Reviewing Detections and Tracking Approaches®

Daniel Rowe
Computer Vision Centre

February 13, 2008

In spite of being a relatively new research area, a massive number of contri-
butions related to HSE have been published in the last years[44, 43]. Undoubt-
edly, it represents an ambitious challenge, which is further raising important
amounts of private and public funds due to the increasing number of attractive
commercial applications.

The growing number of contributions in recent years has motivated the pub-
lication of multiple surveys [1, 17, 55, 43]. These review the state of the art,
while proposing new domain taxonomies. Nevertheless, this field still lacks from
a widely accepted taxonomy which arrange in a systematic way the different
works. Thus, it would be interesting to show the relations between these, while
including a hierarchical classification.

Here, the most relevant surveys are revisited, thereby putting into context
the work here proposed. Further, a new taxonomy is also proposed. Subse-
quently, the focus is placed on detection and tracking methods. Thus, some of
the most significant algorithms are discussed. The advantages of the different
methods are explained and their drawbacks exposed.

1 A Review of Most Relevant Surveys and Tax-
onomies on HSE

The increasing number of papers —first related to people detection and tracking,
then also to the analysis and understanding of human motion— in the last
years has led to the publication of several surveys. Each of them has presented
a taxonomy which arrange the most significant previous works according to
different criteria.

Aggarwal and Cai presented a series of reviews in different workshops. Fi-
nally, this work resulted in what is probably the first relevant survey [1]. It
reviews proposed approaches from 1980 to 1998, and 51 papers are referenced.
Their taxonomy considers three main areas: (i) body structure analysis, (ii)
tracking moving humans, and (iii) recognition, see Fig. 1.

*From Towards Robust Multiple-Target Tracking in Unconstrained Human-Populated En-
vironments. Daniel Rowe. PhD Thesis, Chapter 2, Universitat Autonoma de Barcelona,
Spain, 2008.
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Figure 1: Taxonomy presented by Aggarwal and Cai in [1].

The first area concerns the structure of human-body parts. It is subdivided
in two kind of approaches, depending on whether they rely on a-priori human
shape models or not. Approaches from both categories can be grouped according
to the representation used, namely, stick figures —the supporting bones— 2-
D contours —the projection of the human figure— or volumetric models —
modelling the flesh.

The second proposed area involves human tracking without considering its
articulated configuration. Another subdivision is made based on whether a
single camera or multiple perspectives are used. Papers from both approaches
are also grouped depending on the representation, namely, points, 2-D blobs
—that is, regions with similar properties— or 3-D volumes. The considered
features are related to motion information (position, velocity), intensity values,
etc.

The final area addresses human-activity recognition. Papers are grouped de-
pending on whether they use template-matching techniques or state-space mod-
els. The former uses representations based on points, lines and blobs, while the
latter uses point and meshes.

Another survey covering the time period from 1973 to 1997 —which refer-
ences 81 papers— was presented by Gavrila [17]. Here, the classification is based
on two criteria: the type of model, and the space dimensionality. Thus, this sur-
vey distinguishes three categories: (i) 2-D approaches without an explicit shape
model, (ii) 2-D approaches with explicit shape models, and (iii) 3-D approaches,
see Fig. 2.

The first kind of approach relies on statistical descriptions based on low-level
features and heuristics such as image moments, orientation histograms, and skin
colour. The second one assumes a known point of view and a defined motion
model. Representations are based on sticks and 2-D blobs. The third kind of
approaches are mainly based on stick figures which model the skeleton, and
2-D surfaces or volumes which model the flesh. Features such as joint angles
are considered. The three categories aim to provide results for all the required
functionalities at the moment, that is, detection, tracking and recognition.

In addition, Gavrila provided an application classification altogether with
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Figure 2: Taxonomy presented by Gavrila in [17].

the system required capabilities. Six fields are considered: virtual reality, smart
surveillance, advanced user interfaces, motion analysis, and model-based cod-
ing. Among the capabilities, presence detection, identification, tracking, action
recognition, and gesture or expression recognition can be found.

Moeslund and Granum [44] gave the most comprehensive survey, covering
the years between 1980 and 2000 and citing 154 papers. Further, some previ-
ous surveys are discussed and compared. The covered period is later extended
in [43], where contributions from 2000 to 2006 are included, and 337 papers are
referenced.

In their work, a novel taxonomy based on functionalities is proposed: (i)
initialisation, (ii) tracking, (iil) pose estimation and (iv) recognition, see Fig. 3.
However, facial expression and hand gestures are not covered.

The first considered task concerns the camera, scene and target model ini-
tialisation, that is to say, calibration, manual or automatic parameter tuning,
target initial pose, etc.

Then, tracking is addressed. The process is divided in three main tasks,
i.e., target segmentation, representation and tracking. The former is divided in
temporal and spatial approaches. According to the authors, on the one hand,
temporal approaches can be subdivided into subtraction —which includes frame
differencing and background subtraction— and optical flow techniques. On
the other hand, spatial approaches may rely on thresholding, or on statistical
methods.

