Multiple-Target Tracking based on Particle
Filtering*

Daniel Rowe
Computer Vision Centre

February 13, 2008

Here, tracking is performed by enhancing the particle filtering framework.
This approach has been widely explored by several previous algorithms, as dis-
cussed before. Despite this effort, many undesirable effects still remain. These
are here highlighted, and some proposals are presented in order to cope with
them.

1 Framework Outline

A probabilistic framework is commonly used as a way to perform tracking in
order to deal with uncertainty over time [23]. Classical approaches, such as the
Kalman Filter [14], rely on linearity and Gaussianity assumptions about the
involved distributions.

More recent works make use of Bayesian filters combined with Monte Carlo
Simulation methods in order to deal with nonlinear and non-Gaussian transi-
tion models and non-Gaussian likelihood functions [22, 18]. Subsequent devel-
opments have introduced a re-sampling phase in the sequential simulation-based
Bayesian filter algorithms [8]. These approaches are known as particle filtering
within the control field or survival of the fittest in Artificial Intelligence.

Such methods were first introduced in the computer-vision research area by
Isard and Blake, and renamed as Condensation [10, 11]. They have been widely
used in recent years [12, 3, 26, 16, 24, 17, 13, 20, 19, 27, 4]. Excellent reviews have
been presented by Doucet [5], and by Arulampalam et al. [1]. Further, compre-
hensive treatments are given in [6, 21]. However, several important drawbacks
remain, as stated by King and Forsyth [15]. Despite the great number of im-
provements that have been already introduced, many open issues prevent from
stating that particle filters are able to solve unconstrained tracking problems.

*From Towards Robust Multiple-Target Tracking in Unconstrained Human-Populated En-
vironments. Daniel Rowe. PhD Thesis, Chapter 4, Universitat Autonoma de Barcelona,
Spain, 2008.



2 Probabilistic Framework

From a probabilistic point of view, the tracking problem involves dealing with
stochastic processes. These are series of time-slices describing the state of all
entities within the scene. Each time-slice consists of a set of random variables!.
Two kind of variables can be distinguished, namely unobservable state variables
at time ¢, denoted as S;, and observable evidence variables, denoted as E;. The
interval between time-slices depends on the frame rate?.

In order to specify the dependencies among the different variables, these are
ordered following a temporal criterion, i.e, taking causality into account. This
means that the variables from previous time-slices cause the values of subse-
quent time-slice variables. Thus, it should be possible to specify conditional
probability density functions for all variables given their predecessors, from now
on called parents [23]. On the order hand, variable conditional independence
within a time-slice could be established given a set of parents.

However, since every time-slice must be considered, several problems arise:

1. There is an unbounded set of conditional probability density functions.

This problem can be overcome making the homogeneous process assump-
tion:

The process is governed by laws that do not change themselves over time.

Hence, there is no need to specify all conditional pdf but only those within
a representative time-slice.

2. There is an unbounded set of parents.

Let us consider separately the effect of the parents on the state variables
S; and on evidence variables E;. Considering the Markov assumption on
both states and evidences, it is possible to get over this problem:

(a) The current state S; depends only on a finite history of previous
states, S¢_r.4_1.

Therefore, the state could be defined as the information needed to
make the future independent from the past given the present. In
first-order Markov processes the current state only depends on the
immediately previous one. Here, this kind of Markov processes is

IThe following notation is here used: related to variables, non-bold lowercase denotes
scalars, whereas bold lowercase denotes vectors, and matrices are given by bold uppercase.
In a probabilistic context, uppercase denotes probability density functions (pdf) and random
variables; lowercase denotes probabilities and variable instances. X¢, .+, denotes a variable set
from time t = t1 to t = t2.

2This parameter is set considering the possible dynamics of the targets that could appear
in the scene.



considered, since it is always possible to reformulate a non first-order
Markov process as a first-order one by increasing the state variable
set [23].

Thus, the state variables are conditional independent of all other
previous variables given the previous state:

P(S;|So:t—1,E14-1) =P (S¢ | S¢—1). (1)

The latter conditional pdf is called the transition model. In the track-
ing problem here presented, the transition model will be split into a
dynamic model, which considers the target’s motion, and an aspect
model, which captures the target’s shape and appearance.

(b) The evidence variables at time t E; depend only on the current state
S;.

Hence, the evidence variables are conditional independent from all
other variables given the state:

P(E;|So:t—1,E14-1) =P (E; | Sy). (2)

In this case, the latter conditional pdf is called the observation or
sensor model. It is also called the likelihood function since it forecasts
how likely an observation is, once the state is given. It models a causal
relation: it is the current state which causes the obtained evidence.

Thus, the developments within the scene can be modelled as a Hidden Markov
Model (HMM) where S; constitutes the unobservable or hidden state variables
and E; the observable evidence variables at time t. The HMM is described by:

e an initial prior state density function, P (Sp);
e the transition model®, P (S; | S;_1) for t > 1;
e the likelihood function, P (E; | S;) for ¢ > 1;

e both assumptions on variable conditional independence stated in Eqgs. (1)
and (2):

— the state variables, {S;;t€ N}, S; € R"| given the immediately pre-
vious state S;_1; ns denotes the state-space dimension;

— the evidence variables, {E;; t€ N} | E; € R™, given the corresponding
state variable; ne denotes the evidence-space dimension.

3A sequence of random variables S; satisfying the Markov assumption is called a Markov
chain. If the conditional probability density functions P (S¢ | S¢—1) are time independent,
the Markov chain is called homogeneous. However, it does not mean that the probability
density functions of consecutive states are the same, P (S¢) = P (S¢—1), a fact that is called
stationarity.



