
Multiple-Target Tracking based on ParticleFiltering∗Daniel RoweComputer Vision CentreFebruary 13, 2008Here, tracking is performed by enhancing the particle �ltering framework.This approach has been widely explored by several previous algorithms, as dis-cussed before. Despite this e�ort, many undesirable e�ects still remain. Theseare here highlighted, and some proposals are presented in order to cope withthem.1 Framework OutlineA probabilistic framework is commonly used as a way to perform tracking inorder to deal with uncertainty over time [23]. Classical approaches, such as theKalman Filter [14], rely on linearity and Gaussianity assumptions about theinvolved distributions.More recent works make use of Bayesian �lters combined with Monte CarloSimulation methods in order to deal with nonlinear and non-Gaussian transi-tion models and non-Gaussian likelihood functions [22, 18]. Subsequent devel-opments have introduced a re-sampling phase in the sequential simulation-basedBayesian �lter algorithms [8]. These approaches are known as particle �lteringwithin the control �eld or survival of the �ttest in Arti�cial Intelligence.Such methods were �rst introduced in the computer-vision research area byIsard and Blake, and renamed as Condensation [10, 11]. They have been widelyused in recent years [12, 3, 26, 16, 24, 17, 13, 20, 19, 27, 4]. Excellent reviews havebeen presented by Doucet [5], and by Arulampalam et al. [1]. Further, compre-hensive treatments are given in [6, 21]. However, several important drawbacksremain, as stated by King and Forsyth [15]. Despite the great number of im-provements that have been already introduced, many open issues prevent fromstating that particle �lters are able to solve unconstrained tracking problems.
∗From Towards Robust Multiple-Target Tracking in Unconstrained Human-Populated En-vironments. Daniel Rowe. PhD Thesis, Chapter 4, Universitat Autònoma de Barcelona,Spain, 2008. 1



2 Probabilistic FrameworkFrom a probabilistic point of view, the tracking problem involves dealing withstochastic processes. These are series of time-slices describing the state of allentities within the scene. Each time-slice consists of a set of random variables1.Two kind of variables can be distinguished, namely unobservable state variablesat time t, denoted as St, and observable evidence variables, denoted as Et. Theinterval between time-slices depends on the frame rate2.In order to specify the dependencies among the di�erent variables, these areordered following a temporal criterion, i.e, taking causality into account. Thismeans that the variables from previous time-slices cause the values of subse-quent time-slice variables. Thus, it should be possible to specify conditionalprobability density functions for all variables given their predecessors, from nowon called parents [23]. On the order hand, variable conditional independencewithin a time-slice could be established given a set of parents.However, since every time-slice must be considered, several problems arise:1. There is an unbounded set of conditional probability density functions.This problem can be overcome making the homogeneous process assump-tion:The process is governed by laws that do not change themselves over time.Hence, there is no need to specify all conditional pdf but only those withina representative time-slice.2. There is an unbounded set of parents.Let us consider separately the e�ect of the parents on the state variables
St and on evidence variables Et. Considering the Markov assumption onboth states and evidences, it is possible to get over this problem:(a) The current state St depends only on a �nite history of previousstates, St−τ :t−1.Therefore, the state could be de�ned as the information needed tomake the future independent from the past given the present. In�rst-order Markov processes the current state only depends on theimmediately previous one. Here, this kind of Markov processes is1The following notation is here used: related to variables, non-bold lowercase denotesscalars, whereas bold lowercase denotes vectors, and matrices are given by bold uppercase.In a probabilistic context, uppercase denotes probability density functions (pdf) and randomvariables; lowercase denotes probabilities and variable instances. Xt1:t2 denotes a variable setfrom time t = t1 to t = t2.2This parameter is set considering the possible dynamics of the targets that could appearin the scene. 2



considered, since it is always possible to reformulate a non �rst-orderMarkov process as a �rst-order one by increasing the state variableset [23].Thus, the state variables are conditional independent of all otherprevious variables given the previous state:
P (St | S0:t−1,E1:t−1) = P (St | St−1) . (1)The latter conditional pdf is called the transition model. In the track-ing problem here presented, the transition model will be split into adynamic model, which considers the target's motion, and an aspectmodel, which captures the target's shape and appearance.(b) The evidence variables at time t Et depend only on the current state

St.Hence, the evidence variables are conditional independent from allother variables given the state:
P (Et | S0:t−1,E1:t−1) = P (Et | St) . (2)In this case, the latter conditional pdf is called the observation orsensor model . It is also called the likelihood function since it forecastshow likely an observation is, once the state is given. It models a causalrelation: it is the current state which causes the obtained evidence.Thus, the developments within the scene can be modelled as a Hidden MarkovModel (HMM) where St constitutes the unobservable or hidden state variablesand Et the observable evidence variables at time t. The HMM is described by:

• an initial prior state density function, P (S0);
• the transition model3, P (St | St−1) for t ≥ 1;
• the likelihood function, P (Et | St) for t ≥ 1;
• both assumptions on variable conditional independence stated in Eqs. (1)and (2):� the state variables, {St; t∈ N} ,St ∈ R

ns , given the immediately pre-vious state St−1; ns denotes the state-space dimension;� the evidence variables, {Et; t∈ N} ,Et ∈ R
ne , given the correspondingstate variable; ne denotes the evidence-space dimension.3A sequence of random variables St satisfying the Markov assumption is called a Markovchain. If the conditional probability density functions P (St | St−1) are time independent,the Markov chain is called homogeneous. However, it does not mean that the probabilitydensity functions of consecutive states are the same, P (St) = P (St−1), a fact that is calledstationarity. 3



Given both models and assumptions, it is possible to specify the complete jointdensity function:
P (S0:t,E1:t) = P (Et | S0:t,E1:t−1)P (S0:t,E1:t−1) (cond. prob.)

