Probabilistic models of visual object categories

Andrew Zisserman
Visual Geometry Group
University of Oxford
http://www.robots.ox.ac.uk/~vgg

Includes slides from: Mark Everingham, Rob Fergus, Pawan Kumar, Bastian Leibe, Pietro Perona, Josef Sivic and Bernt Schiele
Object Recognition

• identify specific object, or

• identify class (car, face, airplane etc)

• determine location
 • multiple instances in a single image

• determine segmentation
Motivation: Visually defined search

Given an object specified by its image, retrieve all images containing the object in a large image database, or all shots containing the object in a feature film.

Visually defined query

“Find this clock”

“Find this person”

“Find this place”

“Groundhog Day” [Rammis, 1993]

e.g. find people and places in your personal photo collection
Why is the recognition problem hard?

• Scale and shape of the imaged object varies with viewpoint
• Occlusion (self- or by a foreground object)
• Lighting changes
• Background “clutter”
Some object classes (Caltech datasets)

Difficulties:

- Size/shape variation
- Partial occlusion
- Lighting
- Background clutter
- Intra-class variation
Class of model: Pictorial Structure

- Intuitive model of an object
- Model has two components
 1. parts (2D image fragments)
 2. structure (configuration of parts)
- Dates back to Fischler & Elschlager 1973

Is this complexity of representation necessary?
Deformations
Object Representation

Main issues:

• Parts/fragments
 • appearance, shape
 • exemplars or explicit model
• Structure/configuration
 • model (e.g. implicit or explicit)
 • tight / loose / none
• Model learning
 • degree of supervision
 • from training data
• Model fitting (recognition)
 • complexity

Configuration of ‘iconic’ parts
Outline

1. Bag of visual words model I: recognizing particular objects
 • Vector quantization to get visual vocabulary (parts)
 • Video Google retrieval algorithm

2. Bag of visual words model II: recognizing object categories
 • Learn classifier for image according to the object it contains
 • Naïve Bayes and SVM classifiers

3. Models of parts and structure
 • Implicit and explicit geometric configurations

4. Class based segmentation
 • Pixel level localization

5. Summary and open challenges
1. Bag of visual words model I: recognizing particular objects
Review: Retrieval using local invariant descriptors

Image content is transformed into local fragments that are invariant to translation, rotation, scale, and other imaging parameters.

Example of visual fragments

- Fragments generalize over viewpoint and lighting
Viewpoint covariant segmentation

- **Characteristic scales (size of region)**
 - Lindeberg and Garding ECCV 1994
 - Lowe ICCV 1999
 - Mikolajczyk and Schmid ICCV 2001

- **Affine covariance (shape of region)**
 - Baumberg CVPR 2000
 - Matas et al BMVC 2002
 - Mikolajczyk and Schmid ECCV 2002
 - Schaffalitzky and Zisserman ECCV 2002
 - Tuytelaars and Van Gool BMVC 2000

Maximally stable regions

Shape adapted regions
13

Example of affine covariant regions

1000+ regions per image

- a region’s size and shape are not fixed, but
- automatically adapts to the image intensity to cover the same physical surface
- i.e. pre-image is the same surface region

Represent each region by SIFT descriptor (128-vector) [Lowe 1999]
Outline of an object retrieval strategy

1. Compute regions in each image independently
2. "Label" each region by a vector of descriptors based on its local intensity neighbourhood
3. Find corresponding regions by matching to closest descriptor vector
4. Score each frame in the database by the number of matches

Finding corresponding regions transformed to finding nearest neighbour vectors
Example of model matching

“model”

target image
Object recognition

Establish correspondences between object model image and target image by nearest neighbour matching on SIFT vectors.