Given both models and assumptions, it is possible to specify the complete joint
density function:

P (So.t, E1.4) P(E: | So:t,E1.4-1) P (So.t, E1:4-1) (cond. prob.)
= P(E¢|St) P (So:t, E1:e-1) (Markov on ev.)
= P(E;|S:)P(St|So:t-1,E1.4-1) P(So:t—1,E1.4_1) (cond. prob.)

P(E¢ | S¢) P (St [St—1) P (Soit—1,E1:4-1) (Markov)

= P(So) [[P(Ex|Sk)P(Sk|Sk1),
k=1

which specifies the probability of every event within the scene and, therefore,
can answer every probabilistic query about it. Unfortunately, it is usually too
complex to be analytically computed.

3 Bayesian Filtering

Let us now consider the probabilistic inference problem in which the state vari-
able set S;.; is estimated from the observed evidence e;.., finding out the pos-
terior probability density function P (Si.t | e1.r). Let us also focus in one of the
posterior pdf marginals, P (S; | e1.;).

The previous computation is called smoothing if t < T, filtering or monitoring
if t = 7, and predicting if t > 7. The general term estimating comprises all three
processes. This work is focused on filtering, the computation of the belief state
S; —or, even better, the posterior pdf over the current state P (S; | e1.;)— given
all evidence up to date eq.;.

In this case, instead of the causal relation given by the likelihood function
which assigns probabilities to potential evidences given the state, the filtered
pdf allows to make and inference about the state given the evidence.

This pdf can be calculated through recursive estimation, that is, computing
the new posterior given the previous one and the new evidence [5, 23]:

(3)

P(Si|eir) = P(Si|ert—1,€e) 4)
x P(e;|Sieri—1)P(Si|er—1) (Bayes’)
= P(e[Sy) P (St ]er-1) (Mark. on ev.)
— Ple]S) / P (St | Si—1,e14-1) P (st | en1)dsi  (cond)

= P(et | St) /P(St | St—l) P (St—l | el:t_l) dSt_l. (Markov)

likelihood trans. model  previous post.
—_—

updating prediction
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Figure 1: Temporal propagation of posterior density functions. A deterministic
drift and a stochastic spreading given by the transition model yield the temporal
prior. Then, the new posterior is obtained by using the correction given by
likelihood function.

The pdf is projected forward according to the transition model, making a
prediction. Then, it is updated in agreement with the new evidence, e;. The
prediction term represents the density function after applying the transition
model to the previous posterior density function. It leads to the so-called prior
density function, P (St | e1.+—1). It is called prior because it is previous to the
likelihood correction.

The temporal propagation of the posterior pdf marginal can be seen as a
diffusion—reinforcement process, see Fig. 1. The transition model has a de-
terministic and a stochastic component. The former imposes a drift to the
probability density function, while the latter causes the spreading of the pdf
that increases the state uncertainty. Subsequently, the likelihood function re-
inforces the pdf in the vicinity of observations altering the peaks and reducing
the uncertainty.

4 Monte-Carlo Simulation
Unfortunately, the recursive estimation given above leads to expressions that

are impossible to evaluate analytically unless strong assumptions are made. For
example, the Kalman Filter is a linear recursive estimator which assumes a



linear Gaussian transition model, and a Gaussian likelihood function.

In a more general framework, this problem is overcome by making use of
Monte-Carlo methods?, where N independent-and-identically-distributed (i.i.d.)
random samples, {s};i = 1: N}, are generated from the posterior pdf, P (S; | e1.)-

On the one hand, a simulated probability density function is given by the
following expression:

N

P (S | ery) = %25 (S¢ —si), (5)

i=1

where § (-) denotes the Dirac delta function.
On the other hand, the posterior expectation is given by:

12 Eps, e [St] = /StP(St | e1:) dSe, (6)

and the posterior variance by:

02 £ EP(StIel:t) [S%] - E?D(S,Jel,t) [St] . (7)

Let us now consider the following estimate:

N
_ _ 1 .
Sy = /StP(St | e1.t) dS; = N§wa (8)

if both posterior expectation and variance are finite, it follows, due to the Cen-
tral Limit Theorem, that when N — 0o, Sy has a distribution that is approx-
imately normal, which mean is the posterior expectation p and its variance is
proportional to the posterior variance o2:

2

Sy — pi N (o, %) . 9)

Therefore, the posterior expectation Eps,e,.,) [St] can be estimated and,
in addition, the deviation from the true value follows a normal distribution.
Moreover, the higher the number of samples is, the lower the estimate variance
will be. These results are also applied for expectations of the form:

EP(St‘elzt) [¢ (St)] = /(b(st) P(St | el:t) dSt (10)

where ¢ (+) is a general function of the state.
However, there are several drawbacks which prevent from using the method
as it is presented above. The posterior pdf, P (S; | e1.t), is usually complex

4Stochastic simulation techniques are referred as Monte-Carlo methods for the Casinos of
Monte Carlo, the capital city of gambles. Roulette wheels and dice rolls are simple random
number generators.



enough, multivariate, and only known up to a proportionality constant. These
problems make impossible to sample directly from it. Thus, alternative solutions
are required.

