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• identify specific object, or

• identify class (car, face, airplane etc)

• determine location
• multiple instances in a single image

• determine segmentation

Object Recognition



3

“Groundhog Day” [Rammis, 1993]

Visually defined query

“Find this 
clock”

“Find this 
person”

“Find this 
place”

Motivation: Visually defined search
Given an object specified by its image, retrieve all 
images containing the object in a large image database, 
or all shots containing the object in a feature film

e.g. find people and places in your personal photo collection
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Why is the recognition problem hard ? 

• Scale and shape of the 
imaged object varies with 
viewpoint

• Occlusion (self- or by a 
foreground object)

• Lighting changes

• Background “clutter”
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Some object classes
(Caltech datasets)

Difficulties:

• Size/shape variation
• Partial occlusion
• Lighting
• Background clutter
• Intra-class variation
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Class of model: Pictorial Structure

• Intuitive model of an object

• Model has two components

1. parts (2D image fragments)

2. structure (configuration of parts)

• Dates back to Fischler & Elschlager 1973

Is this complexity of representation necessary ?
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Deformations
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Object Representation
Main issues:

• Parts/fragments

• appearance, shape

• exemplars or explicit model

• Structure/configuration

• model (e.g. implicit or explicit)

• tight / loose / none

• Model learning

• degree of supervision

• from training data

• Model fitting (recognition)

• complexity

Configuration of ‘iconic’ parts
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Outline
1. Bag of visual words model I: recognizing particular objects

• Vector quantization to get visual vocabulary (parts)

• Video Google retrieval algorithm

2. Bag of visual words model II: recognizing object categories   

• Learn classifier for image according to the object it contains

• Naïve Bayes and SVM classifiers

3. Models of parts and structure

• Implicit and explicit geometric configurations 

4. Class based segmentation

• Pixel level localization 

5. Summary and open challenges
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1. Bag of visual words model I:    
recognizing particular objects
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Review: Retrieval using local invariant descriptors

Image content is transformed into local fragments that are invariant to 
translation, rotation, scale, and other imaging parameters

Lowe ICCV 1999
• Fragments generalize over viewpoint and lighting

Example of visual fragments
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Viewpoint covariant segmentation 

• Characteristic scales (size of region)
• Lindeberg and Garding ECCV 1994

• Lowe ICCV 1999

• Mikolajczyk and Schmid ICCV 2001

• Affine covariance (shape of region)
• Baumberg CVPR 2000

• Matas et al BMVC 2002                                  Maximally stable regions

• Mikolajczyk and Schmid ECCV 2002

• Schaffalitzky and Zisserman ECCV 2002

• Tuytelaars and Van Gool BMVC 2000

Shape adapted regions
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Example of affine covariant regions

1000+ regions per image Harris-affine

Maximally stable regions

• a region’s size and shape are not fixed, but

• automatically adapts to the image intensity to cover the same physical surface

• i.e. pre-image is the same surface region 

Represent each region by SIFT descriptor (128-vector) [Lowe 1999]
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images regions

invariant 
descriptors

invariant 
descriptors

1. Compute regions in each image independently
2. “Label” each region by a vector of descriptors based on its local intensity 

neighbourhood
3. Find corresponding regions by matching to closest descriptor vector
4. Score each frame in the database by the number of matches

Outline of an object  retrieval strategy

Finding corresponding regions transformed to finding nearest neighbour vectors
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Example of model matching

object

“model”

target image
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Object recognition 

Establish correspondences between object model image and target image by 
nearest neighbour matching on SIFT vectors

128D descriptor 
space

Model image Target image 



17

Problem with matching on descriptors alone

• too much individual invariance

• each region can affine deform independently (by different amounts)

• use semi-local and global spatial relations to verify matches, e.g.:

• common affine transformation (Lowe 99) (strong requirement)

• spatial neighbours match spatial neighbours (weak requirement)
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Example I

Matches on descriptors 

And with spatial consistency
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Example II
In each frame independently
• determine elliptical regions (segmentation covariant with camera viewpoint) 
• compute SIFT descriptor for each region [Lowe ‘99]

Harris-affine

Maximally stable regions

1000+ descriptors per frame
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Match regions between frames using SIFT descriptors and 
spatial consistency