Model image

128D descriptor space

Target image
Problem with matching on descriptors alone

- too much individual invariance
- each region can affine deform independently (by different amounts)
- use semi-local and global spatial relations to verify matches, e.g.:
 - common affine transformation (Lowe 99) (strong requirement)
 - spatial neighbours match spatial neighbours (weak requirement)
Example 1

Matches on descriptors

And with spatial consistency
Example II

In each frame independently
- determine elliptical regions (segmentation covariant with camera viewpoint)
- compute SIFT descriptor for each region [Lowe ‘99]

1000+ descriptors per frame
Match regions between frames using SIFT descriptors and spatial consistency

- Multiple fragments overcomes problem of partial occlusion
- Transfer bounding box to localize object

Harris-affine
Maximally stable regions

One-shot learning
New representation: Bag of (visual) words

Visual words are ‘iconic’ image patches or fragments

- represent the frequency of word occurrence
- but not their position

Image

Collection of visual words
Image representation using visual words

histogram represents the **co-occurrence** of visual words
Example: Learn words/parts by clustering

- Interest point features: textured neighborhoods are selected
- produces 100-1000 regions per image

Weber, Welling & Perona 2000
Learning words/parts by clustering ctd
Example of visual words learnt by clustering faces

100-1000 images

~100 parts
• Apply this representation to image retrieval from a database
• Advantage is that region matches are now pre-computed

Nearest neighbour matching
 • expensive to carry out over all frames

Vector quantize descriptors
Making the search efficient

Vector quantize descriptors
Vector quantize the descriptor space (SIFT)

The same visual word
Making the search efficient

Vector quantize descriptors – discrete set of visual elements “visual words”

i.e. matches have been pre-computed
Application: Efficient “Google like” object retrieval in a large database or a feature length movie

Example:

“Groundhog Day”

Search feature length movies in 0.1 seconds
• 100K -140K frames, 1000 shots, 5000 keyframes
1. Build a visual vocabulary for the movie

Vector quantize descriptors

- k-means clustering

Implementation

- compute SIFT features on frames from 48 shots of the film
- 6K clusters for Shape Adapted regions
- 10K clusters for Maximally Stable regions
Samples of visual words (clusters on SIFT descriptors):

Shape adapted regions

Maximally stable regions

generic examples – cf textons
Samples of visual words (clusters on SIFT descriptors):

More specific example
2. Assign words and compute histograms for each key frame in the video

Detect patches

Normalize patch

Compute descriptor

Find nearest cluster centre

Represent frame by histogram of visual word occurrences
Making the search efficient (Google like retrieval)

Vector quantize descriptors – discrete set of visual elements “visual words”

cf. words vs. documents (e.g. web pages) in text retrieval

Employ text-retrieval techniques e.g.
 • Inverted file indexing
 • Ranking (here on spatial consistency)
 • Stop-list
Example: Groundhog Day

Video Google, Sivic & Zisserman, ICCV 2003
Searching from other sources

Sony logo

Retrieve shots from Groundhog Day
Retrieved shots in *Groundhog Day* for search on Sony logo.
Object representation

- histogram represents the **co-occurrence** of visual words
- overlap encodes some structural information

- very weak measure of spatial consistency
- local orderless matching
2. Bag of visual words model II: recognizing object categories
Objectives

- Recognition of visual object classes
- Weakly-supervised learning
Weakly-supervised learning

- Learn model from a set of training images containing object instances
- Know if image contains object or not
- But no segmentation of object or manual selection of features
Visual words

Vector quantize SIFT descriptors to a vocabulary of iconic “visual words”.

Design of descriptors makes these words invariant to:
- illumination
- affine transformations (viewpoint)

Size (granularity) of vocabulary is an important parameter
- fine grained – represent model instances
- coarse grained – represent object categories
Image collection: four object classes + background

Faces 435
Motorbikes 800
Airplanes 800
Cars (rear) 1155
Background 900
Total: 4090

The “Caltech 5”
Building a visual vocabulary

Vector quantize SIFT descriptors

- k-means clustering

Implementation – a vocabulary of about 2K visual words

- select random subset of about 1/3rd images of each category
- a total of 300K descriptors
Examples of visual words
More visual words
Visual synonyms and polysemy

Visual Polysemy: Single visual word occurring on different (but locally similar) parts on different object categories.