= P (Et | St) P (S0:t,E1:t−1) (Markov on ev.)
= P (Et | St) P (St | S0:t−1,E1:t−1)P (S0:t−1,E1:t−1) (cond. prob.)
= P (Et | St) P (St | St−1)P (S0:t−1,E1:t−1) (Markov)
...

= P (S0)

t∏

k=1

P (Ek | Sk)P (Sk | Sk−1) , (3)which speci�es the probability of every event within the scene and, therefore,can answer every probabilistic query about it. Unfortunately, it is usually toocomplex to be analytically computed.3 Bayesian FilteringLet us now consider the probabilistic inference problem in which the state vari-able set S1:t is estimated from the observed evidence e1:τ , �nding out the pos-terior probability density function P (S1:t | e1:τ ). Let us also focus in one of theposterior pdf marginals, P (St | e1:τ ).The previous computation is called smoothing if t < τ , �ltering ormonitoringif t = τ , and predicting if t > τ . The general term estimating comprises all threeprocesses. This work is focused on �ltering, the computation of the belief state
St �or, even better, the posterior pdf over the current state P (St | e1:t)� givenall evidence up to date e1:t.In this case, instead of the causal relation given by the likelihood functionwhich assigns probabilities to potential evidences given the state, the �lteredpdf allows to make and inference about the state given the evidence.This pdf can be calculated through recursive estimation, that is, computingthe new posterior given the previous one and the new evidence [5, 23]:
P (St | e1:t) = P (St | e1:t−1, et) (4)

∝ P (et | St, e1:t−1)P (St | e1:t−1) (Bayes')
= P (et | St)P (St | e1:t−1) (Mark. on ev.)
= P (et | St)

∫
P (St | st−1, e1:t−1) P (st−1 | e1:t−1) dst−1 (cond.)

= P (et | St)︸ ︷︷ ︸

∫
P (St | st−1)︸ ︷︷ ︸P (st−1 | e1:t−1)︸ ︷︷ ︸ dst−1.likelihood︸ ︷︷ ︸ trans. model previous post.

︸ ︷︷ ︸updating prediction (Markov)
4



Figure 1: Temporal propagation of posterior density functions. A deterministicdrift and a stochastic spreading given by the transition model yield the temporalprior. Then, the new posterior is obtained by using the correction given bylikelihood function.The pdf is projected forward according to the transition model, making aprediction. Then, it is updated in agreement with the new evidence, et. Theprediction term represents the density function after applying the transitionmodel to the previous posterior density function. It leads to the so-called priordensity function, P (St | e1:t−1). It is called prior because it is previous to thelikelihood correction.The temporal propagation of the posterior pdf marginal can be seen as adi�usion�reinforcement process, see Fig. 1. The transition model has a de-terministic and a stochastic component. The former imposes a drift to theprobability density function, while the latter causes the spreading of the pdfthat increases the state uncertainty. Subsequently, the likelihood function re-inforces the pdf in the vicinity of observations altering the peaks and reducingthe uncertainty.4 Monte-Carlo SimulationUnfortunately, the recursive estimation given above leads to expressions thatare impossible to evaluate analytically unless strong assumptions are made. Forexample, the Kalman Filter is a linear recursive estimator which assumes a5



linear Gaussian transition model, and a Gaussian likelihood function.In a more general framework, this problem is overcome by making use ofMonte-Carlo methods4, whereN independent-and-identically-distributed (i.i.d.)random samples, {si
t; i = 1 : N

}, are generated from the posterior pdf, P (St | e1:t).On the one hand, a simulated probability density function is given by thefollowing expression:
P̃ (St | e1:t) =

1

N

N∑

i=1

δ
(
St − si

t

)
, (5)where δ (·) denotes the Dirac delta function.On the other hand, the posterior expectation is given by:

µ , EP (St|e1:t) [St] =

∫
StP (St | e1:t) dSt, (6)and the posterior variance by:

σ2 , EP (St|e1:t)

[
S2

t

]
− E

2
P (St|e1:t)

[St] . (7)Let us now consider the following estimate:
S̄N =

∫
StP̃ (St | e1:t) dSt =

1

N

N∑

i=1

si
t, (8)if both posterior expectation and variance are �nite, it follows, due to the Cen-tral Limit Theorem, that when N → ∞, S̄N has a distribution that is approx-imately normal, which mean is the posterior expectation µ and its variance isproportional to the posterior variance σ2:

S̄N − µ∼̇N

(
0,

σ2

N

)
. (9)Therefore, the posterior expectation EP (St|e1:t) [St] can be estimated and,in addition, the deviation from the true value follows a normal distribution.Moreover, the higher the number of samples is, the lower the estimate variancewill be. These results are also applied for expectations of the form:

EP (St|e1:t) [φ (St)] =

∫
φ (St) P (St | e1:t) dSt (10)where φ (·) is a general function of the state.However, there are several drawbacks which prevent from using the methodas it is presented above. The posterior pdf, P (St | e1:t), is usually complex4Stochastic simulation techniques are referred as Monte-Carlo methods for the Casinos ofMonte Carlo, the capital city of gambles. Roulette wheels and dice rolls are simple randomnumber generators. 6



enough, multivariate, and only known up to a proportionality constant. Theseproblems make impossible to sample directly from it. Thus, alternative solutionsare required.5 Sequential Importance Sampling (SIS)It is possible to avoid the di�culty of sampling directly from the posterior den-sity by sampling from an importance or proposal distribution, Q (S0:t | e1:t). Asit will be proved, the posterior density function can be approximated arbitrarywell by drawing samples from a proposal distribution, and thereby, obtainingapproximations of the expectations of interest. Without the lack of generality,results are here obtained for the �rst raw moment, i.e, the mean:
µP (S0:t|e1:t) =

∫
S0:tP (S0:t | e1:t) ds0:t (11)

=

∫
S0:t

P (S0:t | e1:t)

Q (S0:t | e1:t)
Q (S0:t | e1:t) ds0:t (proposal distr.)

