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Abstract

Ugaritic is claimed to be the world’s first alphabetical character set, and was
written on clay tablets in a cuneiform script. It comprises 30 characters each of
which consists of several wedge-shaped primitives. So far, several thousand tablets
have been excavated and studied and finally the wish arose to have some tool to

read the tablets automatically.

The task of recognizing the characters in the images taken of the tablets can
be split into two parts: the low-level stage to extract features from the images and

the second step which uses the features to classify the characters.

This project is concerned with the first part, the image preprocessing. The aim
is to locate the character primitives in the image. This is achieved by correlating

models of the primitives with the image data.
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Chapter 1

Introduction

1.1 Aims of the Project

The principal goal of this project is to find the locations and types of character
primitives (wedges) impressed into clay tablets. The program developed in the
course of this project reads an image of a clay tablet and outputs a list of detected

wedges together with their types and positions in the image.

1.2 Motivation

Character recognition systems are important tools in automating the processing
of text and other visual information. In recent years more and more such software
systems have been developed that incorporate neural nets and thus produce better

results than conventional methods.

An optical character recognition system generally contains a preprocessor and
a classifier. The preprocessor is to select a set of features and to remove noise and

other meaningless visual variations from the input image.

Often, the preprocessor consists of a simple procedure to binarize images by
thresholding them but may also contain routines to extract features such as mo-
ments, area, perimeter etc. from the binarized image. The problems encountered
at the preprocessing stage are usually insignificant if, as it is often the case, the

characters are written on a background of different colour.



1.3 Template Matching Using Correlation

The situation in the images for this project is different from the one above. The
background of the tablets has basically the same colour as the characters and
contains distracting texture such as watermarks, cracks and traces of erosion. Only

the fact that the wedges are impressed into the clay can provide usable features.

When the tablets were photographed the light came at an angle thus making
the characters cast shadows. So, the shape of the shadows is the principal feature
in this recognition task. As the shadows do not stand out enough from the tablet
background to make an image binarization feasible, another technique to detect

the character primitives was used.

Models (or templates) of the primitives were correlated with the image data.
High correlation values at a particular position are considered to indicate that a
model has matched there with a wedge in the image. After that, the set of such
matches has to be cleared of false and multiple matches so that finally a set of

matches remains with each match indicating exactly one found wedge and its type.

1.4 Research Activities

During the time span of this project, the scope of the research covered:
¢ Background reading on vision techniques and neural networks

e Meetings with experts at the Faculty of Divinity to obtain information about
the nature of the characters, exploitable constraints, and to obtain slides to

be used as test images
e Choosing one test image to start with

e Trying a range of vision algorithms and operators to find features in the

image that could discriminate the character primitives



e Iinally. deciding on correlation of models with image data and writing a

program for this purpose

¢ Extending the set of models, testing and adapting them until the vast ma-

jority of wedges in the image were detected
e Implementing a filter to reject false matches in tablet background areas

e Implementing a filter that removes multiple matches for a wedge and keeps

onlyv one match

e Testing the program on four images and drawing conclusions from the results

1.5 Guide to this Thesis

The remainder of the thesis is organized as follows:

Chapter 2 gives background information about the Ugaritic language, the char-

acters to be dealt with. and the clay tablets.

An overview of the program and its stages is given in Chapter 3. It also presents

the formulae needed to compute the correlation.

Chapter 4 describes how to obtain necessary parameters for the template
matching by preprocessing the image, the models used, and also how the im-
age background is detected. The way the program works is discussed in Chapter
5 containing the data structures, the control flow and the options it can be given

when it is started.

Chapter 6 describes the features and the constraints employed to remove false
matches. The experiments carried out are presented in Chapter 7, which also
discusses the results obtained. Finally, suggestions for further extensions and

conclusions can be found in Chapter 8.



Chapter 2

Background

This chapter gives a brief overview of some features of the Ugaritic language as
well as of the characters to be recognized. For more information on this language

and the culture, the reader is referred to [Curtis 85} and [Craigie 83].

Furthermore, the kind of data used for the recognition task is explained and

some examples of related OCR solutions are given.

2.1 History

In 1928, some farmers found some stone slabs on a field near the Syrian coast.
These slabs turned out to be part of a tomb dating from the thirteenth century
BC and soon extensive excavations began. After digging in the area, the excavators
zeroed in on a nearby hill known as Ras Shamra and it was there that they found
the remains of an ancient city which had been destroyed by fire (apparently about
1200 BC by barbarians). Among the different objects encountered in the ruins
were baked clay tablets containing cuneiform writing. Some of the tablets were
even still in the piles they were stacked in when the place was destroyed. To
date, tens of thousands of such tablets have been dug out and the excavations still

continue. In 1994, over 300 new fragments were found.



2.2 The Clay Tablets

Besides papyrus, clay was a widely used writing material in the area along the
Syrian coast. Wedge-shaped marks were impressed into the soft clay with a stylus
and made permanent by baking the tablets hard afterwards. Figure 2-1 shows one
such clay tablet. The tablet size varied enormously as did the size of the imprinted
characters. The smallest tablets found are only 3 x 4 cm whereas the biggest ones
measure up to 0.7 X 1.2 m. This applies similarly to the characters, the sizes of
which range between approximately 1 mm and more than 1 cm. The direction
of writing is in general from the left to the right with the text running from the
top to the bottom. Many tablets are not flat but rather oval and the text is often
written on them in several columns separated by two vertical lines. Often, the
text continues on the tablet back with the rightmost column going on around the
bottom edge and then upwards to the top of the rear side. All following columns

are added at the left.

Many texts are quite short and occupy only one tablet, especially the ones
with administrative or commercial content. Apart from texts concerning everyday
matters, there were archives of mythological and religious texts, which turned
out to be very useful for comparative studies with the Old Testament and for
understanding the nature of Canaanite religion. Clay tablets with less important
or only temporarily useful information would be re-used after the previous text
had been scraped off. On some tablets, however, the former characters can still

be seen in places.

2.3 Languages in Ugarit and the Ugaritic Script

Ugaritic itself is a Semitic language such as Biblical Hebrew. Although it was
the local language it was by far not the only language in use at Ras Shamra in
the mid-fourteenth century BC. Less than 3000 of the tablets found so far are
written in Ugaritic and most of the others are in Akkadian (the lingua franca for

administration at that time), Sumerian, Hurrian, Hittite and even in Egyptian.



Figure 2-1: Clay tablet
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The alphabetic cuneiform script used for Ugaritic texts as well as for some
Akkadian and Hurrian ones seems to have developed from older types of syllabic
cuneiform writing or, as some researchers believe, from Egyptian hieroglyphs and it
claims to be the oldest alphabet, although this has yet to be proved. The standard
alphabet consists of 30 letters, 27 of which are consonants. Depending on the
scribe’s writing style the strokes look more or less like wedges. Each letter is made
up by up to 7 of these wedges which overlap one another in some letters. A small
wedge is used to divide words, which are in general short as only the consonants and
no vowels are written and because of the nature of Semitic languages in general.
Figure 2-2 shows the Ugaritic alphabet and the corresponding letter transcriptions

commonly used today.

The first and quite quick successes in deciphering the Ugaritic tablet texts were
made in the early 1930s by applying cryptoanalytic techniques based amongst oth-
ers on the character frequency and on the fact that only a few different characters
appeared (therefore the assumption of an alphabetical script). Later, in the 1950s,
after even some quadrilingual texts had been discovered, the previous decipher-
ments could be verified with only very few corrections being necessary. It also
became clear in the deciphering process that the name of the ancient city must
have been Ugarit. This name is found both on some of the tablets and in other
texts of that era which were discovered in the Near East and refer to a city called
Ugarit somewhere in Syria or Palestine. Since then, the name Ugarit has gradually

been replacing the Arab name Ras Shamra in publications.

2.4 How the Data Was Obtained

The clay tablets to be dealt with here were photographed in the museums in Dam-
ascus, Aleppo and Paris where they are stored and later the slides were scanned in
order to obtain grey-level images. The scanner used was a Microtek Slide Scanner;
the software was Adobe Photoshop 2.5. The highest possible resolution available
from the scanner used is ca 1800 dots per inch so that the images occupy up to
2200 x 1600 pixels. (The surrounding background was cut off where possible.)
The pixel depth is 8 bit which means that 256 grey levels can be represented in
the image with the value 0 standing for black and 255 for white.
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2.4.1 TIFF and PGM Image Files

The image files output by the scanner are in the TIFF format; a standard sup-
ported by many image processing software systems on a variety of hardware plat-
forms. Inorder to have an easier access to the image data. the files are subsequently
converted into another standard image format (which is, however, not available on
the scanner), called Portable Graymap or PGM. This transformation can be done
using the following pipeline of UNIX commands which are part of the operating

system environment (SunOS 4.1):
tifftopnm < input_file | ppmtopgm | pnmnoraw > output_file

The generated output will be an ASCII PGM file that one can read and manipu-
late with any editor. Typically, it looks like this:

P2

# any comment

52

255

113 100 100 90 240
255 234 78 129 12

The first line contains the file format identification (or Magic number) which
is P2 for PGM files. Any comments introduced by # are ignored. The following
line holds the number of columns, in this example 5, and the number of rows, here
2, which the image has. The last line of the header stores the highest pixel value
to appear in the image, 255 here. All that follows are the pixel grey-level values,
line by line, listed in columns from top to bottom, and separated by one or more
spaces. A PGM file must not be wider than 70 characters. As there need not be
a special mark, such as a newline character, to indicate the end of an image line,
the correct row and column numbers in the header are vital information to keep

track when reading or writing an PGM file.

Both TIFF and PGM files as well as images in many other standards can be

displayed by the zv program which apart from some image operations also allows



images to be saved as Postscript files. This is how the images in this dissertation

were produced.

The reason why the PGM format was used for this project is that the data
can be easily manipulated and it is possible to create PGM files as output from
within a program without having to worry about any complicated file header or

trailer information or image compression.

2.4.2 The Appearance of the Wedges

Some of the scanned photographs show a whole clay tablet whereas others only
contain a smaller but more detailed part of a tablet. The pictures were usually

taken in front of a uniform dark or bright background.

When photographing a tablet the light always came from a lamp or through
the window located beyond the top left tablet corner which results in the upper
and left regions of the wedge-shaped marks casting shadows and the bottom and
right parts looking quite bright. This is due to the fact that the left part of a
wedge was generally imprinted deeper by the stylus than the right part.

<

Light source

Background

Deeper area
in shadow

Bright region

I b= S eadis auiel

Shape of a wedge The same wedge in the photograph

Figure 2-3: Bright and dark regions in the wedges
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2.5 Examples of Other Optical Character Recog-

nition Applications

In recent years much work has been done in the field of Optical Character Recog-
nition and many working software or hardware solutions have resulted from this.
A great deal of these systems involve neural networks which seem to produce bet-
ter results in many cases than “classical” solutions. A few widely noted OCR

applications and their main features shall be mentioned in this section.