Visual Synonyms: Two different visual words representing a similar part of an object (wheel of a motorbike).
Represent an image as a histogram of visual words

- Detect affine covariant regions
- Represent each region by a SIFT descriptor
- Build visual vocabulary by k-means clustering (K~1,000)
- Assign each region to the nearest cluster centre

Bag of words model
Current Paradigm for learning an object category model

Manually gathered training images

Test images

Visual words

Learn a visual category model

Evaluate classifier / detector
Levels of supervision for training object category model

• Object label + segmentation

[Viola & Jones]

• Object label only

weak supervision

[Csurka et al., Dorko & Schmid, Fergus et al., Opelt et al., Winn and Jojic]

• None? Images only

[Agarwal & Roth, Leibe & Schiele, Torralba et al., Winn et al.]

[Barnard et al.]
Training data: vectors are histograms, one from each training image

Train classifier, e.g.

• Naïve Bayes
• SVM
Example: weak supervision

Training
- 50% images
- No identification of object within image

Testing
- 50% images
- Simple object present/absent test

Learning
- SVM classifier
- Gaussian kernel using χ^2 as distance between histograms

Result
- Between 98.3 – 100% correct, depending on class

Zhang et al 2005
The Naïve Bayes Model

\[p(C|w_1, w_2 \ldots, w_n) \propto p(C)p(w_1, w_2 \ldots, w_n|C) \]

Prior prob. of the object classes

Image likelihood given the class

\[\alpha p(C) \prod_{i=1}^{n} p(w_i|C) \]

Image classification decision

\[C^* = \arg \max_C p(C) \prod_{i=1}^{n} p(w_i|C) \]

independence assumption
The Naïve Bayes Model – implementation

\[p(w_i|C) \quad \text{compute as sum over positive (negative) histogram bins in training data} \]

\[
\prod_{i=1}^{n} p(w_i|C) = \prod_{i=1}^{V} p(w_i|C)^{n_i}
\]

n: number of regions detected
V: size of vocabulary

Image classification decision – ratio of posteriors

\[
\ln \frac{p(\text{object}|w_1, \ldots, w_n)}{p(\text{background}|w_1, \ldots, w_n)} \begin{cases} > 0 & \text{object} \\ < 0 & \text{background} \end{cases}
\]
Comparison on the CalTech5 database

<table>
<thead>
<tr>
<th>Categories</th>
<th>[Zhang et al ’05]</th>
<th>[Csurka et al ’04]</th>
<th>[Fergus et al ’03]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airplanes</td>
<td>98.8</td>
<td>97.1</td>
<td>90.2</td>
</tr>
<tr>
<td>Cars(rear)</td>
<td>98.3</td>
<td>98.6</td>
<td>90.3</td>
</tr>
<tr>
<td>Faces</td>
<td>100</td>
<td>99.3</td>
<td>96.4</td>
</tr>
<tr>
<td>Motorbikes</td>
<td>98.5</td>
<td>98.0</td>
<td>92.5</td>
</tr>
</tbody>
</table>