=

∫
S0:t

P (e1:t | S1:t)P (S0:t)

P (e1:t)Q (S0:t | e1:t)
Q (S0:t | e1:t) ds0:t. (Bayes)By de�ning the unnormalised importance weights as:

πt =
P (e1:t | S1:t)P (S0:t)

Q (S0:t | e1:t)
, (12)and conditioning over the evidence probability density function, it follows that:

µP (S0:t|e1:t) =
1

P (e1:t)

∫
S0:tπtQ (S0:t | e1:t) ds0:t (13)

=

∫
S0:tπtQ (S0:t | e1:t) ds0:t∫

P (e1:t | S1:t)P (S0:t) ds0:t
(conditioning)

=

∫
S0:tπtQ (S0:t | e1:t) ds0:t∫

P (e1:t | S1:t)P (S0:t)
Q(S0:t|e1:t)
Q(S0:t|e1:t)

ds0:t

(prop. distr.)
=

∫
S0:tπtQ (S0:t | e1:t) ds0:t∫

πtQ (S0:t | e1:t) ds0:t
(weight def.)

=
EQ(St|e1:t) [S0:tπt]

EQ(St|e1:t) [πt]
. (expect. def.)Both expectations can be approximated by sampling from the proposal dis-tribution. Thus, the posterior distribution mean is thereby approximated usingthe following estimate: 7



S̄N =

1
N

N∑

i=1

si
0:tπ

i
t

1
N

N∑

i=1

πi
t

=

N∑

i=1

si
0:tπ

i
t, (14)where:

πi
t =

πi
t

N∑

j=1

π
j
t

, (15)denotes the normalised importance weights. The posterior density function canthen be approximated in the following way:
P (S0:t | e1:t) ≈ P̃ (S0:t | e1:t)

≈
N∑

i=1

πi
tδ
(
S0:t − si

0:t

)
, (16)what results from comparing Eq. (8) and Eq. (14).Considering a �ltering scenario, that is, assuming that current states will notbe modi�ed by future observations, the proposal distribution can be decomposedas:

Q (S0:t | e1:t) = Q (S0:t−1,St | e1:t) (17)
= Q (St | S0:t−1, e1:t)Q (S0:t−1 | e1:t) (cond. prob.)
= Q (St | S0:t−1, e1:t)Q (S0:t−1 | e1:t−1) (Mark. on ev.)This allows us to obtain a recursive expression for the importance weights:

πt =
P (e1:t | S1:t)P (S0:t)

Q (S0:t | e1:t)
(18)

=
P (e1:t | S1:t)P (S0:t)

Q (St | S0:t−1, e1:t)Q (S0:t−1 | e1:t−1)
(proposal decomp.)

=
P (e1:t | S1:t)P (S0:t)

Q (St | S0:t−1, e1:t)Q (S0:t−1 | e1:t−1)

πt−1

P (e1:t−1|S1:t−1)P (S0:t−1)
Q(S0:t−1|e1:t−1)

(weight def.)8



= πt−1
P (e1:t | S1:t)P (S0:t)

Q (St | S0:t−1, e1:t)P (e1:t−1 | S1:t−1)P (S0:t−1)

= πt−1
P (et | S1:t, e1:t−1) P (e1:t−1 | S1:t)P (St | S0:t−1) P (S0:t−1)

Q (St | S0:t−1, e1:t)P (e1:t−1 | S1:t−1)P (S0:t−1)
(cond. prob)

= πt−1
P (et | St)P (St | St−1)

Q (St | S0:t−1, e1:t)
(Markov),where

• P (et | St) is the likelihood function;
• P (St | St−1) is the transition model;
• and, Q (St | S0:t−1, e1:t) is the proposal distribution.A common and easy choice for the proposal distribution �for instance, the onetaken in [11]� is:

Q (St | S0:t−1, e1:t) ≈ P (St | St−1) . (19)In this case, the importance weights are given by:
πt = πt−1P (et | St) , (20)and the normalised importance weights are given by:
πi

t =
πi

t−1p
(
et | s

i
t

)

N∑

j=1

π
j
t−1p

(
et | s

j
t

) . (21)However, this choice has several drawbacks derived from the fact that notincorporating the observations introduces errors in the prediction. Thus, itmay be the case that only a few particles have signi�cant weights after beingevaluated, specially when the likelihood function is much narrower than thetemporal prior.5.1 Degeneracy ProblemThe SIS algorithm have an intrinsic problem which prevents from using it as itis. As it is proved in [5], the variance of the importance weights increase overtime. This result has devastating consequences on the simulation performance,since the majority of the normalised importance weights tend to zero after fewiterations. This samples being numerically insigni�cant, they are not taken intoaccount in the pdf approximation. This result implies a sample wastage and apoor representation of the posterior distribution.9



6 Sequential Importance Re-sampling (SIR)Under this approach, a re-sampling stage is used to prune those particles withnegligible importance weights, and multiply those with higher ones. Thus, sam-ples are re-sampled with replacement using the importance weights as probabil-ities.This idea is based on the factored sampling algorithm [9] designed for sta-tionary pdf's. It works as follows: A posterior representation is given by theBayes' theorem:
P (S | e) ∝ P (e | S)P (S) , (22)but the likelihood function is complex enough to prevent the posterior beingevaluated in closed form. Thus, sampling techniques are proposed to gener-ate random variates from a distribution P̃ (s) that approximates the posterior

