more in-

formation than others. Chapter 5 presents a method that deals with both of these

weaknesses: rotations are explicitly estimated at the surface and a probabilistic

view of the motion estimation process is taken, to ensure that motion estimates

are propagated to neighbouring surfaces in an optimal fashion.

It is possible at this stage to see two threads that will run through the whole

thesis [41, 40]. First, probabilistic modelling techniques are central to the two

22



motion algorithms presented in this thesis. The method in chapter 4 takes account

of the state uncertainties over time and incorporates a stochastic model of the likely

surface movements. Chapter 5 takes a probabilistic approach to enforcing smooth

surface motion. The second thread running through this thesis is the method for

providing local motion estimates: a set of planar patches. This thesis therefore has

similarities to the other works which also use a set of planar patches for tracking

[18, 8, 36] and some differences need to be explained. Carceroni and Kutulakos [8]

only estimate the motions for a set of surfels over a single frame, without using

any temporal or neighbour statistical models. Furukawa and Ponce [18] estimate

the rotations and translations at each node of a mesh using a local rigid texture

model, but this is carried out in a deterministic fashion rather than the probabilistic

methods presented in this thesis [41, 40]. Finally, Mullins et al. [36] use a particle

filter to estimate the rigid body motion of some clustered components, which each

consist of a set of planar patches. The method presented in chapter 4 also uses

a particle filter, but this is applied at the patch level. The method presented in

chapter 4 therefore estimates a motion for each individual patch, which is of course

at a much finer level of detail than a clustered-component level. Furthermore,

the method presented in chapter 5 includes a strong regularization of the motion

between the individual patches, and this is much more general than the rigid body

constraint provided by the Gaussian Mixture Model.
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7 Summary

The aim of this article was to review the main approaches to 3D motion estima-

tion using multiple cameras. The various methods described in the literature were

grouped into four main approaches: passive optical-markers techniques; model-

based approaches; optical flow approaches; and surface-based approaches. The

optical-marker and model-based approaches are the most restrictive; either user

intervention in the scene is required, or the scene motion model must be known be-

forehand. Only the optical flow and surface-based approaches are able to estimate

the general motion of a scene. In order to understand the differences between these

general motion estimation methods, a Bayesian perspective was taken to analyse

the methods in terms of the form of the model x, the data-likelihood model p(z|x),

the prior model p(x), and the estimation method.

This analysis led to the observation of two weaknesses of existing methods.

For many of the optical flow and surface-based approaches, there is no model of

the state uncertainty over time and there is no consideration of the likely surface

dynamics. In the spatial domain, neighbourhood motion smoothness is commonly

enforced, but this is done without any consideration of the measurement noise at

each surface motion estimate. This paves the way to the contributions described

in chapters 4 and 5 of this thesis [41, 40].
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