SVM classifier

naïve Bayes classifier
PASCAL Visual Object Classes Challenge 2006

Bicycle

Bus

Car

Cat

Cow

Dog

Horse

Motorbike

Person

Sheep
Dataset Statistics

<table>
<thead>
<tr>
<th></th>
<th>train</th>
<th></th>
<th>val</th>
<th></th>
<th>trainval</th>
<th></th>
<th>test</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>img</td>
<td>obj</td>
<td>img</td>
<td>obj</td>
<td>img</td>
<td>obj</td>
<td>img</td>
<td>obj</td>
</tr>
<tr>
<td>Bicycle</td>
<td>127</td>
<td>161</td>
<td>143</td>
<td>162</td>
<td>270</td>
<td>323</td>
<td>268</td>
<td>326</td>
</tr>
<tr>
<td>Bus</td>
<td>93</td>
<td>118</td>
<td>81</td>
<td>117</td>
<td>174</td>
<td>235</td>
<td>180</td>
<td>233</td>
</tr>
<tr>
<td>Car</td>
<td>271</td>
<td>427</td>
<td>282</td>
<td>427</td>
<td>553</td>
<td>854</td>
<td>544</td>
<td>854</td>
</tr>
<tr>
<td>Cat</td>
<td>192</td>
<td>214</td>
<td>194</td>
<td>215</td>
<td>386</td>
<td>429</td>
<td>388</td>
<td>429</td>
</tr>
<tr>
<td>Cow</td>
<td>102</td>
<td>156</td>
<td>104</td>
<td>157</td>
<td>206</td>
<td>313</td>
<td>197</td>
<td>315</td>
</tr>
<tr>
<td>Dog</td>
<td>189</td>
<td>211</td>
<td>176</td>
<td>211</td>
<td>365</td>
<td>422</td>
<td>370</td>
<td>423</td>
</tr>
<tr>
<td>Horse</td>
<td>129</td>
<td>164</td>
<td>118</td>
<td>162</td>
<td>247</td>
<td>326</td>
<td>254</td>
<td>324</td>
</tr>
<tr>
<td>Motorbike</td>
<td>118</td>
<td>138</td>
<td>117</td>
<td>137</td>
<td>235</td>
<td>275</td>
<td>234</td>
<td>274</td>
</tr>
<tr>
<td>Person</td>
<td>319</td>
<td>577</td>
<td>347</td>
<td>579</td>
<td>666</td>
<td>1156</td>
<td>675</td>
<td>1153</td>
</tr>
<tr>
<td>Sheep</td>
<td>119</td>
<td>211</td>
<td>132</td>
<td>210</td>
<td>251</td>
<td>421</td>
<td>238</td>
<td>422</td>
</tr>
<tr>
<td>Total</td>
<td>1277</td>
<td>2377</td>
<td>1341</td>
<td>2377</td>
<td>2618</td>
<td>4754</td>
<td>2686</td>
<td>4753</td>
</tr>
</tbody>
</table>
Evaluation

- Receiver Operating Characteristic (ROC)
 - Area Under Curve (AUC)
Competition 1: Car

- All methods
Competition 1: Car

• Top 5 methods by AUC
Localization according to visual word probability

Naïve Bayes sparse segmentation

- foreground word more probable
- background word more probable
Summary

- Universal vocabulary over all classes

- Bag of visual words model:
 - Learns and uses co-occurrence of visual words
 - Very successful in classifying images according to the objects they contain
 - Still requires further testing for large changes in scale and viewpoint
 - No explicit use of configuration of visual word positions
 - Poor at localizing objects within an image
Outline

1. Bag of visual words model I: recognizing particular objects
 • Vector quantization to get visual vocabulary (parts)
 • Video Google retrieval algorithm

2. Bag of visual words model II: recognizing object categories
 • Learn classifier for image according to the object it contains
 • Naïve Bayes and SVM classifiers

3. Models of parts and structure
 • Implicit and explicit geometric configurations

4. Class based segmentation
 • Pixel level localization

5. Summary and open challenges
3. Models of parts and structure

- implicit configuration models
 - Leibe & Schiele, Agarwal & Roth
- explicit configuration models
 - Fergus et al, Crandall et al
Leibe & Schiele 2003/2004

- Extraction of local object patches
 - Interest Points (Harris detector)

- Example: training set of 160 car images
 - 16 views of 10 cars
 - results in 8'269 training patches
Visual Vocabulary (Codebook Entries)

- Visual Clustering procedure
 - agglomerative clustering: most similar clusters are merged (t > 0.7)

\[
similarity(C_1, C_2) = \frac{\sum_{p \in C_1, q \in C_2} NGC(p, q)}{|C_1| \times |C_2|} > t
\]

\[
NGC(p, q) = \frac{\sum_i (p_i - \bar{p})(q_i - \bar{q})}{\sqrt{\sum_i (p_i - \bar{p})^2} \sqrt{\sum_i (q_i - \bar{q})^2}}
\]