5 Sequential Importance Sampling (SIS)

It is possible to avoid the difficulty of sampling directly from the posterior den-
sity by sampling from an importance or proposal distribution, @ (So.¢ | €1.¢). As
it will be proved, the posterior density function can be approximated arbitrary
well by drawing samples from a proposal distribution, and thereby, obtaining
approximations of the expectations of interest. Without the lack of generality,
results are here obtained for the first raw moment, i.e, the mean:

HP(Solers) = /SO:tP(So;t | e1:t) dso:t a1
= /SO tM (SO:t | el;t) dSO:t (propOSal dist[‘)
Q (So:t | e1.t)
P (1 | S1:t) P (Soxt)
= S So. eq.;) dsp.s. Baves
/ “P(er1) Q (Sox | el:t)Q( 0:t | @1:t) dso (Bayes)

By defining the unnormalised importance weights as:

P (e1:t | S1:t) P (So:t)
Q (SO:t | el:t)

Tt

(12)

and conditioning over the evidence probability density function, it follows that:

1
/'I’P(SO:t|el:t) = m / SO:tﬂ-tQ (SO:t | el:t) dSO:t (13)

[ S0u4mQ (Sout | €1:t) dso:s N
— TP (er]S1a) P (Sout) dson (conditioning)

_ f SO:tﬂ'tQ (SO:t | el:t) dSO:t (prop distr )
JP(e1 | S1) P (Sou) G52 dso.
J So:4mQ (So:t | €1:¢) dso:t .
= ht def.
JmQ (St | ex:) dso:e (weight def.

— Egsier [Soztﬂt]. (expect. def.)

EqQs.ler.) [Tt

Both expectations can be approximated by sampling from the proposal dis-
tribution. Thus, the posterior distribution mean is thereby approximated using
the following estimate:



where:

denotes the normalised importance weights. The posterior density function can
then be approximated in the following way:

P(SO:t | el:t) ~ P(SO:t | el:t)

N . .
> 76 (S0 — sr) » (16)
i=1

Q

what results from comparing Eq. (8) and Eq. (14).

Considering a filtering scenario, that is, assuming that current states will not
be modified by future observations, the proposal distribution can be decomposed
as:

Q(Sot | e1r) = Q(Sou—1,St|enr) (17)
= Q(St|So:t-1,€1:) Q (Sot—1 | 1) (cond. prob.)
= Q(St|So:t-1,e1:t) Q (Sot—1 | er:t—1) (Mark. on ev.)

This allows us to obtain a recursive expression for the importance weights:

_ Plewt | S14) P(Sox)
"o Q (So:t | el:t) (18)

= P(er | Srt) P (Sox) (proposal decomp.)

Q (St | So:t—1,e1:¢) Q (So:t—1 | €1:4-1)
_ P(ert | Si:t) P(So:t) -1 (weight def.)

St | So.t— . So:t— 1) Plere—1[S1:e—1)P(So:t—1)
Q (St | So:t—1,€1:4) Q (So:t—1 | €1:4—1) 1@(150:;71‘;1:t71[)) 1




P (e1. | S1:¢) P (So:t)

Q (St | So:t—1,€1:¢) P(ert—1 | Si:t—1) P (So:t-1)
P(e;|Sit,e1:4-1) P(ert—1]S1:¢) P(S¢ | So:e—1) P (So:t-1)
Q (St | So:t—1,€1:¢) P(ert—1 | Si:t—1) P (So:t-1)

P(e; | S) P (S | Se_1)
Q (St | SO:tflyelzt)

Tt—1

= 1 (cond. prob)

t—1 (Markov),

where
e P(e; | S;) is the likelihood function;
e P(S;|St_1) is the transition model;
e and, Q (St | So:t—1,€1:+) is the proposal distribution.

A common and easy choice for the proposal distribution —for instance, the one
taken in [11]— is:

Q (St | So:t—1,€1.4) = P(S; | Si-1). (19)

In this case, the importance weights are given by:
T = wt_lP(et | St), (20)

and the normalised importance weights are given by:
—i ﬂ-il&flp (et | S;)
T = & .
NICIE)
j=1

However, this choice has several drawbacks derived from the fact that not
incorporating the observations introduces errors in the prediction. Thus, it
may be the case that only a few particles have significant weights after being
evaluated, specially when the likelihood function is much narrower than the
temporal prior.

5.1 Degeneracy Problem

The SIS algorithm have an intrinsic problem which prevents from using it as it
is. As it is proved in [5], the variance of the importance weights increase over
time. This result has devastating consequences on the simulation performance,
since the majority of the normalised importance weights tend to zero after few
iterations. This samples being numerically insignificant, they are not taken into
account in the pdf approximation. This result implies a sample wastage and a
poor representation of the posterior distribution.



6 Sequential Importance Re-sampling (SIR)

Under this approach, a re-sampling stage is used to prune those particles with
negligible importance weights, and multiply those with higher ones. Thus, sam-
ples are re-sampled with replacement using the importance weights as probabil-
ities.

This idea is based on the factored sampling algorithm [9] designed for sta-
tionary pdf’s. It works as follows: A posterior representation is given by the
Bayes’ theorem:

P(S|e)xP(e|S)P(S), (22)

but the likelihood function is complex enough to prevent the posterior being
evaluated in closed form. Thus, sampling techniques are proposed to gener-
ate random variates from a distribution P (s) that approximates the posterior
P (S |e). Asample set of N i.i.d. random samples, {§";i = 1: N'}, is simulated
from the initial prior density function, P (S). The algorithm assigns normalised
weights 7 to each sample in the set according to the likelihood function:

L alels)
Z}p(elgj)

Subsequently, the samples are selected —or re-sampled— from the sample set
with probability 7. Therefore, the new sample set, {s’;i =1: N}, represents
the posterior density function, P (S | e), accurately as N — co. Obviously, some
particles may be chosen several times, especially those with higher weights.
Thus, some samples in the new set could be identical. On the other hand,
samples with lower weights could be not chosen at all.

This weighted particle representation is shown in Fig. 2, where the poste-
rior density function is represented by blobs whose centres are the sample set
{si;i =1:N } and their area is proportional to the observation value given by
the weights 7°.