Harris-affine 

Maximally stable regions 

• Multiple fragments overcomes problem of partial occlusion

• Transfer bounding box to localize object

One-shot learning
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Visual words are ‘iconic’ image patches or fragments
• represent the frequency of word occurrence
• but not their position

New representation: Bag of (visual) words

Image
Collection of visual words
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Image representation using visual words

histogram represents the co-occurrence of visual words



23
2323

Example: Learn words/parts by clustering 

• Interest point features: textured neighborhoods are selected 
• produces 100-1000 regions per image

10

10

Weber, Welling & Perona 2000
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“Pattern Space” (100+ dimensions)

Learning words/parts by clustering ctd
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100-1000 images ~100 parts

Example of visual words learnt by clustering faces
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Nearest neighbour matching

128D descriptor 
space

Image 1 Image 2

Vector quantize descriptors 

128D descriptor 
space

Image 1 Image 2

42

5

425 5

42

• expensive to carry 
out over all frames

• Apply this representation to image retrieval from a database

• Advantage is that region matches are now pre-computed
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Making the search efficient

Vector quantize descriptors 

128D descriptor 
space

Image 1 Image 2

42

5

425 5

42

New image

128D descriptor 
space

Image 1 Image 2

42

5

425 5

42

New image

42
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Vector quantize the descriptor space (SIFT)
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Vector quantize descriptors – discrete set of visual elements “visual words”

images

visual 
words

5

42

i.e. matches have been pre-computed

Making the search efficient

bag of words histogram 
for each image
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Application: Efficient “Google like” object retrieval in a 
large database or a feature length movie

“Groundhog Day”

Example :

Search feature length movies in 0.1 seconds
• 100K -140K frames, 1000 shots, 5000 keyframes
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1. Build a visual vocabulary for the movie

Vector quantize descriptors
• k-means clustering

+

+

Implementation
• compute SIFT features on frames from 48 shots of the film

• 6K clusters for Shape Adapted regions

• 10K clusters for Maximally Stable regions

SIFT 128DSIFT 128D
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Samples of visual words (clusters on SIFT descriptors):

Maximally stable regionsShape adapted regions

generic examples – cf textons



33
More specific example

Samples of visual words  (clusters on SIFT descriptors):
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+

+

Normalize 
patch

Detect patches

Compute 
descriptor Find nearest cluster 

centre

Represent frame by histogram of 
visual word occurrences

2. Assign words and compute histograms for each key 
frame in the video
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Making the search efficient (Google like retrieval)

Vector quantize descriptors – discrete set of visual elements “visual words”

Employ text-retrieval techniques e.g.
• Inverted file indexing
• Ranking (here on spatial consistency)
• Stop-list

frames

visual 
words

5

42

cf words vs documents (e.g. web pages) in text retrieval
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Video Google Demo
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retrieved shots
Example : Groundhog Day

Video Google, Sivic & Zisserman, ICCV 2003
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Sony logo

Retrieve shots from Groundhog Day 

Searching from other sources



39

Retrieved shots in Groundhog Day for search on Sony logo
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Object representation

• histogram represents the co-
occurrence of visual words

• overlap encodes some 
structural information

image 1 image 2

• very weak measure of 
spatial consistency

• local orderless matching
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2. Bag of visual words model II: 
recognizing object categories
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Objectives

• Recognition of visual object classes

• Weakly-supervised learning
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Weakly-supervised learning

• Know if image contains object or not
• But no segmentation of object or manual selection of features

• Learn model from a set of training images containing object instances
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Visual words

Vector quantize SIFT descriptors to a vocabulary of  iconic 
“visual words”.

Design of descriptors makes these words invariant to:
• illumination
• affine transformations (viewpoint)

Size (granularity) of vocabulary is an important parameter
• fine grained – represent model instances
• coarse grained – represent object categories
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Faces 435

Motorbikes 800

Airplanes 800

Cars (rear) 1155

Background 900

Total: 4090

Image collection: four object classes + background

The “Caltech 5”
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Building a visual vocabulary

Vector quantize SIFT descriptors
• k-means clustering

+

+

Implementation – a vocabulary of about 2K visual words
• select random subset of about 1/3rd images of each category

• a total of 300K descriptors
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Examples of visual words
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More visual words
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Visual Polysemy:

Visual Synonyms:

Visual synonyms and polysemy

Single visual word occurring on different  (but locally similar)  
parts on different object categories.