All these systems have in common that the characters to be recognized are
written on smooth material rather than being carved into it so that no shadow
effects occur due to the different ways of illuminating the material. Often, the
input into the neural net consists of binary data, i.e. the intensity values of the
characters are usually significantly less than the background intensity values and
so the two can be separated by applying a simple thresholding procedure, which is
definitely not the case as for the clay tablet images. No other image processing op-
erations are necessary in order to obtain the kind of data the OCR system requires.
Most systems extract features from the binary image which are then fed into the
neural net (as opposed to raw image pixel intensity values), although sometimes as
is the case with Fukushima’s Neocognitron [Fukushima & Miyake 82], this feature

extraction step is part of the neural network.

2.5.1 Recognizing Hand-Written Zip Code Digits

One well known task is to classify hand-written digits used in US Zip codes on
envelopes. A project was undertaken by Denker et al. and more information can
be found in [Denker 89], [Denker 90], and [Denker et al. 89]. In the preprocessing
stage the image has to be segmented into single digits. Errors can occur when
digits overlap or touch one another. The window containing a digit has then to
be scaled to a unit size of 20 x 32 pixels. Following this, the digits are thinned to

one-pixel line width.

11



Using 49 different feature extractor templates each being 7 x 7 pixels large,
the several types of strokes are found. Combining groups of the 49 outputs finally

yields 18 feature maps each occupying 3 x 5 pixels.

The last step comprises the actual classification. Only three of the tested clas-
sifiers have been found applicable for this task: the k-Nearest-Neighbour classifier,
a Parzen-Windows based classifier, and an adaptive network of 2 layers and 40
hidden units. In the tests with 10,000 digits taken from real envelopes all three
classifiers performed similarly well. (The samples provided for the test had already
been binarized and divided into single digits.) 14% of the samples were rejected
by the system and 1% classified wrongly using the k-Nearest-Neighbour classifier.

With no rejections allowed 6% misclassified samples were obtained.

2.5.2 Discriminating Similar Kanji Characters

Mori and Yokosawa used a 3-layered feedforward network trained with the back-
propagation algorithm to discriminate similar hand-written Japanese Kanji char-
acters. Their results are published in [Mori & Yokosawa 89]. The training and
testing patterns are taken from a database with several hundred samples for each
of the about 3,000 commonly used Kanji characters. Each sample is 64 x 63 dots

large.

One of the features taken as input for the net is the length of the line segments
that a character consists of, with the length measured in 4 different orientations.
Using 100 samples of each character for training and another 100 for testing the

net, 92% of the testing patterns were classified correctly.

In a later extension, many such backpropagation networks were each employed
to deal with only part of the set of 3,000 characters and then all these subnets
were combined in a modular way in a large-scale net. The training times diminish

drastically as one subnet has to be trained only on a subset of all characters.

2.5.3 Signature Verification

Another application is the recognition and verification of signatures. For this task

Mighell, Wilkinson and Goodman scanned hand-written signatures from cheques

12



and thresholded them to obtain binary images. More information on this project
is in [Mighell 89]. These were then centred and normalized to fit into a 128 x
64 matrix. A feed-forward network trained with backpropagation uses the matrix
as input. The net had only 1 hidden unit and 1 output unit in the simplest case
investigated and it needed 128 x 64 4 1 weights (one for each pixel of the matrix).
After training the net with 10 true and 10 forged signatures, it was tested on 70
true and 56 forged signatures. The result was that 1% of the signatures presented

was rejected with another 4% forged signatures being accepted.

Other network setups were tested as well. For example, the matrix was divided
into 32 regions of 16 x 16 pixels each so that the network needed 32 hidden units.

The tests for this case resulted in 2% rejected signatures and 2% accepted forgeries.

2.6 Initial Approaches

As one can observe in both Figure 2-1 and Figure 2-3, the area covered by the
wedge-shaped characters in the images is either darker or brighter than the back-
ground (i.e. the rest of the image). This led to the assumption that it is possible
to binarize the image in two thresholding steps. A lower threshold has to be found
to single out the dark regions (e.g. everything below the grey level 100) and an up-
per threshold to preserve the bright areas (e.g everything above 210). Then, both
dark and bright regions could be merged and assigned the binary value 1 whereas
the rest (e.g. everything between 100 and 210) would be set to 0. The 1l-regions
are supposed to represent the wedges which would then be classified using some

appropriate pattern matching techniques.

However, it is not possible to find suitable thresholds, even when searching
manually, as both dark and bright areas usually include subregions with higher or

lower intensity values, respectively.

One letter cut out of an image can be seen on the left of Figure 2-4 as an
original grey-level image and on the right after binarizing it by applying a lower
threshold of 140 and an upper one of 222. These thresholds seem to be the best
ones possible and were found after several trials using the corresponding histogram

shown in Figure 2-5.

13



Figure 2—4: Enlarged view of original letter and letter after thresholding (black

pixels correspond to binary 1 here)

value hi=zto oS

i l“ ' Al

Figure 2—5: Histogram of the image region
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In order to achieve decent binary images we tried to fill up the holes in the
wedges and smooth their outlines by exploiting a combination of the dilation and
erosion operators. The erosion operator changes every bright pixel which has a
black one among its neighbours into a black pixel and the dilation operator, in its

turn, does the reverse. It changes black pixels to bright ones.

The left image in Figure 2-6 was obtained by dilating and then eroding the
binarized image of Figure 2-4 (an operation known as Closing) whereas for the
right one the Opening operator was applied. Opening comprises first erosion and
then dilation. Both results are, however, not satisfactory for any further processing
so another approach had to be found and explored. The remainder of the thesis

describes the new approach taken.

-~ ”

1;.‘

Figure 2-6: Binarized image region: left after Closing, right after Opening
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Chapter 3

Overview of the Project

This chapter provides a general overview of the steps and their order taken to
recognize the character strokes. The mathematical formulae used in the following

chapters are explained as well.

3.1 Project Phases

The process used for locating the wedge strokes in this project is outlined in Figure

3-1. Two things should be observed here:
1. it is necessary to have (good) models of the wedges to be detected

2. the Template Matching technique applied is based on the correlation of the

models with the data (as opposed to e.g. convolution or other operations)

An image which has been obtained in the way described in Chapter 2 is input into
the program. The program’s preprocessing stage tries to find the optimal scaling
and rotation parameters for the 9 templates and subtemplates of the model base,

which are small image files that have been linked into the program.

Having adapted the models the correlation of models and image data is com-
puted and the correlation maxima are extracted (together with their positions).

The final part of the program employs additional features (the standard deviation,

16
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Figure 3—1: Stages of the project
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the correlation with subtemplates) as well as constraints resulting from the char-
acter set itself to reject those matches of models with data that are false. (I.e. at

those positions are no wedges.)

In a second stage, which is not part of this project, the set of wedge types
and locations will be input into an algorithm that groups wedges located in some
neighbourhood to clusters which should correspond to the wedges a character
consists of. Such a cluster of wedges would then be classified by a neural net
which in its turn outputs the character that corresponds best to the wedge cluster.
Afterwards, the identification result may be refined by the use of statistical data
such as the character frequency in Ugaritic texts and information about what

pairings of characters are possible and with which probability.

3.2 Correlation

The main feature exploited to match a model wedge with a wedge in the image
data is the correlation coefficient, which tells how well the model correlates with
the data. The formula to obtain the correlation coefficient is the following:

DM
0D " OM

Correlation = p = -1<p<+l (3.1)

with op a being the covariance of data (index D) and model pixels (index M). op

and o are the standard deviations of data and model pixels, respectively.
1 1 > _
OpM = MEXJ:X‘:(dJ—d)(m,—m) (32)

d; and m; are the data and model pixel intensity values, respectively. The mean

of the model and data pixel values 7 and d are:

m=TM D

The standard deviations are calculated like this:

¥ (m; — )’ ¥ (d; — d)*
Op =

oM = M D

(3.4)

In the above formulae M is the numbers of model pixels considered and D the

numbers of data pixels.

18
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Figure 3—2: How the correlation is calculated

Both model and data pixel intensity values are stored in two-dimensional arrays
with the model arrays smaller than the image data array. As one can see in Figure
3-2, the model array covers some window of the image data array and it is the
pixels of this window which are used to calculate one correlation value. This value
is then assigned to the position in the output array that maps onto the top-left

corner of the model array (position (x=4, y=2) in Figure 3-2).

In order to calculate the correlation values for all pixels in the data array, the
model array has to be shifted over the whole image data array by one position
every time. The computed correlation coefficient has to be assigned again to the
pixel position right under the model’s top-left corner in some output array. In the
program which carries out these calculations the model is shifted row by row over
the image starting in its upper left corner (x=0, y=0) so that the first correlation

value obtained is at position (0, 0), the second at (1, 0) etc.

When the correlation is computed it is not generally the case that all pixels
of the model window are used. In this program only the pixels of a model which
are inside a wedge are selected and used with its corresponding data image pixels
for the calculation. Thus, the model window background does not affect the

correlation coefficient, which is desired.
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Chapter 4

Preprocessing the Image Data

This chapter deals with the steps to be taken in order to preprocess the image data.
As it has already been mentioned in the introduction chapter, the goal of this first
step towards recognizing the Ugaritic characters is to look for the primitives (i.e.

the wedges) the characters consist of and find their locations in the image.

The technique employed to detect wedge locations is Template Matching based
on correlating model data with image data. That is why it is necessary to define
models that represent what is being looked for. Each kind of wedge will have
a corresponding model (a template) to be correlated with the image data. The
correlation function, which is dealt with in Chapter 3, yields values between -1 and
+1. A very good match of model and image data will be indicated by a correlation

coefficient close to +1 (or exactly +1 for a perfect match).

4.1 Models of Wedges

The wedges the characters are made up of look similar but they can have varying
sizes and appear in different orientations. Taking into account only the wedge

orientation, there are four basic types to be found in the alphabet:
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1. a "horizontal" wedge >

2. a'vertical" wedge v

3. a wedge "pointing down to the right" ‘

4. a wedge "pointing left" ‘

Wedge type 3 only exists in the form of the single-wedge character ¢ whereas
the other three wedge types are either part of a more complex character or repre-
sent a character of their own such as the letters ¢ and ¢. As one can see in Figure

2-2, the basic wedges comprise the characters as follows:

\Vedge type lin a, b; d: h: w, h} t, k: mn, zp qrT, g,J t, i; u
\Vedge type 21n b: 9 b‘; d: Z }.7'; t Y, l,v m, 5, $, t, v, $

Wedge type 3 in ¢
Wedge type 4 in 4, ¢, z ¢, L.