Secondly, the representation of segmented entities is reviewed. Two cat-
egories are given, namely, object-based —points, boxes, silhouettes or active
contours, and blobs— and image-based —spatial, spatio-temporal, edges, and
features such as length, area, etc. Finally, the tracking task is discussed consid-
ering model-based approaches opposed to probabilistic learnt models; and single
camera against multiple-camera approaches.

The third main functionality concerns the pose estimation. It is here con-
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Figure 3: Taxonomy presented by Moeslund and Granum in [44].

sidered as either a tracking post-processing, or as an active part of it. Three
categories are then given: model-free, indirect model and direct model. The
former builds a representation without the use of an a-priori model. It can be
based on a point, box or stick representation. The second category considers
approaches which use a model as a guide to interpret the given data. The latter
includes those approaches which use a direct model, that is, a detailed a-priori
human model.

This last category is discussed in a comprehensive way. A large number
of papers are classified according to their abstraction level —edges, silhouettes,
sticks and joints, blobs, depth, texture, movement— the dimension —2-D, 2% —
D, 3-D— or the model type —cylinders, stick figures, patches, cones, ellipsoids,
scaled prisms, CAD model, boxes, etc.

The way in which the results are evaluated is also taken into account: quan-
titative such as ground truth or manually segmented data, and qualitative such
as visual inspection or animation.

Subsequently, the recognition task is addressed. Two distinction are made:
static and dynamic recognition. Among the former, techniques such as template
matching, normalised silhouettes or postures can be found in the literature. The
latter includes low-level methods, such as spatio-temporal templates or motion
templates, and high level ones such as Hidden Markov Models (HMM) or Neural
Networks (NN).

Finally, a classification of applications is also proposed by considering three
main areas: surveillance, control and analysis. A taxonomy relative to the
assumptions made in the field is as well given, which consists of movement,
environment and subject assumptions.

In 2003, Wang et al. presented an extensive and one of the most interesting
surveys [55]. The time period from 1992 to 2001 is covered by citing 164 papers.
Applications are classified under three categories, namely, visual surveillance,
advanced user interfaces, and motion-based diagnosis and identification. Pre-
vious surveys are also revisited. This review presented a taxonomy based on
functionalities organised in a hierarchical manner. The proposed framework
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Figure 4: Taxonomy presented by Wang et al. in [55].

consist of three levels corresponding to low-level vision, intermediate-level vi-
sion and high-level vision. Each level is focused on one of the following task:
detection, tracking and behaviour understanding, see Fig. 4.

The detection level aims to segment and group moving pixels corresponding
to people. It is divided in two sub-processes: (i) motion segmentation and (ii)
object classification. The former includes several approaches which are organised
under four categories, namely, background subtraction, statistical methods, tem-
poral differencing and optical flow. The latter is subdivided into two categories,
which are shape-based classification and motion-based classification.

The goal of the tracking level is to establish coherent relations of image
features between frames. Present-day approaches are classified according to
whether they are model-based, contour-based, region-based or feature-based. With
respect to the former, human-body models can be represented by stick figures,
2-D contours or volumetric models. The second and third kind of approaches
aim to track detected contours and blobs, respectively. Finally, the last one
aims to track sub-features as points or lines.

The highest level involves action recognition and description, and the analy-
sis and understanding of human behaviours. The usual techniques are dynamic
time warping, hidden Markov models or neural networks. The recognition is
carried out under two groups of approaches, namely, template matching and
state-space methods. Semantic descriptions are also receiving increasing atten-
tion from the community, as is stated by the authors.

Finally, Pentland [46] presented a paper which, without aiming to classify
explicitly the up-to-time approaches, touches a diversity of human-motion anal-
ysis methods and applications. This domain was called in the paper “Looking at
People”, and this term have been subsequently widely used'. A review of related

LAs an example, the search of the terms “looking at people” plus “tracking” through the
Internet yields more than 24000 hits.



mathematical techniques, and a domain taxonomy based in channels, scales and
intentionality is provided. The state-of art of face recognition, surveillance, 3-D
methods and perceptual user interfaces is revisited.

In order to put the presented work into context, it is worth to locate it within
the taxonomies above revisited. Thus, it lies within the tracking area, and the
single-camera approach category of the taxonomy proposed by Aggarwal and
Cai [1]; within the 2D area, and without-shape-model approach category of the
one proposed by Gavrila in [17]; in the taxonomy proposed by Moeslund and
Granum in [44], it lies within the tracking functionality, covering all segmenta-
tion, representation, and tracking tasks, and following temporal segmentation
approaches, object-based representation, and probabilistic learnt models; finally,
it the taxonomy presented by Wang et al. in [55], our work is covers both de-
tection and tracking functionalities, and it addresses motion-segmentation and
tracking tasks by following statistical approaches for the former, and blob ones
for the latter.

2 State of the Art of Target Detection and Track-
ing

In this section, a review of the most relevant papers published in recent times
relative to segmentation, detection and tracking approaches is presented. The
different proposals are here outlined, and their advantages and drawbacks dis-
cussed. However, despite the huge efforts made, and the fact that achieving
robust and accurate tracking is the first basic task to HSE, the problem is still
open.

