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This contribution describes how the instantaneous 3D-velocity field of a moving
surface can be recovered from sequences of depth maps or range data sets. This
is essentially an extension of optical flow to 3D-surface data and has been termed
range flow.

1 Overview

We can compute local three-dimensional velocity (range flow) of moving surfaces
from sequences of depth maps. The corresponding constraint equation (Sect.2) is
closely related to the optical flow constraint equation. Thus similar schemes can
be employed to solve for the velocity field. However, in three dimensions we can
distinguish three flavours of the aperture problem (Sect.3). Sometimes, including
intensity as an aditional data channel can help to overcome the aperture problem.

As example solution strategies, the use of a local total least squares estimation
(Sect. 4) and a global regularisation framework (Sect.5) are discussed. As an
example application, we show how the motion of leaves can be captured (Sect.7).

2 Range Flow Constraint Equation

First we note that the observed surface can be described by it’s depth as a function
of space and timeZ = Z(X, Y, t). The total derivative with respect to time directly
yields the range flow motion constraint equation:

ZXU + ZY V + W + Zt = 0 . (1)

Heref = [U, V,W ]T is the range flow and indices denote partial derivatives. The
use of only the first order expresses the assumption that the object under consid-
eration can approximated by local planar patches. If needed, this can easily be
extended to incorporate higher terms. The range flow motion constraint equation
is the analogon to thebrightness change constraintequation used foroptical flow.
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Figure 1: On planar surfaces all constraint equations in a neighbourhood describe
essentially the same plane in velocity space. The point on this plane closest to the
origin defines the velocity normal to the planar surface.

2.1 Derivative Estimation

In order to evaluate Eq. (1) we need to compute partial derivatives of the depth
function with respect to world coordinates. These can, for instance, be computed
from a local approximation of the surface. The first order approximation of the
depth value reads:

Z(X + ∆X, Y + ∆Y, t + ∆t) = Z(X, Y, t) +
∂Z

∂X
∆X +

∂Z

∂Y
∆Y +

∂Z

∂t
∆t . (2)

If we assume the derivatives to be constant in a certain local neighbourhood we can
estimate them by solving a linear system of equations: ∆X1 ∆Y1 ∆t1

...
∆XN ∆YN ∆tN


︸ ︷︷ ︸

A

 ZX

ZY

Zt


︸ ︷︷ ︸

x

=

 D1
...

DN


︸ ︷︷ ︸

b

, (3)

whereDi = Z(X + ∆Xi, Y + ∆Yi, t + ∆ti)− Z(X, Y, t). This is easily solved
using the pseudo inverse:

x = (AT A)−1AT b . (4)

3 The Aperture Problem

Unfortunately Eq. (1) poses only one constraint in three unknowns, this may be at-
tributed to our initial assumption of locally planar surface patches. On a plane only
the movement perpendicular to the plane may be observed which is the aperture
problem revisited. Just as the optical flow constraint equation describes a line in
(∆x, ∆y)-space, Eq. (1) describes a plane in(U, V, W )-space with surface normal
[ZX ZY 1]T . The best solution that can be achieved under these circumstances will
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Figure 2: Illustration of the constraint equations present in a neighbourhood fora
full flow andb line flow.

be the minimal vector between the origin and the constraint plane, see Fig.1 . This
gives theraw normal flow:

f r =
−Zt

Z2
X + Z2

Y + 1

 ZX

ZY

1

 . (5)

As we are dealing with three dimensional flow, at least three mutually distinct, i.e.
non-parallel, planes are needed to combine the various normal flows in a region
to yield full 3D-flow. If there are three or more linearly independent constraint
equations in the considered neighbourhood the full velocity vector is readily com-
puted by the intersection of the constraint planes as illustrated in Fig.2a. Section4
describes how this can be done in a local neighbourhood by means of a total least
squares technique.

Linear structures such as intersecting planes result in two constraint planes, see
Fig. 2b. The point on the common line closest to the origin gives an appropriate
normal flow called line flow. This line flow lies in the plane perpendicular to the
linear structure. In this case only the motion along the direction of the intersecting
line can not be resolved.

We now proceed to illustrate two example methods, local and global, that can
be used for a full range flow estimation.

4 Local TLS Range Flow

The TLS solution presented here is an extension of thestructure tensoralgorithm
for optical flow estimation.

Assuming constant flow in a region containingn pixel we haven equations (1).
With ~d = [ZX ZY 1 ZT ]T , ~u = [U V W 1]T and the data matrixD = [~d1 . . . ~dn]T ,
the flow estimation in a total least squares sense can be formulated as:

||D~u||2 → min subject to ~uT~u = 1 . (6)
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The solution is given by the eigenvectorê4, corresponding to the smallest eigen-
valueλ4 of the generalised structure tensor:

J = DT D =


< ZXZX > < ZXZY > < ZX > < ZXZT >
< ZY ZX > < ZY ZY > < ZY > < ZY ZT >

< ZX > < ZY > < 1 > < ZT >
< ZT ZX > < ZT ZY > < ZT > < ZT ZT >

 . (7)

Here< · > denotes local averaging using a Box or Binomial filter. The desired
range flow is then given by:

~ff =
1

e44

 e14

e24

e34

 . (8)

As F is real and symmetric the eigenvalues and eigenvectors can easily be com-
puted using Jacobi-Rotations. In order to save execution time we only compute
range flow where the trace of the tensor exceeds a thresholdτ1. This eliminates
regions with insufficient magnitude of the gradient.

In the above we are really fitting a local constant flow model to the data. The
smallest eigenvalueλ4 directly measures the quality of this fit.