P (S | e). A sample set of N i.i.d. random samples, {ŝi; i = 1 : N
}, is simulatedfrom the initial prior density function, P (S). The algorithm assigns normalisedweights πi to each sample in the set according to the likelihood function:

πi =
p
(
e | ŝi

)

N∑

j=1

p
(
e | ŝj

)
. (23)Subsequently, the samples are selected�or re-sampled� from the sample setwith probability πi. Therefore, the new sample set, {si; i = 1 : N

}, representsthe posterior density function, P (S | e), accurately as N → ∞. Obviously, someparticles may be chosen several times, especially those with higher weights.Thus, some samples in the new set could be identical. On the other hand,samples with lower weights could be not chosen at all.This weighted particle representation is shown in Fig. 2, where the poste-rior density function is represented by blobs whose centres are the sample set{
si; i = 1 : N

} and their area is proportional to the observation value given bythe weights πi.This idea was introduced by Gordon et al. [8] within a Bayesian �lteringframework, thereby leading to Sequential Importance Re-sampling (SIR) �lters.Here, a posterior probability density function represented by samples is itera-tively computed. The pdf undergoes a di�usion-reinforcement process, and thereinforcement stage is followed by a run of the factored sampling algorithm pre-sented above. Thus, the factored sampling is extended by applying it iterativelyto successive time-slices.Subsequently, this techniques were introduced in the Computer Vision �eld,as well as in other areas such as Arti�cial Intelligence, or Automatic Control.Therefore, these methods are also variously called: particle �ltering �afterthe use of samples or particles as the way of propagating the probability den-sity function� survival of the �ttest �after the re-sampling stage� bootstrap10



Figure 2: Posterior pdf representation as set of weighted particles. See text fordetails.�ltering5, etc. In Computer Vision they are widely used under the name ofCondensation, after the paper presented in [10].6.1 The Condensation AlgorithmThe Condensation algorithm was presented by Isard and Blake in short format the European Conference on Computer Vision in 1996 [10]. Later on, it wasfully developed in [11]. This intended to track a human contour, which movesin cluttered background, given a raw video signal as data.Condensation addresses the �ltering problem when no assumption aboutlinearity or Gaussianity is made on almost all involved probability density func-tions. The algorithm is based on Bayesian �lters. Therefore, it computes a pos-terior probability density function P (St | e1:t) which undergoes the di�usion-reinforcement process described above. Because of the analytical problems al-ready exposed, it makes use of Monte-Carlo simulation techniques.It follows the aforementioned SIR approach. Thus, the posterior pdf at time
t−1, P (St−1 | e1:t−1), is given by a set of tuples, each of them consisting in onesample and its weight, {ŝi

t−1, π
i
t−1; i = 1 : N

} or, after applying the factoredsampling algorithm, by the re-sampled sample set {si
t−1,

1
N

; i = 1 : N
}. In thiscase, since all particles are evenly weighted, weights are not displayed and thenotation is reduced to {si

t−1; i = 1 : N
}.Summarising, the four density functions involved in a Bayesian �lter are:1. the initial prior density function, P (S0);2. the transition model, P (St | St−1) for t ≥ 1;5The use of the term bootstrap derives from the phrase "to pull oneself up by one's boot-strap", widely thought to be based on one of the eighteenth century Adventures of BaronMunchausen, by Rudolph Erich Raspe. In the context of this thesis, it means that the algo-rithm starts up and recovers by itself: �ttest old samples give rise to many new ones.11



3. the likelihood function, P (Et | St) for t ≥ 1;4. the posterior state density function, P (St | e1:t) for t ≥ 1.The initial prior density function is now the only one supposed to be Gaussian.Therefore, the initial sampling is straightforward. Samples are propagated us-ing the approach described above, that is, by sampling them from the transitionmodel. Thus, there is no need to sample from the previous posterior in subse-quently iterations. This fact avoids one of the main problems of the approachbased on Monte Carlo Simulation, i.e., sampling from a complex, multivariateand only known up to a proportionality constant posterior pdf.This algorithm works as follows: each iteration starts with the predictionstage where the temporal prior P (St | e1:t−1) is obtained by applying the tran-sition model P (St | St−1) to the previous posterior. Computationally, this isdone in two steps. In the �rst place, a deterministic drift is applied to eachsample of the previous posterior,{si
t−1; i = 1 : N

}. Obviously, those sampleswhich were identical will undergo the same drift. Then, the random compo-nent, i.e. the di�usion, is applied causing identical samples to split. As a resultof this stage, the sample set represents the prior density function at time t,{
ŝi
t; i = 1 : N

}.The second stage consists in the likelihood correction where the sampleweights are calculated according to:
πi

t = p
(
ei

t | ŝ
i
t

)
. (24)It is worth to notice that there is no need to recursively propagate the weights�as done in Eq. (21)� since all previous weights are even and equal to 1

N
afterthe re-sampling stage. Once all samples have been propagated and measured,the �nal stage applies the factored sampling to carry out the re-sampling phase.Thus, weights are normalised:

πi
t =

πi
t

N∑

i=j

π
j
t

, (25)where πi
t denotes the i-th sample normalised weight at time t.Sampling from the discrete set {ŝi

t; i = 1 : N
} with probabilities πi

t can beaccomplished by sampling from a discrete uniform distribution, projecting theindex onto the sample cumulative distribution range and then onto the distri-bution domain [5], see Fig. 3.The cumulative probability distribution is constructed according to:
c0
t = 0,

ci
t = ci−1

t + πi
t, i = 1 : N. (26)12



Figure 3: Cumulative distribution.Algorithm 1 Re-sampling stage.
• For each sample si

t:1. a random number is generated from a Uniform distribution, r ∈ [0, 1].2. the smallest k index for which ck
t ≥ r is found.3. the corresponding sample is selected, si

t = ŝk
t .