Two different visual words representing a similar part of  an 
object  (wheel of a motorbike).
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• Detect affine covariant regions

• Represent each region by a SIFT descriptor

• Build visual vocabulary by k-means clustering (K~1,000)

• Assign each region to the nearest cluster centre

2

0

1

0

...

Represent an image as a histogram of visual words 

Bag of words model

iconic image fragments
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Current Paradigm for learning an 
object category model

Manually gathered 
training images

…
..

…
..

Visual words

Learn a visual 
category model

Evaluate classifier / 
detector

Test images

…
..

…
..

…
..
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Levels of supervision for training object category model

• None? Images only

[Agarwal & Roth, Leibe & Schiele, 
Torralba et al., Winn et al.]

[Barnard et al.]
[Csurka et al., Dorko & Schmid, 
Fergus et al., Opelt et al., 
Winn and Jojic]

• Object label + 
segmentation

• Object label 
only

[Viola & Jones]

weak 
supervision
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positive negative

Train classifier, e.g.
• Naïve Bayes

• SVM

Training data: vectors are histograms, one from each training image
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Example: weak supervision

Training
• 50% images
• No identifcation of 

object within image 

Testing
• 50% images
• Simple object 

present/absent test

Motorbikes Airplanes Frontal Faces

Cars (Rear) Background

Learning
• SVM classifier
• Gaussian kernel using         as distance between histograms

2χ

Result
• Between 98.3 – 100% correct, depending on class

Zhang et al 2005
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The Naïve Bayes Model

Prior prob. of 
the object classes

Image likelihood
given the class

Image classification decision     independence 
assumption

p(C |w1,w2 . . . ,wn) α p(C)p(w1, w2 . . . , wn|C)

α p(C)
nY
i=1

p(wi|C)

C∗ = argmax
C

p(C)
nY
i=1

p(wi|C)
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The Naïve Bayes Model – implementation 

bin count for word 
i in testing data

n: number of regions detected

V: size of vocabulary     

compute as sum over positive (negative) 
histogram bins in training data

Image classification decision – ratio of posteriors      

> 0   object 
< 0 background

p(wi|C)

nY
i=1

p(wi|C) =
VY
i=1

p(wi|C)ni

ln
p(object|w1, . . . ,wn)

p(background|w1, . . . , wn)
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[Fergus et al ’03][Csurka et al ’04][Zhang et al ’05]Categories

98.5
100
98.3
98.8

92.598.0Motorbikes
96.499.3Faces
90.398.6Cars(rear)
90.297.1Airplanes

Comparison on the CalTech5 database

naïve Bayes
classifier

SVM classifier
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PASCAL Visual Object Classes Challenge 2006

Bicycle CarBus Cat Cow

Dog MotorbikeHorse Person Sheep
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Dataset Statistics

47532686475426182377134123771277Total
422238421251210132211119Sheep

11536751156666579347577319Person
274234275235137117138118Motorbike
324254326247162118164129Horse
423370422365211176211189Dog
315197313206157104156102Cow
429388429386215194214192Cat

854544854553427282427271Car
2331802351741178111893Bus
326268323270162143161127Bicycle
objimgobjimgobjimgobjimg

testtrainvalvaltrain
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Evaluation

• Receiver Operating Characteristic (ROC)
• Area Under Curve (AUC)

0
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QMUL_HSLS (0.977) 
QMUL_LSPCH (0.975) 
INRIA_Marszalek (0.971) 
INRIA_Nowak (0.971) 
XRCE (0.967) 
INRIA_Moosmann (0.957) 
UVA_big5 (0.945) 
INRIA_Larlus (0.943) 
TKK (0.943) 
RWTH_GMM (0.942) 
RWTH_SparseHists (0.935) 
RWTH_DiscHist (0.930) 
MUL_1v1 (0.928) 
MUL_1vALL (0.914) 
UVA_weibull (0.910) 
AP06_Lee (0.897) 
INSARouen (0.895) 
Cambridge (0.887) 
Siena (0.842) 
AP06_Batra (0.833) 

Competition 1: Car
• All methods
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XRCE (0.967) 

Competition 1: Car
• Top 5 methods by AUC
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Localization according to visual word probability

50 100 150 200

20

40

60

80

100

120

50 100 150 200

20

40

60

80

100

120

foreground word more probable 

background word more probable 

Naïve Bayes sparse segmentation
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Summary 