4.1 Normal Flows

Let the eigenvalues ofF be sorted:λ1 ≥ λ2 ≥ λ3 ≥ λ4. Thus if λ3 ≈ λ4 no
unique solution can be found. In general, any vector in the nullspace ofF is a
possible solution. In this case it is desirable to use the solution with minimal norm.

On planar structures all equations (1) are essentially the same. Only the largest
eigenvalue is significantly different (> τ2) from zero. The so called plane flow
can then be found from the corresponding eigenvectorê1 = [e11 e21 e31 e41]T as
follows:

fp =
e41

e2
11 + e2

21 + e2
31

 e11

e21

e31

 . (9)

Linear structures exhibit two types of constraints within the considered aperture,
the minimum norm solution (line flow) is found from the eigenvectorsê1, ê2:

f l =
1

1− e2
41 − e2

42

e41

 e11

e21

e31

 + e42

 e12

e22

e32

 . (10)

Figure3 shows an example of the various flow types.
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Figure 3: Example flow types:a synthetic depth map,b rendered.X − Y com-
ponents of the estimated flow fields:c full flow, e line flow andg plane flow and
X −Z components of the estimated flow fields:d full flow, f line flow andh plane
flow.

5 Globally Smooth Range Flow

Another way of solving the range flow estimation problem is to use a variational
approach. In analogy to the well known optical flow algorithm by Horn and Schunk
we can impose a smoothness constraint on the flow field. To ensure smoothly
varying parameters we use as the smoothness term:

3∑
i=1

(∇f i)
2 → min . (11)

Obviously the use of this simple membrane model is only justified if we have al-
ready segmented the data into differently moving objects. If no such segmentation
were available more elaborate schemes would have to be considered. The minimi-
sation combining data (1) and smoothness (11) terms reads:∫

A

{
(ZXU + ZY V + W + Zt)2 + α2

3∑
i=1

(∇f i)
2

}
dr → min . (12)

Hereα can be used to regulate the influence of the smoothness term. Just as in the
optical flow case this can be solved iteratively via the Euler-Lagrange equations.
Figure4 shows the result for increasing iteration time on the sequence shown in
Fig. 3. While the flow is initially dominated by the aperture problem it increasingly
tends towards a smooth flow field. However, depending on the data, convergence
can be rather slow.
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Figure 4: Global smoothness result for different number of iterations:X − Y
components of the estimated flow fields:a 10, c 50, e 100 andg 1000 iterations.
X − Z components of the estimated flow fields:b 10, d 50, f 100 andh 1000
iterations.

6 Intensity as Additional Data Channel

When the range data is obtained from stereo, structured lighting, depth from X or
active laser triangulation we typically have some intensity data as well. As this
intensity is perfectly registered with the depth data it can be used to aid the range
flow estimation.

Assuming the intensity does not change with moderate depth changes we ob-
tain an additional constraint equation in the X and Y movements:

IXU + IY V + It = 0 . (13)

Together with the range flow motion constraint (1) we now have two equations in
three unknowns. Even if they are independent, which is not always the case, we
still need to make further assumptions to solve for full range flow.

For the local TLS estimation we note that Eq. (13) can also be written in the
form of d′T u = 0, where we simply setd′3 = 0. Thus the intensity constraint
results in another structure tensorJ ′ constructed following Eq. (7). The sum of
the two tensors yields a combined tensor from which the solution is then found by
the analysis described above, see Sect.4.

In the case of the global smoothness algorithm (Sect.5) we simply include the
intensity constraint in the energy functional:∫

A

{
(ZXU + ZY V + W + Zt)2 + β(IXU + IY V + It)2 + α2

3∑
i=1

(∇f i)
2

}
dr → min .

(14)
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Figure 5: Tiger test sequence: a) depth only and b) with intensity texture.

a b c d

Figure 6: X-Y-range flow. TLS: a) depth only, b) with intensity. Global Smooth-
ness (500 iterations): c) depth only, d) with intensity.

Here we introduced a relative weightβ that can be used to give more influence to
either the depth or intensity data. A solution can again be found from the Euler-
Lagrange equations.

An example might illustrate the performance gain that can be achieved by in-
corporating the intensity information. Figure5 shows data taken with a laser range
finder from a toy tiger that is moved on a system of linear positioners. Due to rapid
depth changes there are some holes in the data, these are left out in the computation.

The X-Y components of the computed full flow fields are shown in Fig.6. The
increased density in the TLS case is apparent. Some numbers may illustrate the
algorithms behavior:

data density [%] rel mag error [%] dir error [◦]
Z only 10.5 13.8± 15.4 12.7± 10.3
I and Z 59.0 7.9± 9.0 9.9± 8.6

Not only does the density increase but also the error decreases.
Figure6c,d indicate that the combined use of intensity and depth in the global

flow algorithm also achieves a better estimate after the same number of iterations.

7 Application Example: Plant Leaf Motion

We finally present some flow fields found by observing living castor oil leaves.
Figure7 shows four examples of the type of data and flow fields encountered in
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Figure 7: Example movements of castor oil plant leaves.

this application. The folding of the outer lobes is clearly visible as well as a fair bit
of lateral motion of the leaf. The data sets considered here are taken at night with
a sampling rate of 5 minutes.

In collaboration with the botanical institute at the University of Heidelberg and
the Agriculture and Agri-Food Canada research station in Harrow, Ontario we seek
to establish the diurnal motion patterns of such leaves.

8 More Information on Range Flow

The interested reader can find more a detailed description of this work in some
papers at:

• http://klimt.iwr.uni-heidelberg.de/ hspies/publications.html

• http://www.csd.uwo.ca/faculty/barron
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