The letters s, ¢, d, and § are very rare in the test images available for this
project. The § character does not appear at all and only few, corrupted samples
can be found for the other three. Thus, it should be possible to recognize the great
majority of the characters occurring in the texts by using the four wedge shapes

mentioned above.

However, confining the model set to merely four templates turned out to be
not sufficient. The wedges in several characters overlap one another which results
in a poor correlation between such a piece of image data and a one-wedge model
if more than about half the wedge is occluded by others. This does not generally
happen with pairs of wedges (e.g. the letters a or z) because the degree of overlap
is not high enough to affect the correlation test. But, stacks of three wedges tend
to contain two very occluded wedges and one fully visible one. This is the case
especially for triples of horizontal wedges (character n and part of d) as well as for
stacks of three vertical wedges (character b and part of y). As both these triples
are quite frequent, it was necessary to add more templates to the basic set in order

to meet the difficulties in recognizing partly occluded wedges.

21



Furthermore, it did not prove sufficient to have only one template per ba-
sic wedge type. The shapes of horizontal and vertical wedges vary too much to

represent them by only one model each. So, a couple of variations of vertical

and horizontal wedges were also added to the template set to obtain finally the 9

models shown in figure 4-1:

Each such model is cut out from a suitable image region and saved as a PGM

Figure 4-1: The 9 templates used

file. Noise was then cleaned from the samples (i.e. bright and dark blobs were
neutralized) and the background within the model windows was set to a unique
pixel intensity value; +1 in this case. This is necessary to be able to discriminate
wedge area and background in the course of the recognition process. The value
+1 was chosen because no pixel within the wedge areas has this intensity value.

All these adaptations were made by hand with an editor.

It was found in initial tests that neither completely manually designed tem-
plates nor unmodified image samples produce satisfactory results when used for
the template matching later on. The slightly adapted models, however, are no
longer tuned to only one particular instance of a wedge in an image but are gen-
eral enough to correlate well with a number of instances of the corresponding

wedge type.
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After that, all models were converted into C source code for the actual program
to be able to use them. This is done by means of a small program pgm2c , which
takes the PGM files given as command line arguments (can be any number) and
generates a C source file which is sent to the standard output. The command is

for example used in the following way:
pgm2c templ.pgm temp2.pgm temp3.pgm > models.cc

The C file (here models.cc) contains the definition of a vector basic-temps|| with
as many elements as the pgm2c command has arguments. Each vector element
is a structure temp containing a 100 x 100 double array t as well as two integer
variables cols and rows to store the number of columns and rows a template has.
The structure elements are initialized by the data read from the PGM files. The
2-D array is initialized with the pixel values starting at position (0,0) in the “top
left array corner” and finishing at position (rows,cols). So, only the top left part of
the array is occupied by the template pixel values. The remaining array elements
are set to 0 by the compiler. The dimensions of the array correspond to those of

the largest template in the set.

The C source file is compiled and linked to the other modules later on.

4.2 Estimation of Scale and Rotation

The wedges appear in different sizes in every image depending on their real size on
the clay tablets as well as on the distance the pictures were taken from. Similarly,
the wedges in the images need not be aligned in the same way as the templates are
defined; i.e. a “horizontal” wedge may point somewhere to the top right rather
than straight to the right because either the photograph was taken diagonally
or the lines on the tablet run diagonally. However, it can be assumed that the
orientation of the wedges in one particular image is constant as is the size of the
characters within a certain range because a tablet was usually written by one
and the same person who did not change his style while writing that tablet. On
examining the images one will find that the sizes of wedges of one type vary by

about £+15% in one image. This is why each wedge type was eventually represented
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by 3 instances, the second and third of which being shrunk to 85% and 70% of the

first one, respectively.

Therefore, it is possible to estimate how muchthe templates in the model set
have to be shrunk in only a part of the image and use the optimal scaling factor
found to shrink all models by that amount. The same applies to the orientation

of the templates. They can be rotated by the angle found to be optimal.

It seems reasonable to run this rotation and scale estimation test in a central
region of the image as it is very likely to be covered by characters. The dimensions
of that rectangle depend on the dimensions of the whole image; an area of § of

the image height times : of the image width is used.

The test itself employs the algorithm to calculate correlation coeflicients, which
is dealt with in Chapter 3. In order to distinguish in the program between the
first pass, which this section is about, and the second one (the actual template
matching over the whole image), a flag shrink_rot_flag is defined to indicate that.
Its value being 1 means the first pass is being executed whereas 0 stands for the

second pass.

The test is carried out as follows: the variable SHRINKINGS holds the number
of shrinkings to be executed. SHRINKINGS = 20 would mean that the template
set will be scaled to sizes of 100%, 95%, 90%, ..., 5% of the original size. In each of
the 20 steps rotations have to be considered as well. ROT_STEP tells by how many
degrees the template is to be rotated each time. The number of rotations carried
out at one “shrinking stage” is 2 x ROTATIONS + 1. E.g. ROT_STEP = 3 and
ROTATIONS = 5 means the template is rotated in steps of 3°. 11 orientations
are tried: 0°, +3°, -3°, +6°, -6°, ..., +15°, -15°. Sticking to these examples, each
template of the model set would be tested on the central image region 20 x 11

times.

In order to decide which combination of shrinking factor and rotation angle is
the best one to use, a double vector shrink_results{SHRINKINGS * (2 * ROTA-
TIONS + 1)] is defined to hold a comparative value for each combination applied.
This comparative value is the sum of the 27 correlation coefficient maxima, i.e.
for each template processed during a particular rotation-scaling combination the

corresponding maximum correlation value is looked for. As the central window

24



that the correlation is calculated in does not change, one only needs to pick the
greatest element from the vector to find which rotation angle and scaling factor
it stands for. Then, at the beginning of the second pass the templates are shrunk

and rotated accordingly before they are used.

4.2.1 Rotation

The function rotate() (see Appendix A) was adapted for this program from a
routine for HIPS image files written by D. Croft. The input array is rotated
around its centre by the argument angle given in degrees. The rotated input
image is finally written into the array outarray. Each pixel in the output array is
assigned either the value of the input pixel that maps by the desired rotation onto
the output pixel considered or, if the input pixel to be used would be outside the
array boundaries, the value specified by the argument bg_colour. Bg-colour stands
for the intensity value of the template background and is +1 as it was already

explained in section 4.1.

As an input pixel does not usually map exactly onto one output pixel one could
take the pixel intensity value and distribute it over the 2 x 2 output pixel square
on which the input pixel maps taking into consideration the amounts of overlap .
This, however, would blur the output image to some extent so that in this function
pixel intensity values are transferred only as a whole from the input array to the

position in the output array that is closest to the desired one.

Figure 4-2: Left: original wedge model, right: rotated by +33°

4.2.2 Scaling

The function shrink() (see Appendix A) is based on a program by Mike Landy
(also for HIPS image files) and was changed for the use in this project. It takes
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as arguments the number of rows and columns both of the input array and of the

output array as well as pointers to the two arrays themselves.

If the input image is scaled down, several pixels or at least parts of several
pixels will map onto one pixel in the output array. In Figure 4-3 one entire input
pixel (15,9) and parts of the 8 neighbour pixels contribute to the value of the

output pixel considered.

Pixel considered
in output array
_-h_...__..__..____../_,_/
el
- '/
-z :;::»/
Input array Output array

Figure 4-3: How the pixels of the input image map onto a pixel in the shrunk

image

In order to find the value to be assigned to the output pixel the percentage
of each input pixel mapping onto this output pixel has to be multiplied with the
corresponding input pixel intensity value. The sum of these products is the value

for the pixel in the output array.

Figure 4-4: Wedge model on the left: original size, centre: shrunk to 70%, right:
shrunk to 50%
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4.3 Background Elimination

Most of the images available are not completely covered by the clay tablet but
contain as well some background. As there are obviously no wedges to be detected
in the background, it would be desirable to exclude these areas from any further
processing. Another reason to do this is that the time-consuming correlation
routine could skip the background regions, which would result in a considerable

program speed-up.

The background is characterized by its uniform colour, either bright or black.
Thus, the test to discriminate background from tablet areas is based on the de-
viation of the pixel intensity values within a certain neighbourhood. Identifving
background regions uses the mean pixel value of the current window and tests
each pixel against the mean. In background regions a majority of pixels should
be approximately the mean value (e.g. within £5), whereas in regions containing
tablet portions a much smaller percentage of pixels should have the mean value.
To allow for some noise two thresholds are introduced: DEV_THRESHOLD for
the permitted difference of a background pixel value from the mean (e.g. 5) and
BG_-THRESHOLD (e.g. 0.02). The number of pixels which do not meet the
first condition (i.e. they differ more than DEV_THRESHOLD from the mean) is
counted and divided by the total number of pixels considered in the window. If
this ratio is below the value BG.-THRESHOLD, the test has been successful and
that window region is declared to be background. Otherwise it is assumed to be

part of the clay tablet and must be further dealt with.

The test is carried out during the second stage of the template matching (i.e.
over the whole image) of only the very first template. Each time such a test
succeeds a reference item to the new background patch has to be created and
stored. As it is not known how many background patches exist in a particular
image, a linked list is used to hold the information. Each list element of the
structure type bg_list_element represents one background patch. The position of
the rectangle’s top left corner is written in the slots zI and yI; the bottom right

corner coordinates into z2 and y2.
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Figure 4-5 shows again the clay tablet of Figure 2-1 this time with the back-

ground areas marked by white frames.

In order to save some memory and run-time, two of the rectangles are merged
if they overlap or touch each other and have the same horizontal position (i.e. the
same z! and z2 coordinates). In practice, a new list item is not created if this
rectangle would just be a vertical extension of an already existing one. Rather,
the existing rectangle is pulled down to cover the new background patch as well.

This is the reason why some of the frames in figure 4-5 are longer than others.

After the very first template has been dealt with and the list of background
regions has been established alongside it is necessary for the processing of all
further templates to check at each image position if that corresponding pixel is
part of the background. For this purpose, every background list item beginning
with the one at the top of the list has to be checked whether the pixel under
consideration is situated within the rectangle represented by this list element. If
such a background patch is found, a number of pixels can be skipped. As the
image is processed row by row from the left to the right, one only needs to set
the column counter (representing the x-value of the position considered) to the
position right of the right edge of that background window (this value is stored
in the z2 slot of a list element) and continue testing all remaining list elements
on the new position until the end of the list is reached. It should be mentioned
that the order of the background patches in the list is the same as the order the
image positions are processed (i.e. row by row going top down always starting on
the left). That is why the above described procedure will work with no need of

running through the list more than once.
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Figure 4-5: Clay tablet image with framed background regions
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Chapter 5

Program Structure

The aim of this chapter is to provide a general overview of the actions and the
order they are carried out by the program as well as the main data structures used.
Details will be given about how to handle the program, which files it consists of,

and what their dependencies are.

