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In many inference problems based on a multi-dimensional state space model, the 
computation cost may explode and the estimation accuracy may deteriorate rapidly with 
the increase of the dimensionality of the state space, rendering many conventional 
techniques ineffective in face of a high dimensional state space model. For example, 
particle-filter-based methods become quite inefficient when being applied to a high 
dimensional state space since a prohibitively large number of samples may be required to 
approximate the underlying density functions with desired accuracy. An effective 
solution to solving this problem is to use the Rao-Blackwell theorem in reducing the 
dimension of the state vector that needs to be estimated. This short tutorial illustrates the 
key idea of such an approach by using visual tracking in surveillance as an example. 

The key idea of Rao-Blackwell dimension reduction is to make use of the “structural” 
information inherent in the problem itself to analytically infer part of state parameters 
conditional upon other state components which will be estimated by the Sequential 
Monte Carlo approaches. This directly leads to increased estimation accuracy. For the 
visual tracking problem, let us denote the state to be estimated as Xt and observation as Zt 

with subscript t the time index. If we can partition the original state-space Xt into two 
parts Rt (root variables), and Lt (leaf variables), such that the distribution of leaf variables 
can be computed analytically given the root variables (this is equal to say the distribution 
p(L1 :t|R1 :t,Z1 :t) can be estimated analytically) , therefore an approximation of p(R1:t|Z1:t) 
using Monte Carlo methods yields straightforwardly an approximation of joint posterior 
p(R1:t,L1:t|Z1:t) . The justification for this decomposition follows from the factorization of 
the probability: 

 

p(R1 :t,L1 :t|Z1 :t)=p(L1 :t|R1 :t,Z1 :t)p(R1 :t|Z1 :t )                                                                  (1) 
 
The author in [1] pointed out that p(L1:t|R1:t,Z1:t)  can be efficiently updated using 

Kalman filter when the initial uncertainty for leaves is Gaussian, and the CPDs 
(Conditional Probability Distributions) of the observation model and system dynamics for 
leaves are linear functions of the leaf states. In our work, we proposed Rao-Blackwellised 
particle filter for tracking, with Kalman filter being applied to estimate the leaf states 
(linear dynamics) and particle filter to estimate the root states (nonlinear parts). 

 



One advantage of the Rao-Blackwell theorem is that it can greatly reduce the variance 
of the state estimates. Generally, suppose we have an estimator ξ(R, L) depending upon 
two variables, its variance satisfies [2]: 

 
   ( ( , )) [ { ( , ) | }] [ { ( , ) | }Var R L Var E R L R E Var R L Rζ ζ ζ= +                                    (2)  

So the variance of estimator ζ’=E(ζ(R,L)|R) improves upon the crude estimator ζ(R,L) by 
a non-negative term E[Var{ζ(R,L)|R}] [2]. The formal justification can be found in [3]. 
One can interpret the Rao-Blackwell Theorem by saying that the estimator obtained by 
the calculation of conditional expectation is superior to the original one. 

Two key problems arise when applying RBPF: first is how to identify the conditional 
relationship between various state variables such that the state variables can be 
meaningfully partitioned into two (or more) groups; the second is what kind of analytical 
filter should be used to efficiently estimate the leaf variables conditional on the root 
variables. In one of our work, we are able to utilize the constraints imposed by typical 
camera configuration to partition the original state space into two sub-spaces, and Rao-
Blackwellised particle filter is then proposed. The major idea is shown below.  

 
Partition the state space 

In typical surveillance applications, for most of the time, the tracked objects are 
constrained to move on a dominant plane (e.g. the ground), and the camera is usually 
higher than the tracked object. Fig. 1 illustrates such a scene-camera configuration, where 
(b) is a geometric representation of (a). In Fig. 1(b), suppose a person is moving on the 
ground plane π, and the ground is projected onto the image plane by camera C, l is the 
vanishing line for the ground plane. Any scene point projecting onto the vanishing line l 
is at the same distance from plane π as the camera center [4]. If a scene point is farther 
from π than the camera is, then its image lies ‘above’ the vanishing line; and ‘below’ if it 
is closer to the ground than the camera [4]. So if the to-be-tracked object is not higher 
than the camera to the ground, the image of the object will always lie ‘below’ the 
vanishing line, and when it moves towards the camera, the size (or scale) of the object on 
the image will get bigger as the y coordinate on image plane gets bigger, and vice versa. 
From Fig. 1(b), we may see the dependence of the scale change of the object on the 
translational motion (or the y location in the image domain). In these situations, the 
constraints due to the camera-scene configuration can be exploited to deduce the 
dependency relationship between state variables. 

                                                               
                                      (a)                                                                               (b) 
Fig. 1. (a) Illustration of a typical camera configuration in surveillance. (b) The dominant 
plane is projected onto the image plane. If the person moves for example from l4 to l1, 



then on the image, we may observe that as the y-coordinate gets larger and larger, the size 
of the person is becoming bigger and bigger.  
 

Formally, in our work we use an 8-D ellipse model to describe the dynamics of the 
tracked object, as in [5]: 

 
� � j j{ , , , , , , ,y y x x}x x y y H H H H  

With the above idea, the scale change of a moving object is related to its position along 
the y-axis (i.e., the vertical axis in the image domain), as illustrated in Fig. 1(b). This 
facilitates the partition of the original 8-D state space into two groups: the root variables 
R containing the motion information (including location and velocity), which will be 
sampled by a particle filter, and the leaf variables L consisting of the scale parameters 
(including the rate of scale change), which may be estimated by an exact filter. These two 
groups are denoted by:  
 

� �{ , , , }R x x y y=    j j{ , , ,y y x x }L H H H H=  
 
The Rao-Blackwellised Particle Filter 
The Rao-Blackwellised Particle Filter is shown in Fig. 3. 
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1.Propagate samples 

a) Sample object motion: 
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2.Evaluate weight 

a) Compute the color histogram. 
b) Compute the gradient. 
c) Compute the weight:    
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End for loop 
3.Select samples.  
For i = 1:N do 
4.Kalman update:                                
End for loop 

5.Compute the mean state.  
1

[ ]
N

i i
t t

i

E S w s
=

= ∑

 
 
 
 
 
 
 
 
 
Figure 3: The Rao-Blackwellised particle filter for tracking. 



For more discussion on this topic please refer to [6]. 
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