• Universal vocabulary over all classes

• Bag of visual words model:
• Learns and uses co-occurrence of visual words
• Very successful in classifying images according to the 

objects they contain
• Still requires further testing for large changes in scale and 

viewpoint
• No explicit use of configuration of visual word positions
• Poor at localizing objects within an image
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Outline

1. Bag of visual words model I: recognizing particular objects

• Vector quantization to get visual vocabulary (parts)

• Video Google retrieval algorithm

2. Bag of visual words model II: recognizing object categories   

• Learn classifier for image according to the object it contains

• Naïve Bayes and SVM classifiers

3. Models of parts and structure

• Implicit and explicit geometric configurations 

4. Class based segmentation

• Pixel level localization 

5. Summary and open challenges
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3. Models of parts and structure

• implicit configuration models

• Leibe & Schiele, Agarwal & Roth

• explicit configuration models
• Fergus et al, Crandall et al
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Leibe & Schiele 2003/2004

• Extraction of local object patches
¾ Interest Points (Harris detector)

• Example: training set of 160 car images
¾ 16 views of 10 cars
¾ results in 8'269 training patches
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Visual Vocabulary (Codebook Entries)
• Visual  Clustering procedure

¾ agglomerative clustering: most similar clusters are merged (t > 0.7)

• Examples (from 2519 
codebook entries)
¾ visual similarity 

preserved
¾ wheel parts, 

window corners, 
fenders, ...
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Structure: Generalized Hough Transform

• Learning: For every cluster, store possible “occurrences”

¾ Object Identity
¾ Pose
¾ Relative position

• Recognition: For new image, let the matched patches 
vote for possible object positions



71Vi
su

al
 O

bj
ec

t C
at

eg
or

iz
at

io
n

Voting Space
(continuous)

Object Categorization Procedure
Interest Points Matched Codebook 

Entries
Probabilistic 

Voting

Backprojection
of Maximum

Refined Hypothesis
(uniform sampling)

Backprojected
Hypothesis
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Detection Results

• Qualitative Performance
¾ Recognizes different kinds of cars
¾ Robust to clutter, occlusion, low contrast, noise
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(1) search over scale

Smallest
Scale

Larger
Scale
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• Scale-invariant feature selection
¾ Scale-invariant interest points
¾ Rescale extracted patches
¾ Match to constant-size codebook

• Generate scale votes
¾ Scale as 3rd dimension in voting space

¾ Search for maxima in 3D voting space

(2) Feature detector determines position and scale

Search 
window

x

y

s

Leibe & Schiele extension: Scale Invariance
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Qualitative Detection Results

Altogether, objects detected with factor 5.0 scale differences

scale = 3.71

scale = 0.75
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Agarwal & Roth 2002

• Interest points detected

• Extracted fragments from training images

• Clustered Fragments (Dictionary) – 270 parts
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Learning: Structure
• Representation: binary feature vector
• Feature vector components

– Part present/absent (270)
– Pair wise relation between parts (20 of these for each pair)

Coarse representation of:
• angles (4 bins)
• distance (5 bins)

Use sliding window to measure feature 
vectors from positive and negative 
examples 
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Recognition
• Detect parts

• Apply sliding window

• Linear classifier on feature vector for window

• Use SNoW (Sparse network of Winnows)

• suited to very large, very sparse vectors

Comparison with Leibe & Schiele

Agarawal & Roth:

• looser geometric relations

• more tolerant of structure deformation
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Explicit structure

appearance configuration

independence assumption

• depends on relative position of parts

• usually Gaussian

r

1 2

3

p(C |wi, xi) α p(C)p(wi|C)p(xi|C)

p(xi|C)

G(x1− xr, x2 − xr, x3 − xr)
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Constellation model

• Explicit structure: joint Gaussian over all part 
positions
• dates back to Weber, Welling & Perona 2000 and 

earlier

• Also, explicit appearance model – Gaussian 
• Simultaneous learning of parts and structure

Fergus, Perona & Zisserman 2003

1

3

4 5

6

2
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Representation of regions

Appearance (monochrome)

Location

Scale

(x,y) coords. of region centre

Radius of region (pixels)

11x11 patchNormalize
Projection onto

PCA basis

c1

c2

c15

…
…

…
..