This idea was introduced by Gordon et al. [8] within a Bayesian filtering
framework, thereby leading to Sequential Importance Re-sampling (SIR) filters.
Here, a posterior probability density function represented by samples is itera-
tively computed. The pdf undergoes a diffusion-reinforcement process, and the
reinforcement stage is followed by a run of the factored sampling algorithm pre-
sented above. Thus, the factored sampling is extended by applying it iteratively
to successive time-slices.

Subsequently, this techniques were introduced in the Computer Vision field,
as well as in other areas such as Artificial Intelligence, or Automatic Control.
Therefore, these methods are also variously called: particle filtering —after
the use of samples or particles as the way of propagating the probability den-
sity function— survival of the fittest —after the re-sampling stage— bootstrap

(23)

10
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Figure 2: Posterior pdf representation as set of weighted particles. See text for
details.

filtering®, etc. In Computer Vision they are widely used under the name of
CONDENSATION, after the paper presented in [10].

6.1 The CONDENSATION Algorithm

The CONDENSATION algorithm was presented by Isard and Blake in short form
at the European Conference on Computer Vision in 1996 [10]. Later on, it was
fully developed in [11]. This intended to track a human contour, which moves
in cluttered background, given a raw video signal as data.

CONDENSATION addresses the filtering problem when no assumption about
linearity or Gaussianity is made on almost all involved probability density func-
tions. The algorithm is based on Bayesian filters. Therefore, it computes a pos-
terior probability density function P (S; | e1+) which undergoes the diffusion-
reinforcement process described above. Because of the analytical problems al-
ready exposed, it makes use of Monte-Carlo simulation techniques.

It follows the aforementioned SIR approach. Thus, the posterior pdf at time
t—1,P(Si—1]e1.t—1), is given by a set of tuples, each of them consisting in one
sample and its weight, {8/ |, 7_;;i=1: N} or, after applying the factored
sampling algorithm, by the re-sampled sample set {sifl, %;i =1: N}. In this
case, since all particles are evenly weighted, weights are not displayed and the
notation is reduced to {sifl;i =1: N}.

Summarising, the four density functions involved in a Bayesian filter are:

1. the initial prior density function, P (So);

2. the transition model, P (S; | S;—1) for t > 1;

5The use of the term bootstrap derives from the phrase "to pull oneself up by one’s boot-
strap", widely thought to be based on one of the eighteenth century Adventures of Baron
Munchausen, by Rudolph Erich Raspe. In the context of this thesis, it means that the algo-
rithm starts up and recovers by itself: fittest old samples give rise to many new ones.

11



3. the likelihood function, P (E; | S;) for ¢ > 1;

4. the posterior state density function, P (S; | eq.+) for ¢t > 1.

The initial prior density function is now the only one supposed to be Gaussian.
Therefore, the initial sampling is straightforward. Samples are propagated us-
ing the approach described above, that is, by sampling them from the transition
model. Thus, there is no need to sample from the previous posterior in subse-
quently iterations. This fact avoids one of the main problems of the approach
based on Monte Carlo Simulation, i.e., sampling from a complex, multivariate
and only known up to a proportionality constant posterior pdf.

This algorithm works as follows: each iteration starts with the prediction
stage where the temporal prior P (S; | e1.+—1) is obtained by applying the tran-
sition model P (S; | S;—1) to the previous posterior. Computationally, this is
done in two steps. In the first place, a deterministic drift is applied to each
sample of the previous posterior,{s};,l;i =1:N } Obviously, those samples
which were identical will undergo the same drift. Then, the random compo-
nent, i.e. the diffusion, is applied causing identical samples to split. As a result
of this stage, the sample set represents the prior density function at time ¢,
{é%,z =1:N }

The second stage consists in the likelihood correction where the sample
weights are calculated according to:

m =p(e;|81). (24)
It is worth to notice that there is no need to recursively propagate the weights
—as done in Eq. (21)— since all previous weights are even and equal to + after
the re-sampling stage. Once all samples have been propagated and measured,
the final stage applies the factored sampling to carry out the re-sampling phase.
Thus, weights are normalised:
2

Ty

N (25)

N
>
i=j

where 7 denotes the i-th sample normalised weight at time .

Sampling from the discrete set {éi,z =1: N} with probabilities 7 can be
accomplished by sampling from a discrete uniform distribution, projecting the
index onto the sample cumulative distribution range and then onto the distri-
bution domain [5], see Fig. 3.

The cumulative probability distribution is constructed according to:

—i
T =

¢ =0,

i = 74w, i=1:N. (26)

12
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Algorithm 1 Re-sampling stage.

e For each sample sj}:

1. arandom number is generated from a Uniform distribution, r € [0, 1].
2. the smallest k index for which ¢} > r is found.

3. the corresponding sample is selected, si = §F.

e end for ¢

Then, the new sample set, {si;i =1: N} is calculated by generating a ran-
dom number, and selecting the sample whose corresponding cumulative proba-
bility exceed this number. This process is summarised in Algorithm 1.

Finally, the sample set represents the posterior pdf at time ¢, P (s, e1.+). The
sample set size IV is kept constant over time for all iterations. The expected
value at time ¢ can be approximated as:

N
Ep(sijern) (St = Y T8l (27)
i=1
1 XK
~ stg (28)
=1

It is interesting to remark that the accuracy of any estimate —such as the
mean and covariance— of the posterior distribution can only decrease as a result
of the re-sampling stage. Thus, if these quantities are to be used or displayed,
then these should be computed prior to re-sampling, as in Eq. (27), instead of
using the posterior expression in Eq. (28).

13
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Figure 4: CONDENSATION algorithm: a graphical representation of one iteration.
See text for details.

The algorithm is graphically depicted in Fig. 4, and summed up in Algo-
rithm 2.