• end for iThen, the new sample set, {si
t; i = 1 : N

} is calculated by generating a ran-dom number, and selecting the sample whose corresponding cumulative proba-bility exceed this number. This process is summarised in Algorithm 1.Finally, the sample set represents the posterior pdf at time t, P (st, e1:t). Thesample set size N is kept constant over time for all iterations. The expectedvalue at time t can be approximated as:
EP (St|e1:t) [St] ≈

N∑

i=1

πi
tŝ

i
t (27)

≈
1

N

N∑

i=1

si
t. (28)It is interesting to remark that the accuracy of any estimate �such as themean and covariance� of the posterior distribution can only decrease as a resultof the re-sampling stage. Thus, if these quantities are to be used or displayed,then these should be computed prior to re-sampling, as in Eq. (27), instead ofusing the posterior expression in Eq. (28).13



Figure 4: Condensation algorithm: a graphical representation of one iteration.See text for details.The algorithm is graphically depicted in Fig. 4, and summed up in Algo-rithm 2.6.2 The Drawbacks of the Condensation AlgorithmCondensation has certainly been widely applied between 1999 and 2003. Ac-cording to Cite-Seer6, it has a peak of over 35 citations in 2001 and 271 hitswithin the Cite-Seer database. It has been considered fast and e�cient due toits two main advantages:1. �rst of all, it can represent multi-modal density functions. This fact allowsus to consider multiple hypotheses, which is essential in scenes where back-ground clutter or other moving objects7 could mimic the target. Thus, it ispossible to propagate multiple hypotheses which are pruned or reinforcedin each iteration depending on their likelihood.6http://citeseer.ist.psu.edu/7Which does not mean that several targets can be tracked at the same time using thealgorithm as it is. 14



Algorithm 2 Condensation.Propagation
• for each sample in the set {si

t−1; i = 1 : N
} do1. predict the sample values ŝi

t using the transition model P (St | St−1);2. measure the sample weights πi
t, Eq. (24);

• end for iState Estimation
• Estimate the state according to Eq. (27);Re-sampling
• Normalise the weights, Eq. (25);
• Compute the cumulative probabilities as in Eq.(26);
• Call the algorithm in Algorithm 1.2. The second advantage is that, maintaining the sample set size �xed, itwas supposed to be able to run with bounded computational resources innear real time8.Isard and Blake proved in [11] the asymptotic correctness of the algorithm byshowing that the sample set representation of the posterior density function hasweak and uniform convergence as N → ∞. Thus, it is stated that each sampleat time t of the sample set {si

t; i = 1 : N
} is drawn from a probability densityfunction P̃ (St | e1:t) such that P̃ (St | e1:t) → P (St | e1:t), where → denotesweak, uniform convergence9.However, they already warned that the convergence was proved for N → ∞given a �xed t. Therefore, the sampled representation approximates the truedistribution with a desired accuracy but only for a �xed number of frames T .Nothing is said about the limit T → ∞. Thus, at later times larger values of Nmay be required.8However, as will be shown later, having a �xed sample set size has several drawbacks. Fur-ther, the number of samples required to ensured acceptable performances in high dimensionalspaces prevent from a real-time use in most applications. An on-line sample-set size adapta-tion was explore was Fox [7] by evaluating the approximation error using the Kullback-Leiblerdistance; this was kept bounded by modifying the sample set size.9Weak convergence: for every Q de�ned in a probability space, 〈P̃ (st | e1:t) , Q

〉
→

〈P (st | e1:t) , Q〉 where 〈〉 denotes the inner product.Uniform convergence: for every ε > 0, there exists a natural number N such that for all
st and all n > N , |p̃ (st | e1:t) − p (st | e1:t)| < ε.15



They also stated that there is no information about how large N should befor a requested precision and, therefore, it is heuristically determined. Theseand other undesirable Condensation side-e�ects were thoroughly discussed byKing and Forsyth [15]. They are brie�y presented in the next paragraphs.One of the main drawbacks of the re-sampling algorithms is a phenomenoncalled sampling impoverishment. Let us consider that the samples are spreadaround several modes10. King and Forsyth demonstrated that, with probabilityone �what is called an almost sure event11�, all samples will end up in oneof those modes. Moreover, the probability that one mode absorbs all samplesis proportional to the number of samples that started in it. Therefore, spuriousmodes have a non-zero probability of usurping all samples, causing the truemode to be lost.Although sampling impoverishment is well studied and proved in [15], it canalso be informally explained as a result of what is called genetic drift : consider a�nite population and one particular gene. The frequency of the gene will not beexactly reproduced in the o�spring due to sampling errors. This sampling erroris propagated over time. The initial frequency is lost because there is not anykind of genetic memory. Eventually, this random process leads to a populationwhere this gene is either lost or is present in every individual. In both cases,no further changes are possible. Thus, one mode has disappeared and it cannotbe recovered. The Markov chain that modelled the process has reached anabsorbing state, and its distribution is known as a stationary distribution whichmeans that P (St+1) = P (St).Condensation uses factored sampling. This process involves a loss of infor-mation. The probability for one sample of being selected is given by its weight.Consider now that several samples could be identical and similar samples formmodes that can be far enough one from the other. The probability of propa-gating one mode is proportional to the number of samples that constitute it.Sample impoverishment means that all but one of these modes could disappear,and this fact has a non-negligible probability of happening in �nite time.Considering a real-time tracking application �whose frame rate can be setfor instance at 30 frames per second, which means 30 generations per second�it is obvious that many modes could disappear in less than seconds. How manyseconds will be needed is only a matter of how many samples are used.Moreover, lost modes have a very low probability of being recovered. Thedi�usion process could preserve diversity, as mutation does in genetics. However,the distance between modes is usually bigger than the di�usion. One samplewill need several iterations in order to move from one mode to another. But thelikelihood in the region between modes is small, thereby making such a journeyhighly improbable.10The term mode here refers to each local maximum of the distribution.11There is a subtle di�erence between an event being sure and almost sure. On the onehand, a sure event will always happen, and no other event can ever happen. On the other,if an event is almost sure, other event are allowed to occur, but they happen almost never.Thus, for instance, in�nite sequences of events, or a continuum of outcomes, allow events withzero-probability to occur �like hitting with a dart a particular point.16