- Examples (from 2519 codebook entries)
 - visual similarity preserved
 - wheel parts, window corners, fenders, ...
Structure: Generalized Hough Transform

- **Learning**: For every cluster, store possible “occurrences”
 - Object Identity
 - Pose
 - Relative position

- **Recognition**: For new image, let the matched patches vote for possible object positions
Object Categorization Procedure

- **Interest Points**
- **Matched Codebook Entries**
- **Probabilistic Voting**

Visual Object Categorization
Detection Results

• Qualitative Performance
 - Recognizes different kinds of cars
 - Robust to clutter, occlusion, low contrast, noise
(1) search over scale
(2) Feature detector determines position and scale

Leibe & Schiele extension: Scale Invariance

• Scale-invariant feature selection
 - Scale-invariant interest points
 - Rescale extracted patches
 - Match to constant-size codebook

• Generate scale votes
 - Scale as 3rd dimension in voting space

 \[
 \begin{align*}
 x_{vote} &= x_{img} - x_{occ}(s_{img}/s_{occ}) \\
 y_{vote} &= x_{img} - y_{occ}(s_{img}/s_{occ}) \\
 s_{vote} &= (s_{img}/s_{occ})
 \end{align*}

 - Search for maxima in 3D voting space
Qualitative Detection Results

Altogether, objects detected with factor 5.0 scale differences
Agarwal & Roth 2002

• Interest points detected

• Extracted fragments from training images

• Clustered Fragments (Dictionary) – 270 parts
Learning: Structure

- Representation: binary feature vector
- Feature vector components
 - Part present/absent (270)
 - Pair wise relation between parts (20 of these for each pair)

Coarse representation of:
 - angles (4 bins)
 - distance (5 bins)

Use sliding window to measure feature vectors from positive and negative examples
Recognition

• Detect parts
• Apply sliding window
• Linear classifier on feature vector for window
• Use SNoW (Sparse network of Winnows)
 • suited to very large, very sparse vectors

Comparison with Leibe & Schiele

Agarawal & Roth:
• looser geometric relations
• more tolerant of structure deformation
Explicit structure

\[p(C|\omega_i, x_i) \propto p(C)p(\omega_i|C)p(x_i|C) \]

appearance \hspace{2cm} configuration

independence assumption

\[p(x_i|C) \]

• depends on relative position of parts
• usually Gaussian

\[G(x_1 - x_r, x_2 - x_r, x_3 - x_r) \]
Constellation model

• Explicit structure: joint Gaussian over all part positions
 • dates back to Weber, Welling & Perona 2000 and earlier
• Also, explicit appearance model – Gaussian
• Simultaneous learning of parts and structure

Fergus, Perona & Zisserman 2003
Representation of regions

Location

(x,y) coords. of region centre

Scale

Radius of region (pixels)

Appearance (monochrome)

Normalize

11x11 patch

Projection onto PCA basis

\[
\begin{pmatrix}
c_1 \\
c_2 \\
\vdots \\
c_{15}
\end{pmatrix}
\]

Gives representation of appearance in low-dimensional vector space
Generative probabilistic model

Foreground model

Gaussian shape pdf

Gaussian part appearance pdf

Gaussian relative scale pdf

Prob. of detection

0.8 0.75 0.9

Clutter model

Uniform shape pdf

Gaussian background appearance pdf

Uniform relative scale pdf

Poisson pdf on # detections

82
Example – Learnt Motorbike Model

Samples from appearance model

Shape model
Recognition

• Detect regions in target image

• Evaluate the likelihood of the model (a search over assignments of parts to regions)

• Threshold on the likelihood ratio
Recognized Motorbikes

position of object determined
Background images evaluated with motorbike model
Airplanes

INCORRECT
Correct
Correct
Correct
Correct

Airplane shape model

Part 1: Det: 3x10-19
Part 2: Det: 9x10-22
Part 3: Det: 1x10-23
Part 4: Det: 2x10-22
Part 5: Det: 7x10-24
Part 6: Det: 5x10-22
Background: Det: 1x10-20
Sampling from models