6.2 The Drawbacks of the CONDENSATION Algorithm

CONDENSATION has certainly been widely applied between 1999 and 2003. Ac-
cording to Cite-SeerS, it has a peak of over 35 citations in 2001 and 271 hits
within the Cite-Seer database. It has been considered fast and efficient due to
its two main advantages:

1. first of all, it can represent multi-modal density functions. This fact allows
us to consider multiple hypotheses, which is essential in scenes where back-
ground clutter or other moving objects” could mimic the target. Thus, it is
possible to propagate multiple hypotheses which are pruned or reinforced
in each iteration depending on their likelihood.

Shttp://citeseer.ist.psu.edu/

"Which does not mean that several targets can be tracked at the same time using the
algorithm as it is.

14



Algorithm 2 CONDENSATION.
PROPAGATION

e for each sample in the set {sifl;i =1: N} do

1. predict the sample values 8! using the transition model P (S; | S;_1);

2. measure the sample weights 7, Eq. (24);
e end for i
STATE ESTIMATION
e Estimate the state according to Eq. (27);
RE-SAMPLING

e Normalise the weights, Eq. (25);
e Compute the cumulative probabilities as in Eq.(26);

e Call the algorithm in Algorithm 1.

2. The second advantage is that, maintaining the sample set size fixed, it
was supposed to be able to run with bounded computational resources in
near real time®.

Isard and Blake proved in [11] the asymptotic correctness of the algorithm by
showing that the sample set representation of the posterior density function has
weak and uniform convergence as N — oco. Thus, it is stated that each sample
at time ¢ of the sample set {si;i =1:N } is drawn from a probability density
function ﬁ(St | e1.t) such that ﬁ(St | e1.t) — P (St |e1.t), where — denotes
weak, uniform convergence®.

However, they already warned that the convergence was proved for N — oo
given a fized t. Therefore, the sampled representation approximates the true
distribution with a desired accuracy but only for a fixed number of frames 7.
Nothing is said about the limit 7' — oco. Thus, at later times larger values of N
may be required.

8However, as will be shown later, having a fixed sample set size has several drawbacks. Fur-
ther, the number of samples required to ensured acceptable performances in high dimensional
spaces prevent from a real-time use in most applications. An on-line sample-set size adapta-
tion was explore was Fox [7] by evaluating the approximation error using the Kullback-Leibler
distance; this was kept bounded by modifying the sample set size.

9Weak convergence: for every @ defined in a probability space, <]5(st | e1:t) ,Q> —

(P (st | e1:¢) , Q) where () denotes the inner product.
Uniform convergence: for every ¢ > 0, there exists a natural number N such that for all
st and all m > N, |p(s¢ | e1:t) —p (st | er)| <e.

15



They also stated that there is no information about how large N should be
for a requested precision and, therefore, it is heuristically determined. These
and other undesirable CONDENSATION side-effects were thoroughly discussed by
King and Forsyth [15]. They are briefly presented in the next paragraphs.

One of the main drawbacks of the re-sampling algorithms is a phenomenon
called sampling impoverishment. Let us consider that the samples are spread
around several modes!®. King and Forsyth demonstrated that, with probability
one —what is called an almost sure event''—, all samples will end up in one
of those modes. Moreover, the probability that one mode absorbs all samples
is proportional to the number of samples that started in it. Therefore, spurious
modes have a non-zero probability of usurping all samples, causing the true
mode to be lost.

Although sampling impoverishment is well studied and proved in [15], it can
also be informally explained as a result of what is called genetic drift: consider a
finite population and one particular gene. The frequency of the gene will not be
exactly reproduced in the offspring due to sampling errors. This sampling error
is propagated over time. The initial frequency is lost because there is not any
kind of genetic memory. Eventually, this random process leads to a population
where this gene is either lost or is present in every individual. In both cases,
no further changes are possible. Thus, one mode has disappeared and it cannot
be recovered. The Markov chain that modelled the process has reached an
absorbing state, and its distribution is known as a stationary distribution which
means that P (S¢11) = P (S;).

CONDENSATION uses factored sampling. This process involves a loss of infor-
mation. The probability for one sample of being selected is given by its weight.
Consider now that several samples could be identical and similar samples form
modes that can be far enough one from the other. The probability of propa-
gating one mode is proportional to the number of samples that constitute it.
Sample impoverishment means that all but one of these modes could disappear,
and this fact has a non-negligible probability of happening in finite time.

Considering a real-time tracking application —whose frame rate can be set
for instance at 30 frames per second, which means 30 generations per second—
it is obvious that many modes could disappear in less than seconds. How many
seconds will be needed is only a matter of how many samples are used.

Moreover, lost modes have a very low probability of being recovered. The
diffusion process could preserve diversity, as mutation does in genetics. However,
the distance between modes is usually bigger than the diffusion. One sample
will need several iterations in order to move from one mode to another. But the
likelihood in the region between modes is small, thereby making such a journey
highly improbable.

10The term mode here refers to each local maximum of the distribution.

U There is a subtle difference between an event being sure and almost sure. On the one
hand, a sure event will always happen, and no other event can ever happen. On the other,
if an event is almost sure, other event are allowed to occur, but they happen almost never.
Thus, for instance, infinite sequences of events, or a continuum of outcomes, allow events with
zero-probability to occur —like hitting with a dart a particular point.
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Summarising, there is a non-negligible probability of losing modes, a low
probability of recovering them, and the remaining modes could be all spurious.

There is also another interesting fact, albeit undesirable as well. Isolated
populations, starting with identical gene frequency, can end up in different ab-
sorbing states. Thus, variation within populations is turned into variations
between populations. Returning to the tracking problem, this fact means that
different runs of the algorithm lead to different results. Therefore, computed
expectations may have high variance. However, computed expectations within
the same algorithm run have low variance making the tracker look stable.