5.1 The C and C++ Language

The program is written in ANSI-C with the exception that one feature of the C++
language standard was exploited. Unlike in C, it is possible to define variables in
C++ at any place in a function, which is of use for instance when the array to store
the input image has to be allocated. As its dimensions are not known yet when
the program is started, the array can not be defined until the image file’s header
has been read, which contains the dimensions. Thus, the array has to be allocated
dynamically at run-time. One could do that in C, too, using the malloc() function
of the standard library but it provides only a vector rather than a two-dimensional
array so that the index of a pixel in the vector would have to be calculated from
the x and y coordinates of that pixel. The source code, however, is easier to follow
if a genuine 2-D array holds the data, especially if not only one pixel and perhaps
its left and right neighbours are considered but, as it is the case in some places of
this program, more pixel positions are involved in calculations at a time. That is

the reason why the image data are stored in a dynamically allocated 2-D array.
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The C++ compiler used in the course of this project was the GNU compiler
g++ 2.3.3. Apart from the standard C libraries no other tools or libraries are
necessary to compile and run the program. Furthermore, there are no features of

Object Oriented Programming in this program though a C++ compiler is needed.

The main program occupies the file template.cc. All other functions called by
it can be found in the module funcs.cc. The data structures as well as the global
variables are in the header file defs.h. Two more files defs.cc and subdefs.cc belong

to the project. The executable file template is built using make.

5.2 Data Structures

The main data structures used are one- and two-dimensional arrays, doubly linked

lists, and structures.

The wedge models are each represented by an instance of the structure type

temp.

struct temp {
int rows;
int cols;
int wedge_width;
int wedge_height;
double t[TEMP_ROWS] [TEMP_COLS]; /* both 100 */
};

It contains the double array t to store the template pixel intensity values. Fur-
thermore, it possesses two integer slots for the number of columns and rows of the
corresponding template and another two integer slots for the width and the height
of the wedges within the template window. (The function filter() will make use of
the latter two.)

The pgm2c program (see Chapter 4.1) generates the file defs.cc which con-
tains the definition of the vector basic.temps{]. This vector has 9 elements, each

representing 1 wedge model.
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As each of the 9 models has 3 instances of different sizes, another vector of the
structure type temp is needed, which has 3 times as many elements as basic_temps(],
i.e. 27. At the beginning of the program the contents of basic_temps[] are copied
into every third vector element and the remaining 18 elements between are filled
with the corresponding data of the 85% and the 70% versions of the original
9 templates. Thus, templates[0] equals basic_temps([0], templates[3] is equal to
basic_temps[1], templates{1] is 85% of basic_temps[0], and templates[2] is 70% of
basic_temps[0] etc. Then, during the preprocessing stage, both scaling and rotation

are always applied to all 27 elements of the vector templates]].

A similar setup exists for the subtemplates, parts cut out from the original
9 templates. (Their purpose will be described in detail in Chapter 6.) There is
a vector basic_sub_temps[] whose elements are again of the type temp. They are
also copied into a 27 element vector subtemplates(] and rotation and shrinking are

carried out for all 27 subtemplates.

The vector basic_sub_temps]] is defined in the file subdefs.cc, which is generated

by the pgm2subc program in a similar fashion as is the file defs.cc by pgm2c.

The principal output of the program is written into a file and consists of a
list of the wedge locations found as well as some additional data for each loca-
tion. These data are stored in instances of the structure type list_element and are
linked together to a list because the number of wedges to be detected is unknown

beforehand:

struct list_element {
int temp_nr;
int x;
int y;
int upp_left_x;
int upp_left_ y;
double correlation;
int dev;
double sub_corr;
struct list_element *prev;

struct list_element *succ;
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The structure slot temp_nr is for the number of the template (between 1 and 27)
which has matched the image data at that position. The coordinates z and y tell
where the upper (left) corner of the found wedge is in the input image. For these

reference points and how they are marked in the four basic wedge types see Figure

o-1.

1. a "horizontal" wedge

2. a"vertical" wedge 1

3. a wedge "pointing down to the right"

4. awedge "pointing left" ‘

Figure 5-1: How the wedge locations are marked in the output image

In some cases the program also needs to know the coordinates of the upper
left corner of the template window with respect to the image coordinates. For this
purpose the integer slots upp_left_z and upp_left_y are provided. Their values are
both by some numbers (i.e. pixels) smaller than z and y, by how much depends on
the particular template. The remaining three slots hold the data computed during
the template matching process: correlation stands for the correlation coefficient,
sub_corr for the correlation coefficient obtained from using the subtemplates, and
dev contains the standard deviation value. As the structure instances are to be
chained to a list, it is of course necessary to have pointers to the previous and to

the next list element: prev and succ.

After the program has been started the header of the input file is read and
an unsigned char array in-array with the appropriate dimensions is allocated. It
is possible to use the type unsigned char because there cannot be more than 256
grey values in an image. Moreover, during the experiments the program sometimes
failed to allocate enough memory so that only such data types should be chosen
here whose precision can be really exploited. A float array out_array of the same
dimensions is defined afterwards for the correlation coefficients obtained in each

of the 27 matching cycles. Similarly, another unsigned char array dev stores the
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standard deviation values, which are rounded to integer numbers since the precise

values are not required and to save memory.

5.3 Overall Control Structure

5.3.1 Program Options

The executable program template is used as a command which reads from the
standard input and writes to the standard output. As a PGM file is expected to

be read, one should use the program the following way:
template [options] < input.pgm > results

The output file (here results) contains the list of wedge locations mentioned
before and can be used as input for subsequent programs that cluster the locations

and feed them into a neural net.

The options available are:

-0: A PGM file overlay.pgm is generated and written into the current directory.
It contains the input image with all wedge locations marked like in Figure

5-1. This option is helpful for analyzing the output.

-k: For each template employed, a file correlationX.pgm is output with X being the
template number beginning with 0. They are image files of the same size as
the input image but each pixel has the correlation coeflicients corresponding
to the particular coordinates. As the correlation coefficients are between -1
and +1, they must be scaled up to values between 0 and 255 in these images
so that bright spots stand for high correlation. It should be mentioned that
with this option being turned on 27 such files are generated, which can mean
a huge amount of disk space will be occupied. However, it is at times a useful

analysis tool as well.

-c: The array containing the correlation coefficients is blurred by convolving it

with a 3 x 3 mask before the local maxima are looked for. The mask looks

like this:
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This step suppresses some of the local maxima if they are very close together
(which would contradict the fact that wedge locations are usually separated
by at least 5 pixels in the test images). The greatest local maxima in that

region, however, survive this smoothing operation.

-f: The last filtering routine filter() is not applied so that no attempt is made
to remove multiple responses indicating several detected wedges in a place

where only one wedge can be.

-b: The areas found to be largely image background are shown framed like in

Figure 4-5.

5.3.2 Control Flow

When the program is started, the flag shrink_rot_flag is set to 1 and the prepro-
cessing steps discussed in the previous chapter are carried out. When the optimal
shrinking factor and rotation angle have been found the actual template matching
begins. (Shrink_rot_flag is 0 to indicate that.) The pseudocode on the next page

shows the principal actions executed.

The function sort_list() (see Appendix A) takes the list of wedge locations as
argument and sorts the items with respect to the correlation coeflicients. The list
element with the greatest correlation coefficient goes to the start of the list. A

pointer to the first element of the sorted list is returned.

The local maxima are found by checking the 3 x 3 neighbourhood of each
pixel (i.e. its 8 direct neighbours) if all of them have smaller values than the pixel

considered. If so, this pixel is a local maximum.
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/*** calculate initial correlation values ***/

for each template in templates|] do
for each pixel in in_array[][] do
{
if pixel within background area
skip positions horizontally
else
{
if first template 1s being processed
do background check
calculate correlation coefficient and write it into out_array(][]

calculate standard deviation and write it into dev_arrayf](]

}
}

if blurring is required
do blurring of out_array(][]
find local maxima in out-array(][] and store them in list

append list to glob_list

/*** refine match using subtemplates ***/

for each element in glob_list do
calculate correlation coefficient using the subtemplates
/*¥** sort list of matches w.r.t correlation (see end of section) ***/

call sort_list(glob_list)

/*¥** with 3 features filter the set of matches (see Chapter 6) ***/

for each element in glob_list do

{

if at least 1 of its 3 features is below a corresponding threshold

remove this element from glob_list
}

/*** check for false and multiple matches and remove them (see Chap 6)
call filter(glob_list)
for each element in glob_list do

put out data related to this wedge location

***/
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Chapter 6

The Template Matching Techniques
Employed

This chapter describes the three main features used for the Template Matching,

their calculation, and how false matches are suppressed.

6.1 Correlation

The formula to compute the correlation coefficient has been explained in Chapter 3
already. However, its application in this program contains a further condition. As
only the triangular areas of the wedges are to be correlated with the image data,
the rest of the pixels in a model array have to be excluded from this calculation.
For this purpose the background pixels in the model PGM files were set to +1 (as
explained earlier) and after the shrinking and rotation operations the same pixels
have the value -5; now stored in the array ¢ of the elements of vector templates{]. So,
only the pixels in the model whose values are greater than -5 are to be considered

for the correlation.

Furthermore, the part of the formula involving the model data can be calculated
separately in advance and stored in the arrays ¢ of templates|| rather than the

original intensity values. If in Equation (3.1) in Section 3.2:

' Mg — M

o \/Z:k(mk"ﬁ”‘)2

m (6.1)
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the correlation p is:

\/Z:c (d:r - J)2

Using this, the loops to compute the correlation coefficient look like this in C

(6.2)

code:

for( i=rowstart ; i < rowend ; i++ ) /* go row by row */
for( j=colstart ; j < colend ; j++ ) /* go line by line */

JRFFFEEEEEX calculate data mean using the k-th template ***x¥kkxx/

mean = 0.0;

count = 0;

for( a=0 ; a < templates[k].rows ; a++ )
for( b=0 ; b < templates[k].cols ; b++ )

if( templates[k].t[a][b] > -5.0 )

mean += (double)in_array[i+a][j+b];
count++;

}
}

if( count > 0)
mean /= count;
JFRFRFHRERAEEE calculate correlation and deviation
dev = 0.0;
accum = 0.0;
count = 0;
for( a=0 ; a < templates[k].rows ; a++ )
for( b=0 ; b < templates[k].cols ; b++ )
if( templates[k].t[a}[b] > -5.0 )
{

************/

diff = (double)in_array[i+a[j+b] - mean;
accum += diff * templates([k].t[a][b};
dev += diff * diff;

count++;

}
if( dev > 0.0 && count > 0)

dev_array[i][j] = (unsigned char)(sqrt(dev/count) + 0.5);
/* write correlation into out_array */
out.array[i][j] = (float)(accum / sqrt( dev ));

}
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Experiments with three images have shown that the correlation coeflicients for
correct matches of a model with a wedge in the data are greater than 0.4 so that
this threshold is applied when the local maxima are collected from the out_array(](]
(see Chapter 5.3.2). Le. only correlation coefficient maxima greater than 0.4 are
stored in list, which is appended to glob_list. More specific thresholds for each
specific wedge type are applied together with others for the standard deviation and

the subtemplate correlation when these other two features have been computed.