From the author point of view, target segmentation and tracking tasks are
so linked that they should be considered together. Thus, a proper segmentation
is, at least, essential for tracking initialisation and error recovery. And without
applying a tracking scheme, it is not possible to keep a temporal consistency on
detected targets. Further, it is really unusual to find a relevant paper specific to
just segmentation or tracking. Papers are here inscribed in one of the following
categories or another according to their main contribution, albeit they usually
cover several tasks

This review implicitly presents a taxonomy according to the information
flow. Thus, tracking is usually carried out using either bottom-up or top-down
approaches. The formers rely on foreground segmentation, and a subsequent
target association, which is usually followed by a state filtering; on the contrary,
the latters are based on a prior complex motion, shape and/or appearance mod-
elling, and a posterior state prediction. Thus, bottom-up approaches generate
hypothesis according to the results of image processing, whereas top-down ones
specify a-priori generated hypotheses according to current image data.

In this taxonomy, each of the bottom-up tasks is subsequently divided ac-
cording to the different techniques used —which in some cases coincide with the
ones stated by the aforementioned surveys.
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Figure 5: Proposed tracking taxonomy. Tracking approaches are classified in
bottom-up and top-down methods. Bottom-up ones usually perform target
segmentation, observation association, and state filtering tasks. Top-down ap-
proaches require an off-line appearance and dynamic modelling, and then per-
form target tracking according to the chosen methods.

Top-down approaches are split taking into account the tracking technique
used, although it is subsequently detailed the feature in which the particular
proposal rely. A sketch of this taxonomy is shown in Fig. 5.

Finally, some research groups have developed structured architectures which
aim not to be restricted to a particular task, but to perform a global scene
analysis [32, 49]. These contributions usually combine several techniques.

2.1 Bottom-up Tracking

Bottom-up tracking approaches are usually based on motion segmentation in
order to extract foreground entities from the background [56, 42, 50]. This
can be performed by means of background subtraction, frame differencing, a
combination of both, or optical flow.

Alternatively, detection can be achieved by means of detection of salient
features [21, 38, 6]. In this case, regions with high curvature in space-scale
images —blobs— regions with large gradients —corners—- and other significant
image characteristics are extracted. However, by using this kind of approaches,
any salient background point is selected as a potential target.

2.1.1 Pixel Segmentation

This task involves separating image regions that do not belong to the back-
ground, and extracting them. Although this issue is closely related to move-



ment, foreground objects could remain static for an unknown number of frames
while the background may be in motion?.

Motion segmentation algorithms face multiple difficulties. These can be
classified into two categories, since some of them are intrinsic to the problem
domain, whereas others may be seen as drawbacks of the approach used, see
Table 1. Thus, the main difficulties are the following:

Bootstrapping. It refers to the problems that arise when the method
requires and initialisation period, and a scene free of moving objects cannot
be assured.

Foreground aperture. In this case, homogeneous object in motion cause
that the inner part is not segmented.

Ghosts. The relocation of a background object implies changes in both
the old and the new location. However, only the latter should be identified
as foreground region.

Stopped object. Some motion segmentation methods requires significant
changes between frames to segment any pixel. Thus, if a target stop
motion, the segmentation fails.

Illumination changes. These completely alter the pixels characteristics,
thereby resulting in a drastic increase of pixel segmentation. They may be
global —thereby yielding a general highlight or shadow— or local —which
are mainly caused by target shadows. Further, they can also be sudden
—such as those due to changes in weather conditions, or by turning on/off
a light— or gradual.

Camouflage. In this case, some of the pixel features between the back-
ground and the foreground are too similar to disambiguate them.

Clutter in motion. Any approach that relies on motion to perform
segmentation is liable to consider as foreground any moving background
pixel.

Camera motion. In this case, the whole scene seems to be in motion.

In the following, papers are classified according to the approach used, and
how the different difficulties are addressed is explained.

2Think about a person stopped momentarily at a traffic light. He or she must still be
considered as foreground and, therefore detected and tracked. On the other hand, waving
branches and leaves or flowing water must not be segmented, although they are in motion.



Drawbacks of common approaches | Intrinsic difficulties
Bootstrapping TNlumination changes
Foreground aperture Camouflage

Ghost Clutter in motion
Stopped Objects Camera motion

Table 1: Motion-segmentation difficulties.

Background Subtraction Background subtraction is one of the most com-
monly used approaches for motion segmentation [47, 35]. Pixels in motion are
segmented by comparing the current image and a reference one, namely, the
background model. In the early days, simple methods consisted in differencing
each image and a reference one, and subsequently compare the result with an
a-priori set threshold [22]:

IB: - L] > T, (1)

where By is the reference background at time ¢, I; the current frame, and 7
a pre-set threshold. The model could be subsequently updated following a
Infinite-Impulse Response filter (IIR) :

Bt+1 = (1 - O[) Bt + OéIt, (2)

being « the adaptation rate that weights the current model versus the new
observation. However, this method was extremely sensitive to changes in the
background conditions such as lightning or due to background in motion, as well
as to the camera noise. More recent approaches model either each pixel or group
of pixels statistically. This allows building adaptive background models while
providing robustness to the above-stated background conditions. Usually, model
statistics are continuously updated in order to provide an adaptive approach.