A yet another remarkable phenomenon is caused by the tendency of CON-
DENSATION towards clustering samples. Even when the likelihood function gives
no information at all, i.e, there is nothing to track in the scene, samples become
quickly concentrated. It strongly looks as if the tracker is following something,
when actually it isn’t. Of course, the peaks tracked differ from run to run.

Finally, CONDENSATION was designed to keep multiple hypotheses but only
for a single target. Thus, multiple-target tracking was not feasible. Further
extensions and variations from other authors [20, 16] usually lead to the so-
called curse of dimensionality!?.

King and Forsyth proposed two approaches to tackle sampling impoverish-
ment. In the first place, they suggested using fewer re-sampling steps. Obvi-
ously, a well constrained dynamic model would be required, what is usually not
feasible. The second suggestion implies generating new samples occasionally.
This suggestions has been followed by Varona et al. in [26], and within the
importance-sampling framework, by Isard and Blake [12].

7 An Approach to MTT by Particle Filtering

In this section, an proposal based on particle filters is developed in order to
perform Multiple-Target Tracking. The approach was initially inspired in the
iTrack algorithm —within the SIR framework— implemented by Varona in his
PhD thesis [25]. Subsequently, the focus has been placed in coping with two
main difficulties:

1. inherent drawbacks of SIR methods;

2. and, scenario-dependent problems.

On the one hand, serious computational problems arose due to the inability of
managing particle sets which must be big enough to populate adequately the
search space, thereby being able of representing arbitrary distributions. Thus,
particles should be wisely steered and re-sampled, so as to reduce the number

I2This is a term coined by Richard Bellman in 1961 to refer to the problem caused by
the exponential increase of an hyper-volume as a function of space dimensionality: adding
extra dimensions causes an exponential growth of the number of required samples to densely
populate the space.
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of required particles. Issues such as sample impoverishment, and the curse of
dimensionality must be tackle in a principled way.

On the other hand, robust tracking requires to deal with expected difficul-
ties, such as background clutter and target occlusion. The non-rigid nature of
the targets, along with changing illumination conditions, make model updating
unavoidable. However, model drift should be prevented at any cost to ensure
tracking viability.

7.1 State Modelling

A first-order dynamic model in image coordinates is used to model the motion
of the central point of a bounding box. This bounding box is considered the
region within the scene which is thought to enclose the target.

Thus, the target’s motion is characterised by its position at time ¢, x; =
(:Et,yt)T, and its speed, u; = (ut,vt)T. This dynamic model involves the as-
sumption of constant speed —acceleration will be given by Gaussian noise—-
which can be more o less realistic depending on the target’s dynamics and the
frame rate. It usually holds in trajectory-analysis applications at current com-
mon frame rates of 25-30 fps.

The aspect model is given by a bounding box and an appearance matrix.
The former, denoted by w; = (wy, ht)T, defines a rectangle whose size is given
by its width, w;, and its height, h;. The latter, denoted by A, stores the pixel
intensity values within the bounding box. An indicator of the expected likeli-
hood value is given by \;. This stores expected matching, taking into account
that differences will be found due to sensor noise, changes in illumination, shape
deformations, etc.

The occlusion status is inferred and store in p;. This is a binary variable
which points out whether the target is the nearer one in a group to the camera.

Finally, a label | associates a specific appearance model to the corresponding
samples, allowing multiple-target tracking. Therefore, the [—target’s state is

U (ol il ol AL 0T
defined as s} = (x},u}, wi, AL pl, X})".

7.2 Transition Model

Several independence relationships are assumed in order to determine the tran-
sition model. It is considered that both aspect and dynamic models are inde-
pendent, that the position only depends on the previous position and speed, the
speed on the previous one, and so does the bounding box on and the appearance.
Therefore, the transition model can be split:

P(St | Stfl) - P(XtaUtthaAt | thlaUtflthflaAtfl) (29)
= P(X, | Xt Ur) P(U; | Uply) P(W, | W) P(A | Ary).

Given the constant speed assumption, the dynamic model can be defined
according to:

18



P(Xy | xpm1,mm1) = N (Xgyxeo1 + w14, 2x), (30)
P(Ut | U—t—l) = N(Ut;ut_l,Eu). (31)

Thus, the position state variable X; evolves according to a linear Gaussian
whose mean is a linear expression of its parents and the variance is fixed and
heuristically determined. A; is the sampling period. Time is considered discrete
and measured in frames. Thus, A; equals 1. Position is also discrete and
measured in pixels. On the other hand, the speed state variable U; evolves
according to a Gaussian whose mean is its parent and the variance is again
heuristically fixed according to the expected target acceleration. These two
covariance matrices are denoted by 3y and 3.

In order to implement the aspect model, it is assumed that the shape evolves
smoothly, and the appearance is fixed between consecutive frames according to:

P(Wt | Wtfl) = N(Wt;wt717zw)) (32)
P(Ar| A1) = 5(Ai—Ary). (33)

where ¥, denotes the size covariance matrix.
Although the appearance is considered to be fixed when propagating the
state, it will eventually be updated once the posterior expectation is computed.
Therefore, the position, speed, and size of each sample are predicted accord-
ing to:

sl il il i

Xy = X A+ &

il l i

u, - Up_q + §u7

il il i

Wy o= wyl + &, (34)

where the random vectors &L, &L, €8 sampled from WAGN processes, provide
the system with a diversity of hypotheses.

Sample likelihoods depend on sample position and size, but not on their
speeds. Thus, if speeds were propagated considering the previous speed, they
would be in quasi open loop'®. Thus, their values could become completely
different from the true values within a few frames, and an important proportion
of samples would be wasted. In order to avoid this phenomenon, the estimated
target speed ul_; at time t — 1 is fed back into the prediction of fcf;l.