6.2 Standard Deviation and Subtemplates

When the above mentioned experiments were conducted it also became clear that
the correlation itself is a good feature to detect the vast majority of wedges but
should not be used without any other constraints. Apart from the correct re-
sponses, a great number of false matches with correlation values above 0.4 are
output as well. They indicate either the wrong wedge type at a position where
really a wedge is (quite often a horizontal wedge instead of a vertical one or vice
versa) or, what is even worse, a wedge in some empty tablet area without any
wedges. An example of the latter kind of false match is shown in Figure 6-1 where
the two pluses in the top-left corner, which is obviously not covered by a vertical

nor any other kind of wedge, indicate matches with wedge models of type 2.
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Figure 6-1: Two false matches (+) on the top left

The correlation coeflicients of the two false responses are 0.54 and 0.58, re-
spectively which is why these matches are very unlikely to be eliminated by a
simple thresholding operation. Therefore, additional features had to be sought
which would - in some combination with the correlation coefficient - allow the

suppression of false matches.

The analysis of three such problem cases showed that the texture in these grey-
ish tablet background regions is of a similar structure as in areas where real wedges
are. The patterns are just fainter but still clear enough to effect a good correla-
tion with one of the models. One possible explanation for these faint patterns is
that the tablets were re-used after the previous information had been scratched
off. Traces of the former wedges might still be present and could cause the prob-
lem described. Another explanation is that the presence of random texture in the

tablets may be responsible for the probability of random texture similar to wedges.

As the histograms for the data pixel intensity values within the regions where
false matches with background happened were not significantly different from his-
tograms of areas with actual wedges, all attempts to exploit features such as the

distance between two peaks in the histogram etc. failed.

6.2.1 The Standard Deviation

Theoretically, the standard deviation in a window of image data with real wedges
should be much greater than in a window of tablet background where most pixel
intensity values do not differ very much from the mean. However, as for the ana-

lyzed problem cases, this was not always completely true in the images examined.

The formula to calculate the standard deviation is the following:

oo VE(d—dp (63)

D
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It is computed at the same time as the correlation and (as can be observed in the
piece of C code in Section 6.1) in the same loop. Again, only those data pixels are
taken into consideration whose corresponding model pixels are part of the wedge

rather than model background. (Their number is D = M in Equation 6.3).

Wedges in the data with a high contrast (i.e. dark shadows on the top-left and
bright areas on the bottom-right) typically have a standard deviation greater than
50 and may be up to 90. Tablet background areas usually have values smaller
than 50 or 60; sometimes even below 20. When the deviation values of all matches
(correct and false ones) in one tablet are looked at closer, the idea of a general
threshold cannot be maintained any longer. As it is the case with the correlation
coeflicients, one has to introduce separate thresholds for each wedge type and some
of the thresholds had to be set without being able to allow an adequate margin

above and below them.

6.2.2 Subtemplates

The subtemplates were each cut out from the corresponding full template and each
one represents some unique feature of the complete template. For example, the
subtemplate corresponding to the stack of three vertical wedges (model in Figure

6-2 on the left) contains only the three tips (right picture in Figure 6-2).

Figure 6-2: Left: enlarged view of template, right: corresponding subtemplate

The purpose of these subtemplates is to correlate the image data of only that
small rectangle in which a candidate wedge is located with the subtemplate be-
longing to the reported wedge type. The idea of this is to check for specific wedge

features to further confirm the identification of a wedge.

For example: suppose the i-th item in glob_list has wedge type 4. The slot
temp_nr may have the value 25 to indicate this (i.e. type 4 in its 100% scaled
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version has been matched). The subtemplate to be selected for the test will be
the one stored in subtemplates[24]. (24 because vector indexes start with 0.) It
contains part of the full wedge stored in templates[24]. What is the rectangular
area over which the subtemplate has to be shifted in order to obtain correlation
coefficients? Its top-left corner coordinates are held in (glob.list — upp_-leftz,
globlist — upp_lefty) and the horizontal and vertical offset to calculate the
bottom-right corner will be taken from templates[2{].cols and templates[24].rows.
In other words: the image data region in which correlation coefficients are com-
puted using a subtemplate has the same dimensions as the template whose match
with the data is to be verified. The correlation values are written into out_array[][]
the previous values of which (resulting from the main processing stage) are no
longer needed since all interesting information is stored in glob_list. When all cor-
relation coeflicients for this subtemplate match are calculated, their maximum is
sought and stored in the slot sub_corr of the list item considered. This list ele-
ment (of glob_list) contains now all three necessary features (correlation coeflicient,

standard deviation and subtemplate correlation coefficient) to do the final test.

After each glob_list element has obtained its sub_corr value, it has to pass a test
in which is checked if all three features are above their corresponding thresholds.
If either the correlation coefficient or the subtemplate correlation coefficient or the
standard deviation value does not meet this condition the list item is removed and

destroyed; i.e. the match is declared to be false.

The thresholds applied are shown in Table 6-1 and have been found by con-

ducting tests on three images.
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subtemplate | standard

template | wedge | correlation | correlation | deviation

number | type | threshold threshold | threshold
1 1 0.55 0.3 39
2 1 0.55 0.3 37
3 1 0.55 0.3 30
4 1 0.49 0.25 28
5 1 0.42 0.2 25
6 1 0.4 0.2 25
7 1 0.65 0.5 30
8 1 0.55 0.4 30
9 1 0.5 0.4 30
10 2 0.46 0.25 28
11 2 0.46 0.25 28
12 2 0.46 0.25 28
13 2 0.45 0.22 25
14 2 0.45 0.22 25
15 2 0.45 0.22 25
16 1 0.49 0.4 27
17 1 0.44 0.3 26
18 1 0.4 0.3 25
19 2 0.6 0.35 40
20 2 0.6 0.35 40
21 2 0.6 0.35 40
22 3 0.65 0.45 35
23 3 0.55 0.35 33
24 3 0.55 0.35 33
25 4 0.72 0.43 30
26 4 0.65 0.43 30
27 4 0.65 0.43 30

Table 6—1: Thresholds

43




6.3 Final Filtering

After the matches in glob_list have been filtered by applying thresholds for the
three features discussed before, a further step remains to be carried out. This last
filter aims at removing all implausible matches from g¢lob_list and would ideally
result in exactly one match per wedge in the image. Implausible matches occur
on the one hand because many characters comprise overlapping wedges the partly
occluded wedges of which sometimes correlate equally well with several models.
On the other hand, there are quite often several local correlation maxima of the
same wedge type in the neighbourhood of a real wedge which have passed the
previous two tests. The one with the highest correlation value is likely to best

indicate the detected wedge.

In order to design a good filter, a number of constraints have to be found which

define what plausible matches are.

6.3.1 Allowed Overlaps

One constraint is that in a close neighbourhood of one match no other match can be
correct. One or both of the two must be false and therefore rejected. (Although in
future projects one might allow a general wedge classification with different types
reported at the same place in order to let the neural network disambiguate them
by using information about the local configuration of its input wedge locations.)
The decision which match to reject can be based on the correlation coefficient;
the greater it is the more plausible is the match. Other constraints can be found
exploiting the fact that the 30 characters of the alphabet comprise only a limited
number of overlapping wedge combinations. As the type of the wedge that belongs
to a particular match is available via the temp_nr of the list element in glob_list, one
can look at pairs of matches in terms of the wedge types they indicate and check if
the combination of these two wedge types occurs in the characters of the alphabet
or not. Of course, such a pair of matches should be tested only if both matches
are at positions close together and this is roughly what the function filter() does

(see Appendix A):
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filter() takes the glob_list as argument, finds implausible matches, removes the
corresponding list elements and returns the (shorter) glob_list. The list is sorted
according to the correlation coefficients. The element with the greatest one is
at the beginning. The function works in two steps. First, each element X is
paired with every remaining element Y which comes after X in the list. Thus, no

combination is tried twice.

The first step checks if the two wedges represented by the list elements would
overlap in the image. If that is not the case, no further test is required and the
next pair can be checked. The two matches are plausible and remain (at least at

the moment) in the list.

The overlap is found like this: It is tested for each non-background pixel of the
first wedge model if by adding the x and y offset (i.e. the distance between the
wedges’ marked reference points) a non-background position in the other wedge

model can be reached. If so, the two wedges overlap.

Should there be any overlap, a second test is carried out which employs con-
straints on wedge combinations. By default, the match with the smaller correlation
coefficient is to be removed unless the following test succeeds. This test checks
sequentially the set of allowed overlapping wedge configurations and is structured

according to the overlapping pairings possible:

1. 2 overlapping wedges of type 1

o

2 overlapping wedges of type 2

3. a type 1 wedge overlapping one of type 4
4. a type 4 wedge overlapping one of type 1
5. a type 1 wedge overlapping one of type 2
6. a type 2 wedge overlapping one of type 1
7. a type 2 wedge overlapping one of type 4

8. a type 4 wedge overlapping one of type 2
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9. 2 overlapping stacks of type 2 wedges
10. a stack of type 2 wedges overlapping one wedge of type 2
11. a type 2 wedge overlapping a stack of type 2 wedges
12. a stack of type 1 wedges overlapping one wedge of type 2
13. a type 2 wedge overlapping a stack of type 1 wedges

These are the combinations where the overlap is permitted under certain circum-
stances. They were found by examining the Ugaritic alphabet. To decide whether
overlap is permitted, thresholds had to be introduced that work on the base of the
width and height of each wedge model. The structure temp, of which templates]]
is an instance, has two slots: wedge_width and wedge_height. They are initialized
at the beginning of the main program with values telling the dimensions (in terms
of pixels) that the wedge occupies in the model window: e.g. in a 60 x 40 win-
dow a model wedge of type 1 might be 52 pixels long (wedge_width) and 30 pixels
high (wedge_height). The conditions in filter() are based on these two pieces of

information; i.e. percentages of them are used.