Among the background-subtraction approaches, Wren et al. developed the
Pfinder algorithm [56]. Each scene pixel is modelled using a Gaussian colour dis-
tribution. Thus, outliers are assumed to be foreground pixels, and are therefore
segmented. Visible pixels are updated using a single adaptive filter. Segmented
pixels are grouped into blobs and each blob is modelled using spatial and colour
components. Blobs are associated with body parts using a log likelihood mea-
sure and tracked by means of Kalman Filters (KF). However, it just attempts
to detect and track one person, in upright posture, in indoor scenes. A sample
frame is shown in Fig. 6.

Haritaoglu et al. presented the W/ method [20, 19]. Unlike Pfinder, it
aims to detect and track people, isolated or in groups, in outdoor scenes, and
considering several poses. Each pixel is modelled with a range of intensity



(a) Sample frame (b) Obtained segmentation

Figure 6: Sample frame using the approach published in [56] by Wren et al.

(a) Sample frame (b) Obtained segmentation

Figure 7: Sample frame using the approach published in [19] by Haritaoglu et
al.

values given by minimum and maximum intensity values, and the maximum
intensity difference between frames during a training period. Pixels whose values
are placed outside the interval which is given by the minimum value minus a
multiple of the maximum difference and the maximum value plus a multiple of
the maximum difference are considered as foreground pixels. A sample frame is
shown in Fig. 7.

The model is periodically updated considering both pixel-based and object-
based methods: the former updates the values of the pixels classified as back-
ground, and the latter replaces the model parameters for those pixels classified
as static foreground. Neighbour pixels are grouped and blobs are classified us-
ing heuristics. Poses are identified by means of projection histograms. KFs and
textural temporal templates are used to track detected targets. However, this
approach is rather sensitive to shadows and lighting changes, since the only cue
is the pixel intensity.

Horprasert et al. [23, 24] implemented an statistical colour background algo-

10



Figure 8: Sample frame using the approach published in [24] by Horprasert et
al.

rithm, which models each pixel based on both brightness and colour distortion.
It still needs a static background scene, but it’s able to handle strong shadows
and highlights. The proposed algorithm is able to classify the image pixels into
four categories, namely, original, shadowed and highlighted background, and
moving foreground. A sample result is shown in Fig. 8.

McKenna et al. [42] combined colour and gradient information in their adap-
tive background subtraction approach. Each pixel chrominance —given by the
normalised red and green channels— is modelled using two Gaussianus, one on
each channel. The Gaussian parameters are updated using an adaptive filter.
If one of the current chrominance values is farther from the mean more than
three times the standard deviation, the pixel is marked as foreground. Using
chrominance instead of RGB values, shadow detection is avoided, but it cannot
cope with foregrounds of the same chrominance as the background. Thus, they
also modelled the background pixels using the spatial RGB gradients, and pixels
are also flagged as foreground if the gradient of any of the channels is out of
the scope of the corresponding Gaussian. As a result, albeit foreground pixels
with the same chrominance as the background can now be segmented, hard-edge
shadows are also segmented. Tracking is done by means of data association.

Three levels of representation are used, namely regions —stable connected
components— people —groups of regions that satisfy conditions relative to over-
lapping and area— and groups —people that share regions. People appearance
is modelled using colour histograms. Visibility indexes —obtained from the
probabilities that the pixels correspond to unoccluded people— are used to dis-

11



ambiguate occlusions. However, problems arise when several people and the
background have a similar appearance. It is also assumed that the target ap-
pearance do not significantly change while the targets are grouped.

Still, shadow removal has not be properly addressed yet within a target
detection framework, where shadows are considered to yield just changes in
intensity, but not in chrominance. Last advances in the field —such as those
contributions of Finlayson et al. [16]— need to be incorporated.

Nevertheless, none of these models can cope with background in motion.
Stauffer and Grimson presented in [51] an approach focused on this issue. A
colour background model is built using a Mixture of Gaussians (MoG) to rep-
resent each pixel. Thus, each Gaussian models the pixel colour distribution for
one of the possible backgrounds learnt in a training period. Pixels which do not
match any of the distributions are considered as foreground. The distribution
weights are periodically updated according to the one that has matched the
current pixel value. The least probable distribution is replaced in case none
of them match the value, thereby, including long-term still foregrounds. The
adaptive scheme apparently also copes with lighting and scenes changes, as well
as motion from clutter. Tracking is performed by implementing a set of KFs.

Javed et al. [30] presented a method that aimed to solve most of the common
segmentation difficulties: bootstrapping, ghosts, quick illumination changes,
background in motion, and camouflage. It uses both colour and gradient cues.
A hierarchical system is build based on three levels: pizel, region and frame.

At the pixel level, statistical models of pixel colour and gradients based on
mixture of Gaussians are independently used to classify each pixel as potential
background or foreground. At the region level, foreground pixels obtained from
the colour model are grouped into regions, and the gradient model is then used
to eliminate regions corresponding to highlights or ghosts. Pixel-based models
are updated based on decisions made at the this level. Finally, the frame level
ignores the colour-based segmentation if more than 50 percent of the image
pixels are considered foreground. In this case, a global illumination change in
considered, and segmentation is performed according to gradient information.
Nevertheless, the ghosts are not eliminated if the background contains a high
number of edges.