After the initialisation, no sample is generated using detection, since it would
mask tracking misbehaviours. Thus, just tracking performances are tested by
means of propagating hypotheses and weighting them according to evidence.
Clearly, by incorporating detection, the general performance will be enhanced,
providing the system with error-recovery capabilities.

13T here would still be a weak relation, since speeds are used to predict positions, and
position errors can be measured, but a considerable delay would be introduced, as it will be
shown in the experimental results.

19



7.3 Template-based Likelihood Function

In a visual tracking context, the likelihood function gives the probability density
function of image features given the state. The intensity is chosen as image
feature. Features are considered pixel-oriented. Hence, the appearance is given
by a matrix whose elements are the pixels’ intensity values.

Let I; be a matrix whose elements are the scene pixel intensity values at
time ¢. Thus, evidence e; is given by the input image sequence I;. Given the
predicted position X; and bounding-box size Wy, the corresponding image sub-
region is denoted by I. The model appearance matrix must be scaled according
to the sample size. Let A® be the model scaled matrix. Thus, assuming that the
likelihood function is independent of the speed component, it can be expressed
as:

PL|S) = P |X;,Wi,A)
= PI7[A]), (35)

and, once assumed constant appearance between frames and White Additive
Gaussian Noise, the likelihood function can be defined as a similarity measure
which averages the likelihood of all pixels within the bounding box!'%:

1
a,be A
1 s
= a7 ZA N (If (a,b); A (a,b) ,0,21) , (36)
a,beAg

where M is the number of pixels of the appearance model, (a,b) defines a pixel
position in the appearance matrix and o2 is the camera noise variance, which
randomly influences the pixels’ intensity values.

7.4 Weight Normalisation

In a multiple-target tracking scenario, those targets whose samples exhibit lower
likelihood are more likely to be lost, since the probability of propagating one
mode is proportional to the cumulative weights of its samples. In order to avoid
one target absorbing other target samples, genetic drift must be prevented.
Thus, a memory term, which takes into account the number of targets being
tracked, is included. Weights are normalised according to:

14 This expression does not pretend to follow a probabilistic derivation. The likelihood
function is usually defined in terms of a distance, and this distance is here computed from the
likelihood of each pixel within the bounding box.
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(37)

where L is the number of tracked targets. Each weight is normalised according
to the total weight of the target’s samples. Thus, all targets have the same
probability of being propagated, since the addition of the weights of each tar-
get samples sums % This allows multiple-target tracking using a single PF
framework, despite the differences between their likelihoods and the genetic

drift phenomenon.

7.5 State Estimation

The [-target estimates are computed according to:

i=1

l 1
Xy — X
- s (2522),

N
xt = (1—oax) (Xi71 + ui,lAt) + ax (LZﬁ»B}iJ) 7

£
[

Ay
N . .

wi = (1—aw)Wii1 +ow (LZfi'lvsz’l> , (38)
i=1

where ax, ay, aw € [0, 1] denote the adaptation rates. Target speeds are not
estimated according to sample speeds and their weights, since significant errors
would be introduced: samples are chosen only because of sample weights, which
do not directly depend on the current speed. This fact could imply a significant
amount of jitter and many samples would be wasted. Therefore, target speeds
are computed from successive position estimates. Further, both position and
speed estimates are enhanced by regularising them according to their histories.

The target appearance must also be updated. However, this is a sensitive
task which may lead to the well-known model drift phenomenon. Thus, models
are then only updated when two conditions hold:

e the target is not occluded;

e and, the likelihood of the estimated target’s state suggests that the esti-
mate is sufficiently reliable.

In this case, they are updated using an adaptive filter:

Al =(1—-aa) A", +aal, (39)

where aa € [0, 1] is the learning rate, and I. is the image sub-region cropped
given the target new estimate position and size x}, w!.
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In order to determine when the estimate is reliable, the likelihood of the
current estimate is computed, p (et | sé) The appearance is then updated when
this value is higher than an indicator of the expected likelihood value, calculated
following an adaptive rule:

Xo= (1= a) Ay +aup (e | si) . (40)

7.6 Occlusion handling

Although the appearance model is not updated during occlusions, these still
constitute a main cause of catastrophic failures. Partial occlusions may cause
inaccurate size updating, according to the area that can be seen. In case of
complete occlusions, sample likelihoods are meaningless, and the re-sampling
phase randomly propagate them, quickly losing the target.

Hence, proper handling of occlusions is crucial. The state binary variable p}
tracks the occlusion status. Occlusions are predicted according to the learnt dy-
namics. When the predicted occlusion is significant, and the target likelihood is
lower than the expected one given by AL, the target state changes into occluded.
Then, the following changes are introduced:

e neither the size, nor the velocity or the likelihood-expectation indicator
are updated; the position is just propagated

e those samples belonging to the occluded target are not re-sampled. As a
result, samples are spread around the target because of the uncertainty
predictions terms. The other targets’ samples are re-sampled, but are not
assigned to the occluded target, since otherwise this one would monopolise
the whole sample set.

When the occlusion is no longer predicted, or a sample likelihood exceeds the
value previous to the occlusion, pl turns into zero, which immediately implies
pruning those samples with lower weights. Furthermore, all estimates are again
updated.

7.7 Extension of the Tracking Algorithm

Bounding-boxes and templates can hardly model the shape and appearance of
non-rigid targets. The target region representation is changed into an ellipse in
order to reduce the number of background pixels included in the model. Now,
the motion of the central point of an elliptical region is modelled using first-order
dynamics in image coordinates.