For example: Two overlapping wedges of type 1 are permissible if the distance
between their reference points (where the x is marked in the output images) is
more than 35% of the width of the first wedge. This is quite a small number but as
the reference points in the characters a and n are rather close together, it cannot

be increased to 40% or more.

Particularly tricky combinations are all those involving a wedge of type 1 and
one of type 2. There are several possibilities the wedges can be placed and also

some placements that are not allowed: see Figure 6-3.

6.3.2 Ambiguous Labels

The bottom half of a horizontal wedge resembles the upper part of a vertical wedge
so that at times a type 1 model matches a vertical wedge in the image better than
a type 2 model. In this special case filter() removes either the type 1 wedge

(although its correlation coefficient is greater) if the correlation coefficient of the
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type 2 wedge is only up to 0.1 smaller than the one of wedge 1 and if additicnally
wedge 1 is located above wedge 2 (in terms of the y coordinates) or otherwise

wedge type 2 will be removed.

The percentage values used in the conditions as well as some of the conditions

were derived empirically through a number of experiments.

47



Vertical wedge can be moved horizontally
E : L

Minimum distance

""" T

B

permitted combination

not permitted

Minimum distance

no vertical
minimum
distance

Vertical wedge can be moved vertically

permitted combination

permitted combination
(e.g. in letter "b" )

Figure 6-3: Combinations of wedges of type 1 and 2

48



Chapter 7

Experiments and Results

After the parameter adjustments had been completed, the program was tested on
four test images. The numbers used for them are the same as the ones they have
in the collection they were taken from. Image 169 is the one shown in Chapter 2

already.

The problem encountered at the beginning was that the images 658 and 663
were too large to be processed with the memory available in the computer. So, all

images were shrunk and their reduced versions were used by the program.

Each image was processed twice: once with the final filter() function enabled
(i.e. without setting option -f) and, in order to obtain some reference to assess
the performance of filter(), without the last filter being applied (option -f was set
on the command line). Figures 7-1, 7-2, 7-3, 7-4, 7-5, 7-6, 7-7 and 7-8 show
the four pairs of images produced as files overlay.pgm each time since the option
-0 was used throughout. The detected wedges are marked in the way described in

Figure 5-1.
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Figure 7-1: Image 169 processed with filtering
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Figure 7-2: Image 169 processed without filtering
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Image 718 processed with filtering

Figure 7-3
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Image 718 processed without filtering

Figure 7-4
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Figure 7-5: Image 658 processed with filtering
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Figure 7—6: Image 658 processed without filtering
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Image 663 processed with filtering

Figure 7-7
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Figure 7—-8: Image 663 processed without filtering

37



Figure 7-9 contains as an example the first part of the output produced when

image 169 was processed.

The run-time for each image amounted to several hours as the correlation
algorithm is quite time-consuming. It accounts for about 95% of the time spent.
However. correlation is a process that can easily be parallelized and thus run many

times faster on several processors at the same time.

The four tables 7-1, 7-2, 7-3, and 7-4 show the percentage of wedges detected.
(It is only recorded for each wedge if it was found or not. If it was found, the dis-
tinction is made if the wedge type reported is correct as well.) The two percentages
given under every table are: 7y is the recognition rate considering only wedges de-
tected with the correct type whereas r; is the ratio of all detected wedges and the

total number of wedges in the image.

Table 7—1: Statistics for tablet 169

number of | number of number of
number of wedges wedges number of | spurious
wedge wedge found with | found with | wedges not | wedges of
type | appearances | correct type | wrong type | detected this type
1 190 146 6 38 72
2 133 103 1 29 46
3 7 4 3 0 0
4 9 7 0 2 6
z 339 260 10 69 124
T = %576.7% Ty = % = %%£79.6%
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Table 7—2: Statistics for tablet 718

number of | number of number of
number of wedges wedges number of | spurious
wedge wedge found with | found with | wedges not | wedges of
type | appearances | correct type | wrong type | detected | this type
1 57 32 9 16 33
2 94 74 1 19 38
3 1 0 1 0 0
4 3 1 2 0 0
Y 155 107 13 35 71
ry = 13:269% ry = 1AL = I2T77.4%
Table 7—-3: Statistics for tablet 658
number of | number of number of
number of wedges wedges number of | spurious
wedge wedge found with | found with | wedges not | wedges of
type | appearances | correct type | wrong type | detected | this type
1 127 94 10 23 70
2 87 46 16 25 28
3 6 0 5 1 0
4 1 0 0 1 0
bY 221 140 31 50 98
ry = 40263 3% ry = MR = THETTA%
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Table 7—4: Statistics for tablet 663

number of | number of number of
number of wedges wedges number of | spurious
wedge wedge found with | found with | wedges not | wedges of
type | appearances | correct type | wrong type | detected | this type
1 158 132 3 23 64
2 126 91 1 34 29
3 4 0 4 0 0
4 4 0 3 1 1
Y 292 223 11 58 94
ry = 22276.4% ry = 24U = B2g0%

The observations made are the following:

Wedges of type 3 (letter ¢) are often misclassified as type 1. This is the case
especially in the images 658 and 663 where this wedge correlates better with a

small model of type 1 rather than with a type 3 model.

The results became worse towards the tablet edges which is not surprising as
the illumination conditions change there (especially when the tablet is not flat)

and also because some wedges are not preserved completely.

The tablet background elimination method works quite reliable. Image 169 has
some empty areas (i.e. without wedges) where, as it is desired, almost no (false)
matches were found. The same applies to tablet 658 which contains much texture

but no characters in the bottom third.

The image background elimination could of course not work in image 718.
The texture there is due to a piece of cloth. Apart from some background pieces
along the tablet edges all image background was identified in the experiments
and excluded from any processing. The few regions where wedges were reported
erroneously could not be found as the vast majority of pixels in a window must
have uniform intensity values for this window to become background. If only one
corner of the window juts out and encloses some background, this window will

not become a background region so that later matches are possible which report
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wedges slightly jutting out as well. As the windows are always slid over the image

from the left to the right, this kind of matches happens on the left tablet edges.

As it was described in Chapter 6, there are problems in deciding between
wedges of type 1 and 2. When comparing the “unfiltered” and the “filtered”
image one can observe that a number of wedges which are not detected in the
final filtered output were in fact found but then removed by the function filter().
It happens in places where both wedge 1 and 2 types match well a vertical or a
horizontal wedge. These cases represent a great part of the misclassified wedges
and also some of the missed ones. It has been explained in Chapter 6 that it
is possible for a horizontal wedge match (type 1) with higher correlation than an
overlapping vertical wedge (type 2) to be removed. If the remaining vertical wedge
match is later removed by another match, whatever its type might be, none of the
original matches is left to indicate the detection of the wedge in the image. This
happens not too often. Most of the wedges missed are either located near or on the

tablet edges or have shapes that do not fully correspond to those of the 9 models.

The recognition rates r; for correct wedge types detected and r, for wedges
detected in general are not bad considering that the input data is considerably
noisier and more corrupted than it is the case in OCR systems that claim recog-
nition rates of over 95% for typed characters. Thus, the experiments showed that
the correlation of models with the image data is a suitable detection method but
more refinement in the last filter could produce a better result with less undetected
and less misclassified wedges. This is essential when the set of wedge locations will

be used as input into a clustering algorithm and subsequently for a neural net.
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Figure 7-9: Program output

The first column contains the template number (i.e. temp_nr), a number between
1 and 27. The second and third columns tell the x and y coordinates of the
wedge’s marked reference point in the image. The value in the fourth column is
the correlation coefficient according to which the table is sorted. The last but

one column is for the standard deviation and the last one for the subtemplate
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Chapter 8

Conclusions and Further Work

8.1 Summary of Main Results

A set of 9 models of stylus strokes (wedges) has been created. Then, one approach
to match these models with image data in order to locate the wedges in the image
has been successfully implemented. This program, which correlates image data
with models to extract features from the image, represents the first part of the

Ugaritic character recognition task.

8.2 Limitations and Extensions

The 9 models of wedges are to represent the 4 shapes most frequently found in
the Ugaritic texts. However, there are variations due to the writing style of the
scribes. In order to make the program more general and flexible, more wedge
samples would have to be found, adapted and added to the model set. To allow
for easy extensions the model base was created as a set of (small) images which

can be translated automatically into program code.

The routine filter() to remove false or multiple matches between model and
data wedges does work. But, a more sophisticated algorithm that would work
in several passes could perform better in those cases when correct matches are
removed erroneously or when false matches fail to be removed. Limitations of
time did not allow to extend this routine further since each adjustment made had

to be verified by at least one test on an image.

63



When processing large images one encounters the problem that the computer
memory is not sufficient. One solution would be to shrink the image (and the
models, too, if necessary). Another possibility is to process only part of the image

at a time (e.g. first the upper half and later the rest).

It should be mentioned here that the program was designed for the use with the
30 character alphabet. It is not possible to adapt it to another recognition task
by simply exchanging the model set. The function filter() for example exploits

constraints specific to the Ugaritic script.

The clustering algorithm to group the wedge positions as well as the neural net
to classify the characters may both need information about the frequency of the
30 characters in the texts. For this purpose Jeff Lloyd collected information from
26 representative texts comprising 7973 characters. In Table 8-1 both the total
number of character appearances in these texts and the corresponding frequency

1s given:
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number of
character appearances | frequency in %
a 226 2.82
i 213 2.66
u 69 0.86
b 552 6.90
g 128 1.60
d 340 4.25
d 26 0.32
h 179 2.24
w 215 2.69
z 32 0.40
h 135 1.69
h 115 1.44
t 34 0.42
Z 19 0.24
y 331 4.14
k 335 4.19
1 755 9.44
m 679 8.49
n 516 6.45
s 41 0.51
$ 0 0
c 363 4.54
g 60 0.75
P 290 3.62
s 117 1.46
q 111 1.39
r 540 6.75
§ 419 5.24
t 704 8.80
t 256 3.20
uncertain characters 173 2.16

Table 8—1: Frequency of Ugaritic characters in a set of 26 texts
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8.3 Alternative Approaches

An approach slightly different from the one in this project can be made if each
tablet is photographed twice: once with the light coming from the left and the
second time with the light from the right. Camera and tablet must be kept in
the same fixed position. The intensity values of one image can be subtracted
from the ones of the other image. On the assumption that the tablet and image
background in both images has roughly the same intensity values these regions
would cancel each other out and result in intensity values of approximately 0.
The places that are covered by characters are supposed to yield values which are
significantly different from 0. It should be possible to find a suitable threshold
to produce a binary image that contains the shapes of the wedges. After some
normalization procedures the image could be fed into a self-organizing neural net
directly. Without having to compute correlation coeflicients the preprocessing

would be much faster.