- generative model
The correspondence problem

- Model with P parts
- Image with N possible locations for each part

N^P combinations!
Different graph structures

- Fully connected
 \[O(N^6) \]
- Star structure
 \[O(N^2) \]
- Tree structure
 \[O(N^2) \]

- Sparser graphs cannot capture all interactions between parts,
- but far cheaper to recognize (and learn)
Some class-specific graphs

• Articulated motion
 • People
 • Animals

• Special parameterisations
 • Limb angles

Images from [Kumar05, Felzenszwalb05]
How much does shape help?

- Crandall, Felzenszwalb, Huttenlocher CVPR’05
- Shape variance increases with increasing model complexity
6 part models

<table>
<thead>
<tr>
<th></th>
<th>Planes</th>
<th>Bikes</th>
<th>Faces</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-fans</td>
<td>90.5%</td>
<td>96.5%</td>
<td>98.2%</td>
</tr>
<tr>
<td>1-fans</td>
<td>91.3%</td>
<td>97.0%</td>
<td>98.2%</td>
</tr>
<tr>
<td>2-fans</td>
<td>93.3%</td>
<td>97.0%</td>
<td>98.2%</td>
</tr>
</tbody>
</table>
4. Class based segmentation
Objective

- Given an image, to recognize and segment the object

- Combine object detection with segmentation
 - Borenstein and Ullman, ECCV ’02
 - Leibe and Schiele, BMVC ’03
Background: Borenstein & Ullman 2002

- Training
- Learn fragments from segmented images
Structure: jigsaw puzzle approach
1. Obtain approximate foreground segmentation using parts
2. Refine using bottom up segmentation
Object segmentation using graph cuts

Boykov and Jolly, ICCV 01

user provides foreground/background regions
Binary Markov Random Field

\[f(x) = \sum_{i=1}^{n} \{ m_i(x_i) + \sum_{j \in \mathcal{N}(i)} \phi_i(x_i, x_j) \} \]

- \(x_i = 1 \) for foreground pixels, \(x_i = 0 \) for background
- \(m_i(x_i) \) is likelihood that pixel at \(i \) is foreground (if \(x_i = 1 \)), or background (if \(x_i = 0 \)), e.g. using colour histogram of seed regions
- \(\phi(x_i, x_j) \) penalizes a change of state:
 \[\phi(x_i, x_j) = \begin{cases}
 0 & \text{if } x_i = x_j \\
 e^{-\beta(I_i-I_j)^2} & \text{if } x_i \neq x_j.
 \end{cases} \]

Can be optimized globally with graph cuts algorithm
ObjCut

- Recognize object using category model (LPS)
- Provides foreground/background for colour and texture
- Apply graph cuts segmentation

Image

Segmentation

Kumar et al CVPR 05
Using LPS Model for Horse

Image

Segmentation
5. Summary and open challenges
• 😊 Single visual aspects (e.g. car rear/front)
 • Can learn and recognize from unsegmented images
 • Translation and scale invariance
 • Partial occlusion tolerated
 • Background clutter tolerated
 • Heterogeneous models

• 🙁 Multiple visual aspects (e.g. car from any viewpoint)
 • Multiple 2D models ?
 • 3D models ?
Open Research Areas

• Structure model
 • tight parametric model (e.g. complete Gaussian)
 • loose model (e.g. pairwise relations)
• Greater viewpoint invariance
 • scale invariant \rightarrow similarity invariant \rightarrow affine invariant
• Multiple class/Hierarchical class models
• Ease of learning
 • learn from ‘contaminated’ data sets
 • learn multiple object classes simultaneously
• Difficulty of training/testing sets
Datasets and software

- All image datasets:

- Caltech image datasets:
 - http://www.robots.ox.ac.uk/~vgg/data.html, and

- Feature detectors (scale and affine covariant)
 - http://www.robots.ox.ac.uk/~vgg/research/affine