Gives representation of appearance in low-dimensional vector space
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Foreground model

Gaussian shape pdf

Poission pdf on # 
detections

Uniform shape pdf

Gaussian part appearance pdf

Generative probabilistic model

Clutter model
Gaussian background 

appearance pdf

Gaussian 
relative scale pdf

log(scale)

Prob. of detection

0.8 0.75 0.9

Uniform
relative scale pdf

log(scale)
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Example – Learnt Motorbike Model
Samples from appearance model
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Recognition

• Detect regions in target image

• Evaluate the likelihood of the model (a search over 
assignments of parts to regions)

• Threshold on the likelihood ratio
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Recognized Motorbikes

position of object determined
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Background images evaluated with 
motorbike model



87
8787

Airplanes
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Sampling from models

Faces Motorbikes

• generative model
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The correspondence problem

•Model with P parts
•Image with N possible locations for each part

• NP combinations!
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Different graph structures

1

3

4 5

6

2

1

3

4 5

6

2

Fully connected Star structure

1

3

4

5

6
2

Tree structure

O(N6) O(N2) O(N2)

• Sparser graphs cannot capture all interactions between parts,
• but far cheaper to recognize (and learn)
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Some class-specific graphs
• Articulated motion

• People

• Animals

• Special parameterisations

• Limb angles

Images from [Kumar05, Felzenszwalb05]
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How much does shape help?
• Crandall, Felzenszwalb, Huttenlocher CVPR’05

• Shape variance increases with increasing model complexity

• Do get some benefit from shape
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Planes Bikes Faces 

0-fans 90.5% 96.5% 98.2% 

1-fans 91.3% 97.0% 98.2% 

2-fans 93.3% 97.0% 98.2% 

6 part models
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4. Class based segmentation
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Objective
• Given an image, to recognize and segment the object

Segmentation

Object
Category 

Model

Cow Image Segmented Cow

• Combine object detection with segmentation
• Borenstein and Ullman, ECCV ’02
• Leibe and Schiele, BMVC ’03
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Background: Borenstein & Ullman 2002

• Training
• Learn fragments from segmented images
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Structure: jigsaw puzzle approach
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1. Obtain approximate foreground segmentation using parts 

2. Refine using bottom up segmentation



99
9999

Object segmentation using graph cuts
foreground Seed Pixels

Background Seed Pixels

Boykov and Jolly, ICCV 01

user provides 
foreground/background regions



100
100100

f(x) =
nX
i=1

{mi(xi)+
X

j∈N(i)
φi(xi, xj)}

i

N (i)

• xi = 1 for foreground pixels, xi = 0 for background

• mi(xi) is likelihood that pixel at i is foreground (if xi = 1), or back-
ground (if xi = 0 ), e.g. using colour histogram of seed regions

• φ(xi, xj) penalizes a change of state:

φ(xi, xj) =

(
0 ifxi = xj

γe−β(Ii−Ij)
2
ifxi 6= xj.

Binary Markov Random Field

Can be optimized globally with graph cuts algorithm 
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SegmentationImage

ObjCut
• Recognize object using category model (LPS)
• Provides foreground/background for colour and texture
• Apply graph cuts segmentation 

Kumar et al CVPR 05
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SegmentationImage

Using LPS Model for Horse
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5. Summary and open challenges
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• ☺ Single visual aspects (e.g. car rear/front) 

• Can learn and recognize from unsegmented images
• Translation and scale invariance
• Partial occlusion tolerated
• Background clutter tolerated
• Heterogeneous models

• /Multiple visual aspects (e.g. car from any viewpoint) 

• Multiple 2D models ?
• 3D models ?
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Open Research Areas
• Structure model

• tight parametric model (e.g. complete Gaussian)
• loose model (e.g. pairwise relations)

• Greater viewpoint invariance
• scale invariantJ similarity invariantJ affine invariant

• Multiple class/Hierarchical class models
• Ease of learning

• learn from ‘contaminated’ data sets
• learn multiple object classes simultaneously

• Difficulty of training/testing sets
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Datasets and software

• All image datasets:
• http://www.pascal-network.org/challenges/VOC/

• Caltech image datasets:
• http://www.robots.ox.ac.uk/~vgg/data.html,  and 
• http://www.vision.caltech.edu/html-files/archive.html

• Feature detectors (scale and affine covariant)
• http://www.robots.ox.ac.uk/~vgg/research/affine