Another approach is the use of range images rather than light intensity images
in order to obtain binary images. This is possible since the characters are impressed
into the clay. The problem is that the range finder to be used to scan the tablets

would need to have quite a high resolution of about 0.1 mm.
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Appendix A

Program code

/*******************************************************************/

[ **x Header file defs.h ey
[ FAA A AR AR AR KA A A AA KA A AR KKK AR FAA AR AR F AR A KA A AR KKK [

#define NUMBER_OF_TEMPLATES 9
#define SHRINKINGS 1
#define ROTATIONS O

#define SHR_FACT 0.15 // 1i.e shrink by 15% each time
#define ROT_STEP 5 // i.e. rotate in 5 degree steps
#define DEV_THRESHOLD §

#define BG_THRESHOLD 0.03 //

#define TEMP_ROWS 100
#define TEMP_COLS 100

struct temp {
int rows;
int cols;
int wedge_width;
int wedge_height;
double t[TEMP_ROWS] [TEMP_COLS];
};

struct list_element {
int temp_nr;
int x;
int y;
int upp_left_x;
int upp.left_y;
double correlation;
int dev;
double sub_corr;
struct list_element *prev;
struct list_element *succ;

};
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struct bg_list_element {
int x1;
int x2;
int yi;
int y2;
struct bg_list_element *prev;
struct bg_list_element *succ;

};
struct list_element *sort_list( struct list_element * );

int shrink( double inarray[][TEMP_COLS], int rows, int cols,
double outarray[] [TEMP_COLS], int outrows, int outcols );

int rotate( double angle, double inarray[] [TEMP_COLS],
double outarray[] [TEMP_COLS],
int cols, int rows, int bg_colour );
struct list_element *filter( struct list_element *start,
struct temp *templates );
extern struct temp basic_temps[NUMBER_OF_TEMPLATES];

extern struct temp basic_sub_temps[NUMBER_OF_TEMPLATES];

/*******************************************************************/
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/ 3ok sk ok s ok o o sk e s ok o ok ok ok ksl ok ok o ks o sk ok ok sk ok ko ok o ok S o o ok KoK ok 3 KoK o o ok ok ks sk ok ok ok ok e |
/***% file: funcs.cc *%k [
/e e o o ok ok s oo s o o o Sk o ko sk o ko ok ok Ko s o ok o o ok 3ok sk K sk ok ok o ok K ok ok o ok ok ok ok o ok ok
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include “defs.h"

/*********************************************************************/

/**x function: shrink *kk [
/*** scales inarray down to outarray *kk
[*%x based on code for HIPS by Mike Landy *kk [

/*********************************************************************/

int shrink( double inarray[][TEMP_COLS], int rows, int cols,
double outarray[][TEMP_COLS], int outrows, int outcols )
{
int k, ¢, r, inxp, inyp;
register double *ip3, *ip4;
double xfactor, yfactor, xmag, ymag, xlo, xhi, ylo, yhi, sum, *ip,
tmp, tmp2, xOtmp, x1ltmp, yOtmp, yltmp;

xfactor = (double)outcols / cols;
yfactor = (double)outrows / rows;
xmag = 1.0 / xfactor;
ymag = 1.0 / yfactor;

int fxlo[outcols];

int fxhil[outcols];

int inxpix[outcols];
double xlofract[outcols];
double xhifract[outcols];
double xmifract[outcols];

for (c = 0; ¢ < outcols; c++)

{

if (xfactor == 1.0)

{
/* important special case */
fxlof[c] = c;
inxpix[c] = -1;

}

else

{
xlo = (double)c * xmag;
xhi = xlo + xmag;

/* truncate */

fxlo[c] = (int)xlo;

fxhilc] = (int)xhi;

/* if on integer boundary, ignore */

if ((double)fxhilc] == xhi)
fxhilcl--;
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inxpixfc] = fxhi[c] - fxlo[c] - 1;
}
if (inxpix[c] == 0)
{
x0tmp = fxlo[c] + 1 - xlo;
xlofract[c] = xOtmp / xmag;
xhifract[c] = 1.0 - xlofract[cl;
}
else
if (inxpix[c] > 0)
{
x0tmp = fxlo[c] + 1 - xlo;
xitmp = xhi - fxhilc];
xlofract{c] = xOtmp / xmag;
xhifract[c] = xitmp / xmag;
xmifract[c] = 1.0 - xlofract[c] - xhifract[c];

by

int fylo[outrows];

int fyhil[outrows];

int inypix[outrows];
double ylofract[outrows];
double yhifract[outrows];
double ymifract[outrows];

for (r = 0; r < outrows; r++)
{
if (yfactor == 1.0)
{
/* important special case */
fylo[r] = r;
inypix[r] = -1;
}
else
{
ylo = r * ymag;
yhi = ylo + ymag;
/* truncate */
fylo[r] = (int)ylo;
fyhil[r] = (int)yhi;
/* if on integer boundary, ignore */
if ((double)fyhi[r] == yhi)
fyhilr]l--;
inypix[r] = fyhilr] - fylo[r] - 1;

}

if (inypix[r] == 0)

{
yotmp = fylo[r] + 1 - ylo;
ylofract[r] = yOtmp / ymag;
yhifract[r] = 1.0 - ylofract[r];

}

72



else
if (inypix[z] > 0)
{
yotmp = fylo[r] + 1 - ylo;

yitmp = yhi - fyhi[r];
ylofract[r] = yOtmp / ymag;
yhifract[r] = yitmp / ymag;
ymifract[r] = 1.0 - ylofract[r] - yhifract(r];
}
}
for( r=0 ; r<outrows ; r++ )
{

ip = &inarray[r][0]; // + fylo[r]*cols;
for( c=0 ; c<outcols ; c++ )

{
inxp = inxpix[c];
inyp = inypix[r];
/* start first the lower row */
sum = 0.0;

ip4 = ip + fxlol[c];
ip3 = ip4 + 1;
if (inxp > 0)
{
/* add in the middle region */
/* this contains whole pixels across */
for (k = inxp; k > 0; k--)
sum += *ip3++;
sum *= xmifract[cl; /* weight */
sum /= (double)inxp;
}
if (inxp >= 0)
{
/* add in partial regions */
/* these are at the start and end */
sum += (*ip4) * xlofract([c];
sum += (*ip3) * xhifract(c];
}
else /* inxp < 0 */
/* everything within one pixel across */
sum += *ip4;
if (inyp < 0)
{
/* only one row to consider */
/* everything fits in a y pixel */
outarray[r] [c] = sum;
continue;
}
sum *= ylofract[r]; /* weight */
ip4 += cols;

tmp = sum;
/* add the middle rows */
if (inyp > 0)
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/* whole rows to add in */
register int 1;

tmp2 = 0.0;

for (1 = inyp; 1 > 0; 1--)
{

sum = 0.0;

ip3 = ip4 + 1;
if (inxp > 0)
{

for (k = inxp; k > 0; k--)
sum += *ip3++;
sum *= xmifract[c];
sum /= (double)inxp;
}
if (inxp >= 0)
{

/* add in partial regions */
sum += (*ip4) * xlofract([c];
sum += (*ip3) * xhifract(c];

}
else
sum += *ip4;
ip4 += cols;
tmp2 += sum;
}
tmp2 *= ymifract[r];
tmp2 /= (double)inyp;
tmp += tmp2;
}
/* now the upper row */
sum = 0.0;
ip3 = ip4 + 1;
if (inxp > 0)
{
/* add in the middle region */
for (k = inxp; k > 0; k--)
sum += *ip3++;
sum *= xmifract[c]; /* weight */
sum /= (double)inxp;
}
if (inxp >= 0)
{
/* add in partial regions */
sum += (*ip4) * xlofract[c];
sum += (*ip3) * xhifract[c];
}
else /* inxp < 0 */
sum += *ip4;
sum *= yhifract[r];

/* combine and normalize */
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re

sum += tmp;
outarray[r][c] = sum;

3

turn 0;

/*********************************************************************/

[ **%
[ ®*k%
[ ®%%
[ *%%
[ ®x%

function: rotate
rotates inarray by angle degrees & returns outarray
bg_colour: value for the pixels that do not have a
corresponding °‘input’’ pixel
based on code for HIPS by D. Croft

*kk/
*okok /
*kk [
*%x
*kxk /[

/*********************************************************************/

int

rotate( double angle, double inarray[][TEMP_COLS],
double outarray[][TEMP_COLS],
int cols, int rows, int bg_colour )

int i, j, x2, y2, x_centre, y_centre;
double sine, cosine, dist_x, dist_y, tmp_array[TEMP_ROWS] [TEMP_COLS];

x_centre = cols / 2;

y.centre

rows / 2;

sine = sin( angle * M_PI / 360.0 );
cosine = cos( angle * M_PI / 360.0 );
for( i=0 ; i<crows ; i++ )

{

}

dist_y = (double)(i - y_centre);
for( j=0 ; j<cols ; j++ )

{
dist_x = (double)(j - x_centre);
x2 = x_centre + (int)(cosine * dist_x - sine * dist_y);
y2 = y_centre + (int)(cosine * dist_y + sine * dist_x);
if((x2 < 0) |l (y2 <0) Il (x2 >= cols) || (y2 >= rows))
tmp_array[i] [j] = bg_colour;
else
tmp_array[i] [j] = inarray(ly2] [x2];
}

for( i=0 ; i<rows ; i++ )

for( j=0 ; j<cols ; j++ )
outarray[i]l[j] = tmp_array[i][j];

return O;

}
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/*********************************************************************/

/**% function: sort_list *kk [
/*x* sorts a doubly linked list of structures list_element *kx [
/*x* with respect to the slot correlation; the highest one *kk
/*** comes first *xk [

/*********************************************************************/

struct list_element *sort_list( struct list_element *list )
{

double max;

struct list_element *start, *aux_ptr, *ret;

start = list;
ret = aux_ptr = NULL;
while( start != NULL )

{
max = 0.0;
while( list != NULL )
{
if( list->correlation > max )
{
max = list->correlation;
aux_ptr = list;
}
list = list->succ;
}
if( start !'= aux_ptr )
{
if( aux_ptr->prev != NULL )
aux_ptr->prev->succ = aux_ptr->succ;
if( aux_ptr->succ !'= NULL )
aux_ptr->succ->prev = aux_ptr->prev;
aux_ptr->prev = start->prev;
if( start->prev == NULL )
ret = aux_ptr;
aux_ptr->succ = start;
if( aux_ptr->prev != NULL )
aux_ptr->prev->succ = aux_ptr;
if( aux_ptr->succ != NULL )
aux_ptr->succ->prev = aux_ptr;
list = start;
}
else
{
if( start->prev == NULL )
ret = aux_ptr;
start = start->succ;
list = start;
}
}

return ret;
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/*x*x function: filter *xx [
/**x checks all possible pairings of list-elements for *okk [
/*** overlap *kk [
/**x if they overlap check if the configuration is permitted *kxk
/**x (i.e. possible in one of the Ugaritic characters) *kk [