Frame Differencing and Hybrid Algorithms A typical temporal differ-
encing approach segments motion by subtracting the current image from the
previous one pixel by pixel. Then, pixels are segmented if the result is over a
pre-defined threshold:

|It — It71| > T (3)
It can also be done by considering several consecutive frames. For example,
Collins et al. [9, 11] implemented an hybrid algorithm for target detection that

combines an adaptive background subtraction and a three-frame differencing
approach. Background subtraction techniques can provide good segmentation
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results, but they are extremely sensitive to scene changes due to dynamic back-
ground, lighting or extraneous events. In addition, ghost are usually detected
when long-term stationary objects start moving —albeit statistical models even-
tually adapt to this situation. On the other hand, temporal differencing is very
adaptive to dynamic environments and do not generate false alarms caused by
ghosts, but it cannot segment all relevant pixels, and it may be rather sensitive
to camera noise.

In that work, pixel intensity is taken as the representing feature. Thus, pixels
whose intensity varies significantly from both the last frame and the next-to-
last one are marked as moving. These pixels are clustered and a background
subtraction method is applied to the inner region. Both background model and
threshold are updated over time for non-moving pixels.

The approach is adapted to pan-tilt camera platforms by collecting a set
of background references for known camera settings and registering the images
according to selective pixel integration. They also introduced a layered detection
algorithm: pixels are classified as stationary, transient or background according
to two measures, namely, a motion trigger and a stability measure. These point
out if the pixel belongs to a moving object, a stopped object or the “motion”
is due to lightning changes. Foreground pixels are clustered into regions and
classified as moving or stationary ones. Stationary regions constitute layers
which are used to determine occlusions and motion resuming. Tracking is done
by predicting next positions according to the estimated dynamic model, and
convolving the object templates with candidate regions. Several scenarios are
described according to the results of the two previous stages and hypotheses
are launched accordingly. Finally, clutter in motion is rejected if the cumulative
object displacement indicates changes in direction.

Thus, this system use a network of cooperative active cameras to detect and
track people and vehicles in cluttered environments. Targets are classified into
semantic categories and their activities are monitored. Once the geo-locations
are extracted, symbolic data are inserted into a synthetic scene visualisation.

The algorithm proposed in [50] is also a good example of hybrid algorithms
which combines frame differencing and background subtraction techniques to
achieve motion segmentation. Segmentation is performed in two sequential
steps. First, a fuzzy classification is carried out by according to current pixel
motion on each RGB channel. Then, results are enhanced taken into account
the previous segmentation result, and a background model. Finally, HSI colour
space is used to eliminate shadows.

In addition to frame differencing and background subtraction, optical flow
techniques have also been used to perform motion segmentation. These describe
coherent feature motion between frames. These techniques independently seg-
ment moving objects, even in presence of camera motion. However, this ap-
proach is rather sensitive to noise and background in-motion, and it requires
huge computational resources.
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Addressed difficulty References

Sudden illumination changes | [56, 24, 42, 51, 50, 30]
Gradual illumination changes | [19, 24, 42, 51, 11]
Camouflage [42, 30]

Clutter in motion [51, 11, 30]

Camera motion [7, 11]

Bootstrapping [51, 19, 30]

Stopped Objects [51, 19, 11, 30]
Ghosts [51, 11, 19, 50, 30]

Table 2: Motion-segmentation methods.

Optical Flow These methods look for coherent motion of points or features
between frames. Bregler [7] presented a human-dynamics recognising method
where motion is segmented according to optical flow results. An affine motion
model is used for this purpose. Blobs are extracted by means of the Fzpectation-
Mazimisation (EM) algorithm, where the likelihood of each pixel of belonging
to a particular blob depends on the coherent affine motion, HSV colour values,
and spatial proximity. In order to incorporate past estimates, a bank of KFs
provides priors for the EM initialisation, resulting in a MoG propagation.

Summarising, multiple techniques have been developed to tackle motion seg-
mentation. They usually address a limited of the numerous difficulties expected.
The way of solution may come from a smart combination of techniques. The
different algorithms here described are summed up in Table 2, while pointing
out the difficulties addressed.

2.1.2 Target Detection and Observation Association

Segmented pixels are grouped into blobs, which could be considered as an entity
of interest. This is usually done according to a connected component analysis,
and a subsequent spatial filtering process. Then, some features can be extracted
to represent a target observation, thereby classifying the target, and concluding
its detection.

However, as it has been above stated, in some cases this process is enhanced
by taking into account the probability of a given pixel of belonging to the target
according to some statistical model.

In general, once detection has been performed, several approaches arise to
keep track of the targets. New observations can be just associated to previous
ones. This process can be done taking into account different cues like spatial
proximity or appearance similarity. The latter may consist of a template match-
ing between newly detected targets and the models of the previous ones. In both
cases several problems must be expected due to detection failures. These mainly
occur because of segmentation errors —such as those due to background clut-
ter which mimics the target appearance, and illumination changes— and target
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occlusions or merging.