Summarising, there is a non-negligible probability of losing modes, a lowprobability of recovering them, and the remaining modes could be all spurious.There is also another interesting fact, albeit undesirable as well. Isolatedpopulations, starting with identical gene frequency, can end up in di�erent ab-sorbing states. Thus, variation within populations is turned into variationsbetween populations. Returning to the tracking problem, this fact means thatdi�erent runs of the algorithm lead to di�erent results. Therefore, computedexpectations may have high variance. However, computed expectations withinthe same algorithm run have low variance making the tracker look stable.A yet another remarkable phenomenon is caused by the tendency of Con-densation towards clustering samples. Even when the likelihood function givesno information at all, i.e, there is nothing to track in the scene, samples becomequickly concentrated. It strongly looks as if the tracker is following something,when actually it isn't. Of course, the peaks tracked di�er from run to run.Finally, Condensation was designed to keep multiple hypotheses but onlyfor a single target. Thus, multiple-target tracking was not feasible. Furtherextensions and variations from other authors [20, 16] usually lead to the so-called curse of dimensionality12.King and Forsyth proposed two approaches to tackle sampling impoverish-ment. In the �rst place, they suggested using fewer re-sampling steps. Obvi-ously, a well constrained dynamic model would be required, what is usually notfeasible. The second suggestion implies generating new samples occasionally.This suggestions has been followed by Varona et al. in [26], and within theimportance-sampling framework, by Isard and Blake [12].7 An Approach to MTT by Particle FilteringIn this section, an proposal based on particle �lters is developed in order toperform Multiple-Target Tracking. The approach was initially inspired in theiTrack algorithm �within the SIR framework� implemented by Varona in hisPhD thesis [25]. Subsequently, the focus has been placed in coping with twomain di�culties:1. inherent drawbacks of SIR methods;2. and, scenario-dependent problems.On the one hand, serious computational problems arose due to the inability ofmanaging particle sets which must be big enough to populate adequately thesearch space, thereby being able of representing arbitrary distributions. Thus,particles should be wisely steered and re-sampled, so as to reduce the number12This is a term coined by Richard Bellman in 1961 to refer to the problem caused bythe exponential increase of an hyper-volume as a function of space dimensionality: addingextra dimensions causes an exponential growth of the number of required samples to denselypopulate the space. 17



of required particles. Issues such as sample impoverishment, and the curse ofdimensionality must be tackle in a principled way.On the other hand, robust tracking requires to deal with expected di�cul-ties, such as background clutter and target occlusion. The non-rigid nature ofthe targets, along with changing illumination conditions, make model updatingunavoidable. However, model drift should be prevented at any cost to ensuretracking viability.7.1 State ModellingA �rst-order dynamic model in image coordinates is used to model the motionof the central point of a bounding box. This bounding box is considered theregion within the scene which is thought to enclose the target.Thus, the target's motion is characterised by its position at time t, xt =
(xt, yt)

T , and its speed, ut = (ut, vt)
T . This dynamic model involves the as-sumption of constant speed �acceleration will be given by Gaussian noise�-which can be more o less realistic depending on the target's dynamics and theframe rate. It usually holds in trajectory-analysis applications at current com-mon frame rates of 25-30 fps.The aspect model is given by a bounding box and an appearance matrix.The former, denoted by wt = (wt, ht)
T , de�nes a rectangle whose size is givenby its width, wt, and its height, ht. The latter, denoted by At, stores the pixelintensity values within the bounding box. An indicator of the expected likeli-hood value is given by λt. This stores expected matching, taking into accountthat di�erences will be found due to sensor noise, changes in illumination, shapedeformations, etc.The occlusion status is inferred and store in ρt. This is a binary variablewhich points out whether the target is the nearer one in a group to the camera.Finally, a label l associates a speci�c appearance model to the correspondingsamples, allowing multiple-target tracking. Therefore, the l−target's state isde�ned as sl
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)T .7.2 Transition ModelSeveral independence relationships are assumed in order to determine the tran-sition model. It is considered that both aspect and dynamic models are inde-pendent, that the position only depends on the previous position and speed, thespeed on the previous one, and so does the bounding box on and the appearance.Therefore, the transition model can be split:
P (St | St−1) = P (Xt,Ut,Wt,At | Xt−1,Ut−1,Wt−1,At−1) (29)

= P (Xt | Xt−1,Ut−1)P (Ut | Ut−1) P (Wt | Wt−1)P (At | At−1) .Given the constant speed assumption, the dynamic model can be de�nedaccording to: 18