Further, the target appearance is represented by means of colour histograms.
Histograms are broadly used to represented human appearance, since they are
claimed to be less sensitive than colour templates to rotations in depth, the
camera point of view, non-rigid targets, and partial occlusions. By using colour
as image feature instead of intensity, a better target disambiguation can be
achieved.
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Thus, the [—model is given by:
B = {pik=1:K}, (41)

where K is the number of bins, and the probability of each feature is:

M

p;c = Cl Z 4 (b (xa) - k) ) (42)

a=1

where C! is a normalisation constant required to ensure that Y1 ph = 1, &
the Kronecker delta, {x,;a =1: M} the pixel locations, and b (x,) a function
that associates the given pixel to its corresponding histogram bin.

The I-labelled target’s state is then defined as s! = (x!,ul, wi,p’, pl, )\ff)T,
where components are the ellipse position, velocity, both axes, the appearance
model, the occlusion status, and the expected target likelihood.

7.7.1 A Colour-based Likelihood function

The target distribution at the predicted position f(i’l and ellipse size v“vi’l, is

given by p!, which is calculated in the same way as the model. The similarity
between two histograms can be computed using the following metric [2, 19]:

dg =1/1—-p(p,P), (43)

where

K
p(p.P) = > \/DkBhs (44)

k=1

is known as the Bhattacharyya coefficient. Therefore, similar histograms have a
high Bhattacharyya coefficient, which should correspond to high sample weights.
The computed metric can be mapped using a Gaussian distribution [19], and
samples are thus weighted according to:

it =p <et | §Zl) =N (ds;p,0°). (45)

So far no background information has been used. However, tracking success
depends on how distinguishable the target is from a local environment. Thus,
foreground features present also in its surroundings should be less important
for target localisation. Here, an approach similar to [2] is adopted by using a
centre-surround model to compute the local background histogram q' according
to the outer region which encloses the target, see Fig. 5.
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Figure 5: Examples of a centre-surround model with safety margin. (a) Tracked
van from a traffic-monitoring sequence. (b) Tracked person from an indoor
surveillance application in a shopping centre. Regions from centre to border:
target estimation, safety margin, surrounding background, and non-local back-
ground.

The local background region is given by an ellipse which encloses the tracked
one by defining two margins of dimension xs * max (h, w). The potential incor-
poration of own target pixels, specially if the target shape cannot be fairly
represented by an ellipse is minimised by taking into account just the outer
region to build the local background histogram. kg is usually equal to 0.1 for
the inner margin and 0.3 for the outer one. Hence, the background histogram
is used to compute a weight for each bin:

I
wé:{min(%);k:l:f(}, (46)
4y

where qfc* is the minimum non-zero value. Thus, these weights are then applied
to the target histogram to diminish the importance of those bins which represent
the local background. Hence, the resulting Bhattacharyya coefficient is

K
pw (P.P) = D wi\/PkBh (47)

k=1
Finally, in the state-estimation stage, Eq.(39) is changed accordingly:

ﬁi = (1-aq) ﬁi—l + thpi, (48)

where aq € [0, 1] is the learning rate which weights the most recent values versus
the historic ones. The complete algorithm is summarised in Algorithm 3.
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Algorithm 3 MTT particle filtering
PROPAGATION

e fori=1to N do

1. predict the sample values 8- using the transition model in Eq. (34)

2. measure the sample weights 7} according to Eq. (45)
e end for ¢
UPDATING

e normalise the weights as in Eq. (37)
e predict occlusion percentage according to target’s dynamics models

e for/[=1to L do

1. evaluate occlusions according to target collision and likelihoods
2. estimate the target state:

(a) if target is occluded then set adaptation rates ax, ay to zero
(b) estimate target position and speed according to Eq. 38
(c) if the target estimate is reliable
i. update target’s size
ii. update the appearance models following Eqgs. (38),(48)
iii. update A! as in Eq.(40)

e end for [
RE-SAMPLING

e Build the cumulative distribution as in Eq.(26)
e fori=1to N do
!

if target [ is occluded then keep the sample: si’l = éi .

else proceed with re-sampling as in Algorithm 1

e end fori

8 Discussion
With this work we have attempted to take a step towards solving the numerous

difficulties which appear in MTT applications by means of particle filtering.
Dynamics updating is modified by feeding back the estimated speed into
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the prediction stage. The target’s speed is estimated from successive position
estimates. Both position and speed estimates are now regularised. Thus, sample
wastage is significantly reduced. In addition, trajectory jitter is considerably
attenuated.

Different likelihood function have been explored in order to properly evalu-
ate samples associated to targets which present a high appearance variability.
Finally, the approach relies on the Bhattacharyya coefficient between colour
histograms to perform this task.

Model updating is carried out with special care, in order to overcome the
model drift phenomenon. A multiple-target tracking scenario causes several
problems, including sampling impoverishment and mutual occlusions. These
issues are tackled by redefining the weight normalisation, and predicting and
handling occlusions. The proposed sample-weight normalisation avoids losing
any of the targets due to the lack of samples.

Although significant advances have been obtained the approach is far from
being suitable to perform multiple target tracking in cluttered environments
under uncontrolled conditions in long sequences. This is due to multiple facts:

e Monte-Carlo methods are usually not able to densely populate a high-
dimension spaces. Estimations are performed from a limited number of
samples. This results in poor state approximations when dealing with
multi-modal pdf’s.

e Top-down approaches require extremely constrained models, which is not
feasible in generic applications. Errors in the estimation are propagated,
thereby causing model drift.

e An independent observation process from prediction is required to cope
with estimation errors with a finite number of samples. This entails the
necessity a bottom-up process.

e Likelihood functions are usually not discriminative enough.

As stated by the English Franciscan Friar William of Ockham in the 14th cen-
tury, "entia non sunt multiplicanda praeter necessitatem". This principle!®
suggests to select the theory that introduces the fewest assumptions and postu-
lates the fewest entities, which is of course not the case of PF’s in uncontrolled
environments.
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