Depending on whether several targets and measurements are expected, the
association is accomplished using nearest-neighbour techniques, or by means
of Data Association Filters —such as the Probabilistic Data Association Fil-
ter (PDAF), the Joint Probabilistic Data Association Filter (JPDAF), or the
Multiple Hypotheses Tracking (MHT) [4].

2.1.3 State Filtering

Usually, a prediction stage is also incorporated after associating the observation,
thereby providing better chances of tracking success. Filters such as the KF [34],
or subsequent extensions and improvements such as the Fxtended Kalman Filter
(EKF) [2] or Unscented Kalman Filter (UKF) [31, 54] are commonly used.

The KF is a linear recursive estimator which predicts the next state accord-
ing to a dynamic model, and updates this result in agreement with the obtained
measurement. Although it has been widely used, it presents important draw-
backs:

1. it requires strong assumptions about the linearity and Gaussianity of the
transition model and the likelihood function;

2. it cannot cope with multiple targets and measurements;

3. and, it relies on a previous segmentation in order to provide the measure-
ment.

These requisites are often not feasible in MTT scenarios, specially during target
grouping and occlusions, or in cluttered backgrounds. Therefore, several ap-
proaches have been implemented in order to avoid these restrictions. The EKF
linearises both transition and likelihood models using Taylor series expansions.
The system Jacobian is computed for the predicted states, and the results are
used in the updating stage. However, the EKF keeps several drawbacks:

1. posterior densities are still modelled as Gaussians;

2. the series approximation can lead to poor representations of the poste-
rior distribution —this is specially the case on highly non-linear systems,
because only the mean is propagated through the non-linearity;

3. and, although the models do not need to be linear, they still must be
differentiable.

The UKF aims to propagate high-order moments through non-linear functions.
A set of deterministic sample points —called sigma points— are selected around
the mean and subsequently propagated. It can be analytically proved that it
yields better approximations of the mean and covariance than the EKF. Further,
there is no need to compute expensive, computationally speaking, Jacobians.
However, it cannot be applied to general non-Gaussian distributions.
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More general dynamics and measurement functions can be dealt with by
means of Particle Filters (PF) [15, 3]—which are also known as Sequential Im-
portance Re-sampling (SIR)— and further evolutions, such as the Unscented
Particle Filter (UPF) [53]. These address the filtering problem when no as-
sumption about linearity or Gaussianity is made on almost all involved prob-
ability density functions. Since the seminal paper by Gordon et al. [18], PFs
have been widely used to perform stochastic estimation. The algorithm is based
on Bayesian filters. Therefore, they compute a posterior probability density
function (pdf) which undergoes a diffusion-reinforcement process making use of
Monte Carlo simulation techniques. The reinforcement stage is accomplished
by means of factored sampling. Thus, the PF approach provides a complete
representation of the posterior pdf. Therefore, any statistical estimate can be
computed despite non-linearities and non-Gaussianity of the involved distribu-
tions. Multiple hypotheses can simultaneously be considered, and they can be
propagated even when no evidence is obtained from the current image. How-
ever, the search region is reduced, which may increase the processing speed, but
the robustness could as well be cut down.

Although the asymptotic correctness of the algorithm is proved, it has several
drawbacks [36]:

1. there is no information about the number of samples required for a re-
quested precision, specially for undefined times lengths;

2. it suffers from several intrinsic problems such as sample degeneration or
sampling impoverishment, depending on the whether re-sampling is used
or not;

3. and finally, PFs were initially designed to keep multiple hypotheses but
only for a single target; further extensions which combine information
about all targets in every sample usually cause the curse of dimensionality.

In every PF approach, samples are drawn from a proposal distribution. Usually,
the transition model is used as such proposal. However, problems may arise if
the samples are placed in the tail of the temporal prior or if the likelihood is very
peaked. De Freitas et al. [13] used the results provided by EKF as a proposal
distribution. More recently, given that the UKF outperforms the EKF, this
filter has been used to generate the prior samples [53].

2.2 Top-down Tracking

Despite these efforts, there are many situations where segmentation-from-motion,
and the subsequent observation-tracker correspondence, is not possible, like in
target grouping or target occlusion. Top-down approaches incorporate a-priori
knowledge about the targets and the context in order to tackle these situa-
tions. Thus, these methods rely on accurate target modelling. Hence, complex
templates, which should cope with an important degree of deformation, are pre-
defined. Further, high-level motion patterns are a-priori learnt, and used to
reduce the state-space search region in agreement to some state prediction.
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Figure 9: Sample frame using the approach published in [25] by Isard and Blake.

Further, targets can be localised following an appearance segmentation, in-
stead of a motion segmentation. This relies on feature extraction, and a sub-
sequent exhaustive search of some feature patterns learnt during a classifier
training process.

Nevertheless, model-based high-level tracking is not feasible in case this in-
formation is not available there is not enough a-priori knowledge about either
the scene or the targets. Also, an accurate initialisation is often not possible.
The need of adaptation when target appearances considerably evolve over time
usually leads to the phenomenon known as model drift. In those cases, motion-
based tracking usually outperforms model-based appearance or shape tracking.