P (Xt | xt−1,ut−1) = N (Xt;xt−1 + ut−1∆t,Σx) , (30)
P (Ut | ut−1) = N (Ut;ut−1,Σu) . (31)Thus, the position state variable Xt evolves according to a linear Gaussianwhose mean is a linear expression of its parents and the variance is �xed andheuristically determined. ∆t is the sampling period. Time is considered discreteand measured in frames. Thus, ∆t equals 1. Position is also discrete andmeasured in pixels. On the other hand, the speed state variable Ut evolvesaccording to a Gaussian whose mean is its parent and the variance is againheuristically �xed according to the expected target acceleration. These twocovariance matrices are denoted by Σx and Σu.In order to implement the aspect model, it is assumed that the shape evolvessmoothly, and the appearance is �xed between consecutive frames according to:
P (Wt | wt−1) = N (Wt;wt−1,Σw) , (32)
P (At | At−1) = δ (At − At−1) . (33)where Σw denotes the size covariance matrix.Although the appearance is considered to be �xed when propagating thestate, it will eventually be updated once the posterior expectation is computed.Therefore, the position, speed, and size of each sample are predicted accord-ing to:
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w, sampled from WAGN processes, providethe system with a diversity of hypotheses.Sample likelihoods depend on sample position and size, but not on theirspeeds. Thus, if speeds were propagated considering the previous speed, theywould be in quasi open loop13. Thus, their values could become completelydi�erent from the true values within a few frames, and an important proportionof samples would be wasted. In order to avoid this phenomenon, the estimatedtarget speed ul
t−1 at time t − 1 is fed back into the prediction of x̂

i,l
t .After the initialisation, no sample is generated using detection, since it wouldmask tracking misbehaviours. Thus, just tracking performances are tested bymeans of propagating hypotheses and weighting them according to evidence.Clearly, by incorporating detection, the general performance will be enhanced,providing the system with error-recovery capabilities.13There would still be a weak relation, since speeds are used to predict positions, andposition errors can be measured, but a considerable delay would be introduced, as it will beshown in the experimental results. 19



7.3 Template-based Likelihood FunctionIn a visual tracking context, the likelihood function gives the probability densityfunction of image features given the state. The intensity is chosen as imagefeature. Features are considered pixel-oriented. Hence, the appearance is givenby a matrix whose elements are the pixels' intensity values.Let It be a matrix whose elements are the scene pixel intensity values attime t. Thus, evidence et is given by the input image sequence It. Given thepredicted position Xt and bounding-box size Wt, the corresponding image sub-region is denoted by I
p
t . The model appearance matrix must be scaled accordingto the sample size. Let As be the model scaled matrix. Thus, assuming that thelikelihood function is independent of the speed component, it can be expressedas:
P (It | St) = P (It | Xt,Wt,At)

= P (Ip
t | As

t ) , (35)and, once assumed constant appearance between frames and White AdditiveGaussian Noise, the likelihood function can be de�ned as a similarity measurewhich averages the likelihood of all pixels within the bounding box14:
P (Ip

t | As
t ) =

1

M

∑

a,b∈As

t

P (Ip
t (a, b) | As

t (a, b))

=
1

M

∑

a,b∈As

t

N
(
I
p
t (a, b) ;As

t (a, b) , σ2
n

)
, (36)where M is the number of pixels of the appearance model, (a, b) de�nes a pixelposition in the appearance matrix and σ2

n is the camera noise variance, whichrandomly in�uences the pixels' intensity values.7.4 Weight NormalisationIn a multiple-target tracking scenario, those targets whose samples exhibit lowerlikelihood are more likely to be lost, since the probability of propagating onemode is proportional to the cumulative weights of its samples. In order to avoidone target absorbing other target samples, genetic drift must be prevented.Thus, a memory term, which takes into account the number of targets beingtracked, is included. Weights are normalised according to:14This expression does not pretend to follow a probabilistic derivation. The likelihoodfunction is usually de�ned in terms of a distance, and this distance is here computed from thelikelihood of each pixel within the bounding box.20



π
i,l
t =

π
i,l
t

N∑

i=1,j=l

π
i,j
t

1

L
, (37)where L is the number of tracked targets. Each weight is normalised accordingto the total weight of the target's samples. Thus, all targets have the sameprobability of being propagated, since the addition of the weights of each tar-get samples sums 1

L
. This allows multiple-target tracking using a single PFframework, despite the di�erences between their likelihoods and the geneticdrift phenomenon.7.5 State EstimationThe l-target estimates are computed according to:
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, (38)where αx, αu, αw ∈ [0, 1] denote the adaptation rates. Target speeds are notestimated according to sample speeds and their weights, since signi�cant errorswould be introduced: samples are chosen only because of sample weights, whichdo not directly depend on the current speed. This fact could imply a signi�cantamount of jitter and many samples would be wasted. Therefore, target speedsare computed from successive position estimates. Further, both position andspeed estimates are enhanced by regularising them according to their histories.The target appearance must also be updated. However, this is a sensitivetask which may lead to the well-known model drift phenomenon. Thus, modelsare then only updated when two conditions hold:

• the target is not occluded;
• and, the likelihood of the estimated target's state suggests that the esti-mate is su�ciently reliable.In this case, they are updated using an adaptive �lter:
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In order to determine when the estimate is reliable, the likelihood of thecurrent estimate is computed, p
(
et | sl

t

). The appearance is then updated whenthis value is higher than an indicator of the expected likelihood value, calculatedfollowing an adaptive rule:
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)
. (40)7.6 Occlusion handlingAlthough the appearance model is not updated during occlusions, these stillconstitute a main cause of catastrophic failures. Partial occlusions may causeinaccurate size updating, according to the area that can be seen. In case ofcomplete occlusions, sample likelihoods are meaningless, and the re-samplingphase randomly propagate them, quickly losing the target.Hence, proper handling of occlusions is crucial. The state binary variable ρl

ttracks the occlusion status. Occlusions are predicted according to the learnt dy-namics. When the predicted occlusion is signi�cant, and the target likelihood islower than the expected one given by λl
t, the target state changes into occluded.Then, the following changes are introduced:

• neither the size, nor the velocity or the likelihood-expectation indicatorare updated; the position is just propagated
• those samples belonging to the occluded target are not re-sampled. As aresult, samples are spread around the target because of the uncertaintypredictions terms. The other targets' samples are re-sampled, but are notassigned to the occluded target, since otherwise this one would monopolisethe whole sample set.When the occlusion is no longer predicted, or a sample likelihood exceeds thevalue previous to the occlusion, ρl

t turns into zero, which immediately impliespruning those samples with lower weights. Furthermore, all estimates are againupdated.7.7 Extension of the Tracking AlgorithmBounding-boxes and templates can hardly model the shape and appearance ofnon-rigid targets. The target region representation is changed into an ellipse inorder to reduce the number of background pixels included in the model. Now,the motion of the central point of an elliptical region is modelled using �rst-orderdynamics in image coordinates.Further, the target appearance is represented by means of colour histograms.Histograms are broadly used to represented human appearance, since they areclaimed to be less sensitive than colour templates to rotations in depth, thecamera point of view, non-rigid targets, and partial occlusions. By using colouras image feature instead of intensity, a better target disambiguation can beachieved. 22



Thus, the l−model is given by:
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i,l
t , isgiven by pl

i, which is calculated in the same way as the model. The similaritybetween two histograms can be computed using the following metric [2, 19]:
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k, (44)is known as the Bhattacharyya coe�cient. Therefore, similar histograms have ahigh Bhattacharyya coe�cient, which should correspond to high sample weights.The computed metric can be mapped using a Gaussian distribution [19], andsamples are thus weighted according to:
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. (45)So far no background information has been used. However, tracking successdepends on how distinguishable the target is from a local environment. Thus,foreground features present also in its surroundings should be less importantfor target localisation. Here, an approach similar to [2] is adopted by using acentre-surround model to compute the local background histogram ql accordingto the outer region which encloses the target, see Fig. 5.23



(a) (b)Figure 5: Examples of a centre-surround model with safety margin. (a) Trackedvan from a tra�c-monitoring sequence. (b) Tracked person from an indoorsurveillance application in a shopping centre. Regions from centre to border:target estimation, safety margin, surrounding background, and non-local back-ground.The local background region is given by an ellipse which encloses the trackedone by de�ning two margins of dimension κs ∗ max (h, w). The potential incor-poration of own target pixels, specially if the target shape cannot be fairlyrepresented by an ellipse is minimised by taking into account just the outerregion to build the local background histogram. κs is usually equal to 0.1 forthe inner margin and 0.3 for the outer one. Hence, the background histogramis used to compute a weight for each bin:
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k is the minimum non-zero value. Thus, these weights are then appliedto the target histogram to diminish the importance of those bins which representthe local background. Hence, the resulting Bhattacharyya coe�cient is
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k. (47)Finally, in the state-estimation stage, Eq.(39) is changed accordingly:
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t, (48)where αq ∈ [0, 1] is the learning rate which weights the most recent values versusthe historic ones. The complete algorithm is summarised in Algorithm 3.24



Algorithm 3 MTT particle �lteringPropagation
• for i = 1 to N do1. predict the sample values ŝ

i,l
t using the transition model in Eq. (34)2. measure the sample weights πi

t according to Eq. (45)
• end for iUpdating
• normalise the weights as in Eq. (37)
• predict occlusion percentage according to target's dynamics models
• for l = 1 to L do1. evaluate occlusions according to target collision and likelihoods2. estimate the target state:(a) if target is occluded then set adaptation rates αx, αu to zero(b) estimate target position and speed according to Eq. 38(c) if the target estimate is reliablei. update target's sizeii. update the appearance models following Eqs. (38),(48)iii. update λl

t as in Eq.(40)
• end for lRe-sampling
• Build the cumulative distribution as in Eq.(26)
• for i = 1 to N doif target l is occluded then keep the sample: s

i,l
t = ŝ

i,l
t .else proceed with re-sampling as in Algorithm 1

• end for i8 DiscussionWith this work we have attempted to take a step towards solving the numerousdi�culties which appear in MTT applications by means of particle �ltering.Dynamics updating is modi�ed by feeding back the estimated speed into25



the prediction stage. The target's speed is estimated from successive positionestimates. Both position and speed estimates are now regularised. Thus, samplewastage is signi�cantly reduced. In addition, trajectory jitter is considerablyattenuated.Di�erent likelihood function have been explored in order to properly evalu-ate samples associated to targets which present a high appearance variability.Finally, the approach relies on the Bhattacharyya coe�cient between colourhistograms to perform this task.Model updating is carried out with special care, in order to overcome themodel drift phenomenon. A multiple-target tracking scenario causes severalproblems, including sampling impoverishment and mutual occlusions. Theseissues are tackled by rede�ning the weight normalisation, and predicting andhandling occlusions. The proposed sample-weight normalisation avoids losingany of the targets due to the lack of samples.Although signi�cant advances have been obtained the approach is far frombeing suitable to perform multiple target tracking in cluttered environmentsunder uncontrolled conditions in long sequences. This is due to multiple facts:
• Monte-Carlo methods are usually not able to densely populate a high-dimension spaces. Estimations are performed from a limited number ofsamples. This results in poor state approximations when dealing withmulti-modal pdf's.
• Top-down approaches require extremely constrained models, which is notfeasible in generic applications. Errors in the estimation are propagated,thereby causing model drift.
• An independent observation process from prediction is required to copewith estimation errors with a �nite number of samples. This entails thenecessity a bottom-up process.
• Likelihood functions are usually not discriminative enough.As stated by the English Franciscan Friar William of Ockham in the 14th cen-tury, "entia non sunt multiplicanda praeter necessitatem". This principle15suggests to select the theory that introduces the fewest assumptions and postu-lates the fewest entities, which is of course not the case of PF's in uncontrolledenvironments.References[1] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A Tutorial on PFsfor On-line Non-linear/Non-Gaussian Bayesian Tracking. Signal Processing,50(2):174�188, 2002. (Cited on page 1)15It is usually referred as the `Ockham�s razor'26
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