[ st s ok o ok Rk ok ok ok o o o kK Ko sk ok ok ok ok ok ok ok ok o s sk ok ok ok ok sk ok ok sk e ksl s e s oo s oo o o ok o ok ok /

struct list_element *filter( struct list_element *start,
struct temp *templates )
{
int a, b, i, j, xdiff, ydiff, overlap, del, stop;
struct list_element *s, %1, *ptr, *prev_list_elem;

s = start;
while( s '= NULL )
{

1 = s->succ;
while( 1 != NULL )
{
// 1. check for overlap
overlap = O;
xdiff = s->x - 1->x;
ydiff = s->y - 1->y;
for( i=0 ; i<templates[s->temp_nr-1].rows ; i++ )
for( j=0 ; j<templates[s->temp_nr-1].cols ; j++ )
if( templates[s->temp_nr-1].t{il[j] > -5.0 )
for( a=0 ; a<templates[l->temp_nr-1].rows ; a++ )
for( b=0 ; b<templates[l->temp_nr-1].cols ; b++ )
if( overlap == 0 &&
templates[l->temp_nr-1].t[a][b] > -5.0 &&
(s=>x + j==1->x +b ) &&
(s=>y +i==1->y + a))
overlap = 1;

// 2. check distances if there is overlap
if( overlap == 1)

{
del = 1; // by default
// type 1 with type 1
if(( s->temp_nr == 1 || s->temp_nr == 2 || s->temp_nr == 3 ||
s->temp_nr == 4 || s->temp_nr == 5 || s->temp_.nr == 6 ||
s->temp_nr == 16 || s->temp_nr == 17 || s->temp_nr == 18 )
( 1->temp_nr == 1 || 1->temp_nr == 2 || 1->temp_nr == 3 ||
1->temp_nr == 4 || 1->temp_nr == 5 || 1->temp_nr == 6 ||
1->temp_nr == 16 || 1->temp_nr == 17 || 1->temp_nr == 18 ))

if( sqrt((1->x - s->x) * (1->x - s->x) +
(1->y = s=>y) * (1->y - s->y)) >
0.35 * templates[s->temp_nr].wedge_width )
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del = 1;
// Type 2 with type 2
if(( s->temp_nr == 10 || s->temp_nr == 11 || s->temp_nr == 12 ||
s->temp_nr == 13 || s->temp_nr == 14 || s->temp_nr == 15 ) &&
( 1->temp_nr == 10 || 1->temp_nr == 11 || l->temp_nr == 12 ||
l->temp_nr == 13 || 1->temp_nr == 14 || 1->temp_nr == 15 ))
if( sqrt((1->x - s->x) * (1->x - s->x) +
(1->y - s=->y) * (1->y - s=->y)) >
0.45 * templates[s->temp_nr].wedge_width )

del = 0;
else
del = 1;

// Type 1 with type 4

if(( s->temp_nr == 1 || s->temp_nr == 2 || s->temp_nr == 3 ||
s->temp.nr == 4 || s->temp_nr == 5 || s->temp_nr == 6 ||
s->temp_nr == 16 || s->temp_nr == 17 || s->temp_nr == 18 ) &&
( 1->temp_nr == 25 || l->temp_nr == 26 || 1->temp_nr == 27 ))
if( 1->x - s->x > 0.9 * templates[s->temp_nr].wedge_width )
del = O;
else
del = 1;
// Type 1 with type 2
if(( s->temp_nr == 1 || s->temp_nr == 2 || s=>temp_nr == 3 ||
s->temp_nr == 4 || s->temp_nr == 5 || s->temp_nr == 6 ||
s->temp_nr == 16 || s->temp_nr == 17 || s->temp_nr == 18 ) &&
( 1->temp_nr == 10 || 1->temp_nr == 11 || 1l->temp_nr == 12 ||
1->temp_nr == 13 || 1->temp_nr == 14 || l->temp_nr == 15 ))

if( s->y - 1->y > - 0.35 * templates[l->temp_nr].wedge_height &&
s->y - 1->y < 0.8 * templates[l->temp_nr].wedge_height )

ptr = start;

stop = 0;

while( s->correlation - l->correlation <
0.1 &% ptr != NULL &% stop '= 1)

if(( ptr->temp_nr == 10 || ptr->temp_nr == 11
|l ptr->temp_nr == 12 ||
ptr->temp_nr == 13 || ptr->temp_nr == 14
|l ptr->temp_nr == 15 ) &&

abs( ptr->x - 1->x ) <
0.9 * templates[l->temp_nr].wedge_width &&
abs( ptr->y - 1->y ) <
0.2 * templates[l->temp_nr].wedge_height )
stop = 1;
ptr = ptr->succ;
}
if( stop == 1 && 1->y - s=>y > 0 && 1->y - s->y <
0.4 * templates[l->temp_nr].wedge_height )

if( s->prev != NULL )

s->prev->succ = s->succ;
if( s->succ = NULL )
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s->succ->prev = s->prev;
prev_list_elem = s; }

s = s->prev;
free( prev_list_elem );
del = 0;
break;
}
else
if( 1->x - s->x > 0.6 * templates[s->temp_nr].wedge_width ||
// be far enough on the right
s->y - 1->y > 0.3 * templates[l->temp_nr].wedge_height &&
// or far enough above
1->x - s->x > - 0.4 * templates[s->temp_nr].wedge_width )

del = 0;
else
del = 1;

}
// Type 3%1 with type 2

if(( s->temp_nr == 7 || s->temp_nr == 8 || s->temp_nr == 9 ) &&
( 1->temp_nr == 10 || l->temp_nr == 11 || 1->temp_nr == 12 ||
1->temp_nr == 13 || l->temp_nr == 14 || 1l->temp_nr == 15 ))
if( s->y - 1->y > 0.2 * templates[l->temp_nr].wedge_height )
del = 0;
else
del = 1;
// Type 2 with type 1
if(( s->temp_nr == 10 || s->temp_nr == 11 || s->temp_nr == 12 ||
s->temp_nr == 13 || s->temp_nr == 14 || s->temp_nr == 15 ) &&
( I->temp_nr == 1 || 1->temp_.nr == 2 || 1->temp_nr == 3 ||
1->temp_nr == 4 || 1->temp_nr == 5 || 1->temp_nr == 6 ||
1->temp_nr == 16 || 1->temp_nr == 17 || 1l->temp_nr == 18 ))

if( 1->y - 8->y > - 0.35 * templates[s->temp_nr].wedge_height &&
1->y - s->y < 0.8 * templates[s->temp_nr].wedge_height )

del = 0;
else
del = 1;

// Type 2 with type 4

if(( s->temp_nr == 10 || s->temp_nr == 11 || s->temp_nr == 12 ||
s->temp_nr == 13 || s->temp_nr == 14 || s->temp.nr == 15 ) &&
( 1->temp_nr == 25 || 1l->temp_nr == 26 || 1->temp_nr == 27 ))

if( abs( s->y -1->y) < 0.3 * templates[s->temp_nr].wedge_height &&
1->x - s->x >= templates[s->temp_nr].wedge_width )

del = 0;
else
del = 1;

// Type 2 with type 3%2
if(( s~>temp_nr == 10 || s->temp_nr == 11 || s->temp_nr == 12 ||
s->temp_nr == 13 || s->temp_nr == 14 || s->temp_nr == 15 ) &&
( 1->temp_nr == 19 || 1->temp_nr == 20 || 1->temp_nr == 21 ))
if( abs( s->x - 1->x ) > 0.8 * templates[s->temp_nr].wedge_width )
del = 0;
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else

del = 1;
// Type 2 with type 3*1
if(( s->temp_nr == 10 || s->temp_nr == 11 || s->temp_nr == 12 ||
s->temp_nr == 13 || s->temp_nr == 14 || s->temp._nr == 15 ) &&
( 1->temp_nr == 7 || 1->temp_nr == 8 || 1l->temp_nr == 9 ))
if( 1->y - s->y > 0.2 * templates[s->temp_nr].wedge_height )
del = 0;
else
del = 1;

// Type 3 with all others
if( s->temp_nr == 22 || s->temp_nr == 23 || s->temp_nr == 24 )
del = 1;
// Type 4 with type 2
if(( s->temp_nr == 25 || s->temp_nr == 26 || s->temp_nr == 27 ) &&
( 1->temp_nr == 10 || 1->temp_nr == 11 || 1->temp_nr == 12 ||
1->temp_nr == 13 || l->temp_nr == 14 || 1l->temp_nr == 15 ))
if( abs( s->y =-1->y )< 0.17 * templates[s->temp_nr].wedge_height &&
s->x - 1->x > templates[s->temp_nr].wedge_width )

del = 0;
else
del = 1;

// Type 4 with type 1

if(( s->temp_nr == 25 || s->temp_nr == 26 || s->temp_nr == 27 ) &&
( 1->temp_nr == 1 || 1->temp_nr == 2 || l->temp_nr == 3 ||
1->temp_nr == 4 || 1->temp_nr == 5 || 1->temp_nr == 6 ||
1->temp_nr == 16 || 1->temp_nr == 17 || 1->temp_nr == 18 ))
if( s=->x - 1->x > templates{s->temp_nr].wedge_width )
del = 0;
else
del = 1;
// Type 3%2 with type 3%2
if(( s->temp_nr == 19 || s->temp_nr == 20 || s->temp_nr == 21 ) &&

( 1->temp_nr == 19 || 1->temp_nr == 20 || l->temp_nr == 21 ))
if( abs( s->y - 1->y ) < 0.2 * templates[s->temp_nr].wedge_height )

del = 0;
else
del = 1;

// Type 3%2 with type 2
if (( s->temp_nr == 19 || s->temp_nr == 20 || s->temp_nr =
( 1->temp_nr == 10 || 1->temp_nr == 11 || 1->temp_nr =

21 ) &&
12 |1

1->temp_nr == 13 || 1->temp_nr == 14 || 1->temp_nr == 15 ))

if( abs( s->x - 1->x ) > 0.8 * templates[s->temp_nr].wedge_width )
del = 0;

else
del = 1;

if( del == 1)
{
1->prev->succ = l->succ;
if( 1->succ != NULL )
1->succ->prev = 1l->prev;
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prev_list_elem = 1;
1 = 1->succ;
free( prev_list_elem );

}
else
1l = 1->succ;
}
else
1 = 1->succ;
} // end of while 1
s = s~>succ;
} // end of while s

return start;
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