Notwithstanding, numerous proposals have been presented to perform model-
based tracking, while trying to overcome these drawbacks.

2.2.1 Particle Filtering

The aforementioned PF techniques —together with complex dynamic and ap-
pearance models— have constituted a common approach [25, 39, 41, 37, 52, 14].
These techniques were introduced in the Computer-Vision field in CONDEN-
SATION [25, 27] by Isard and Blake, albeit they were already known in some
other areas, such as Automatic Control or Artificial Intelligence. This algo-
rithm is based on a PF framework combined with edge-based image features.
Subsequently, contour tracking have been widely researched within this frame-
work [26, 40], although this may not be the best approach in crowded scenarios
because of the potential multiple occlusions. A sample performance is shown
Fig. 9.

Nummiaro et al. [45] applied PFs using colour distributions as image fea-
tures. These are approximated using histograms, which are supposed to be less
sensitive to partial occlusions and rotations in depth than other appearance
models such as templates. They used the HSV colour space since they claimed
that it can provide robustness to changes in lightning conditions. Histograms are
calculated inside an elliptic region, once the pixels have been weighted accord-
ing to a kernel. A similarity function is implemented using the Bhattacharyya
Coefficient (BC) [5]. Samples are represented using the centroid position in
image coordinates, its speed, the length of the ellipsis axes, and a scale change.
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Figure 10: Sample frame using the approach published in [45] by Nummiaro et
at.

The tracker is initialised placing samples —assuming a known target model—
at strategic positions. Models are only updated when the likelihood of the
estimated state is over a pre-defined threshold. However, no MTT is consid-
ered —which implies that no event such as target grouping or occlusion can be
analysed— and it lacks from an independent observation process, since samples
are evaluated according to the histograms of the predicted image region. A
sample frame is shown in Fig. 10.

Perez et al. [48] proposed also a PF based on a colour-histogram likelihood.
They introduced interesting extensions in multiple-part modelling, incorpora-
tion of background information, and MTT. Nevertheless, it may require an ex-
tremely large number of samples, since one sample contains information about
the state of all targets, dramatically increasing the state dimensionality. Fur-
ther, no appearance model updating is performed, what leads to target loss in
dynamic scenes.

Deutscher and Reid [14] presented an attractive approach called Annealing
Particle Filter to recover full body motion. It aims to reduce the required
number of samples. A series of weighting functions is designed from the original
one by raising to a series of decreasing exponents, thereby defining a series of
layers. Omne annealing run is performed at each time slice. The run started
using the broader weighting function. At each layer, N particles are weighted,
re-sampled with replacement, and used to yield a particle set for the next layer
by applying Gaussian diffusion. As a result, all particles are spread around
the global maximum. This final set is used to initialise the broader layer at
the next time slice. Thus, the number or required samples is considerably
reduced. However, pruning hypotheses with lower likelihood may lead to a single
hypothesis, and therefore it could be inappropriate in cluttered environments.

The weighting function is built taken into account two image features: edges
and silhouettes. Edges are obtained using a gradient-based mask over the entire
image. Silhouettes are produced using a background-subtraction algorithm.
Pixel weight maps are built taken into account both the proximity to an edge,
and its enclosing into an extracted silhouette. In addition, two enhancements
are introduced. Firstly, a soft-partition sampling is implementing by adding an
amount of randomness to each parameter proportional to the variance of that
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Figure 11: Sample frame using the approach published in [12] by Comaniciu et
al.

parameter. In this way, samples are not wasted and the effort is concentrated on
those parameters whose uncertainty is bigger. Secondly, a cross-over operator is
used by combining selected particles, and thereby, tracking in parallel different
sections of the search space. As they focus on motion analysis, multiple targets
and unconstrained environments are not explored.

BraMBLe [29] is an appealing approach to multiple-blob tracking which mod-
els both background and foreground using MoG. However, no model updating
is performed, there is a common foreground model for all targets, and it suffers
from the curse of dimensionality —as all PF-based methods which tackle MTT
combining information about all targets in every sample.

Occlusion events present particular difficulties which should be explicitly
addressed. Wu et al. [57] address these issues using a PF by implementing a
Dynamic Bayesian Network (DBN) with an extra hidden process for occlusion
handling.

2.2.2 Gradient-descent Search

Target localisation following a gradient-descent search —Mean-shift tracking—
has also been commonly used [8, 12, 10]. The search is performed in the basin of
attraction of a spatially-smooth similarity function given by a weighted image
region. Thus, in this case the search is deterministic. This is usually done ac-
cording to a measure of histogram similarity between both model and candidate
distributions related to the BC.

However, these methods do not work in unconstrained situations. The main
drawbacks of the algorithm consist of the assumptions that the target candidate
do not drastically change its appearance between time steps, and that its new
location is in the basin of attraction of the similarity function, which is defined
by the kernel size. Further, it is assumed that the similarity function presents
a unique local maximum within the basin of attraction. In addition, only one
hypothesis is considered, thereby limiting its effectiveness in case of occlusions
or heavy cluttered backgrounds.

For instance, Comaniciu et al. [12] represented a target by an elliptic regions
defined at given location, and a target model. This is obtained from the features
of the normalised-to-unit-circle pixels locations, once applied an isotropic kernel.
Colour is selected as image feature, and the target model pdf is approximated
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Figure 12: Target interaction. Keeping the identity of multiple targets which
cannot be independently segmented is a challenging task. Notice the different
group membership of targets in blob 1 and 4.

by means of histograms. However, it tracks just one target, initialised by hand,
and the appearance model is never updated. A sample performance is shown in
Fig 11.

Collins et al. [10] presented an appealing tracker, based also on the mean-
shift algorithm, with on-line feature selection of discriminative features. It aims
to maximise the distinction between the target appearance and its surroundings.
Still, it tracks just one target, and may suffer from model drift, although models
are anchored to the first frame, which is manually segmented. It still tracks
rigid targets (or rigid regions of them), appearance changes are limited, and
since MTT is not considered, interaction events are not studied. These facts
cannot be seen as minor issues in real applications such as video-surveillance.

2.3 Bottom-up and Top-down Tracking

Algorithms which combine both bottom-up and top-down approaches have also
been proposed [28, 49]. Most appealing approaches rely on the combination
of several techniques. Senior et al. presented a two-level tracking system with
template-based appearance models [49]. These are used in conjunction with
probability masks to infer depth ordering and detect occlusions. Nonetheless,
appearance ambiguities among grouped targets have not been addressed.

In [28], the probabilistic top-down tracking framework developed for CoN-
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DENSATION [27] is extended by means of importance sampling in order to gen-
erate samples according to a bottom-up process.

Yang et al. [58] proposed a system which specifically tackles grouping situ-
ations, albeit no filtering is carried out, and grouped targets are not indepen-
dently tracked. Thus, during grouping events, just a coarse localisation can be
obtained by considering that the targets are inside the group region. There-
fore, grouped targets are not accurately tracked, and no complex situation can
satisfactorily be faced —for instance, those in which a group of more-than-two
members merge and split, see Fig. 12.

Kahn et al. [32, 33] developed a system called Perseus. It is a visual purposive
architecture which aims to recognise gestures. The way in which the structure
is modularised was surprisingly novel, allowing the system to use knowledge
about context and task at every stage and providing it with redundancy and
independence of assumptions. It also provides an interface to higher-level sys-
tems. It consisted of six components: a planner is located at the higher level.
It called wvisual routines which aim to detect and track selected objects. Object
representations (OR) —background objects, light, people, objects, etc.— can
be instantiated, which involves registering it at the long term visual memory.
The object methods, such as segment, keep a global segmentation map using
the image features maps located at the lower level. The considered features
are intensity, edges, disparity, colour and motion. All higher levels made use of
these maps to carry out their functionalities. Features parameters can be tuned
according to the task and context. All object representations are also associated
to markers which track the segmented objects.

Alternatively, several approaches take advantage of 3D information by mak-
ing use of a known camera model and assuming that agents move on a known
ground plane. These and other assumptions relative to a known Sun position
or constrained standing postures allow the system presented in [59] to initialise
trackers on people who do not enter the scene isolated.

3 Discussion

Summarising, an evolution in the perception of the analysis of the human mo-
tion task can certainly be noticed. Taxonomies have being refined from mere
classifications according to the aim of the task, or even to criteria such as the
model dimension or the sensor used, to hierarchical structures which cope which
all the required functionalities. These are spread through different levels which
are task-oriented.

However, this area is sill in a transition step between Image Processing and
Pattern Recognition, and a more advanced view in which Cognitive Sciences
provide a global understanding of the scene. The latter supplies also interactive
capabilities, such as a natural language communication between a user and the
system, or synthetic scene visualisations.

With respect to segmentation, it can be concluded that although remarkable
advances have been achieved by presenting a wide set of different approaches,
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the segmentation task is still an open problem. These techniques must be en-
hanced to cope successfully with the numerous difficulties expected, specially
in outdoor scenes. Among these difficulties, we can include lighting changes,
different weather conditions, background in motion, or camouflage. Further,
it is still not clear how to deal with background objects which unexpectedly
move at a given moment, with the ghost they leave, or with foreground objects
which stop momentarily. The solution may come from the combination and
development of some of the existing approaches, thereby providing the system
with redundancy. Taking advantage of context knowledge and making use of
high-level information may also be a way of solution.

With respect to tracking, numerous approaches have been proposed to per-
form this task. Data-association techniques on their own are not reliable enough,
since they completely depend on a proper segmentation. Prediction-updating
approaches should be flexible and general enough to cope with complex envi-
ronments. The combination of several of the aforementioned techniques may
lead to a way of solution. Thus, for instance, EKF/UKF approaches may en-
hance system predictions; mean shift techniques could adjust final estimates;
and several segmentation methods may be combined with prediction-updating
techniques in order to provide the system with error recovery capabilities.

In our opinion, it is clear that some sort of structured architecture with
cooperative levels is needed in order to cope with a such a complex problem as
the analysis of human motion.
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