Chapter 5

Analysis and Results

This chapter provides an analysis of the performance of the DDM for semi-dense 3D scene
reconstruction. The DDM has been evaluated using a number of synthetic and real rtest
sequences, and the results of these are presented throughout this chapter. Results are given in
terms of the model’s tracking accuracy as the DDM deforms throughout a sequence, the
accuracy of the resulting reconstructions and the performance gains when prior reconstructions

are refined using the model-based energy.

5.1 Test collections

Both synthetic and real video sequences offer advantages for evaluating computer vision
algorithms. Although synthetic scenes tend to simplify the additional problems associated with
real image data (such as noise, uncontrollable lighting conditions and camera jitter) they can
provide easily attainable ground truth data, and therefore are very useful for quantitative
evaluation. Ground truths have been especially valuable for calibrating the various parameters of
the DDM, which has lead to synthetic scenes being used extensively throughout its
development. It is hard to realistically model factors such as noise and illumination variation in
synthetic scenes, although these are necessary to evaluate the robustness of the algorithm. The
common approach taken in this work is to model noise by corrupting image sequences with

additive zero-mean Gaussian noise.

It is often useful to use standard benchmark sequences to evaluate the performance of a
reconstruction algorithm. This is to allow for direct and unbiased performance comparisons to

be made. Unfortunately, there is very little in the way of benchmark sequences for dense
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multiple-frame SfM. There are three reasons for this. The primary reason is because very few
algorithms have been developed which can track dense sets of points throughout video
sequences. As outlined in Chapter 1, the division in SfM is very apparent; either a sparse set of
points are tracked through a video sequence, or dense optic flow is computed only for image
pairs or triples. The second reason for SEM benchmark sequences being limited in general is
because of the vast number of approaches and assumptions made about the problem domain
(e.g- static vs. dynamic scenes, known vs. unknown camera parameters, dense vs. sparse
reconstruction, types of features tracked, variable vs. fixed lighting conditions, scene complexity
and so on.) It is therefore difficult to construct test sequences applicable for all approaches. The
third reason is because the computation of ground truth data for every pixel in every frame can
result in large and unmanageable data files. One of the largest resources for computer vision test
sequences can be found at CMU’s ‘Computer Vision Homepage’ [13], although there were no

sequences applicable for evaluating the DDM.

In light of this, many of the synthetic test sequences were constructed by hand using a ray
tracker (POV-Ray). For each frame, the scene is rendered and the camera parameters outputted
to a file. Most ray tracers including POV-Ray have no function for outputting ground truth data.
A sub-ray tracer was therefore implemented which for every pixel in each frame would output
the 3D scene coordinates associated with that pixel. Although this results in large data files of
several megabytes for each frame, the alternative approach of computing the ground truths on-
demand using the scene’s geometric primitives is very impractical. From the ground truth data,
the true image motion can be computed, which is used to evaluate the tracking performance of

the DDM as it deforms throughout the sequence.

Ultimately, computer vision algorithms operate on real-world data, and so should also be
evaluated using real-world test sequences. One of the current limitations of reconstruction using
the DDM is that well-estimated camera parameters are required. This presents no problems for
generating synthetic test sequences, although for real sequences recording accurately the six
extrinsic camera parameters is 2 cumbersome process. The camera must be mounted on a rig or
a robotic arm and this can severely restrict the range of possible test scenes. The real test
sequences have been constructed using a standard quality 320%X240 pixel webcam. An RTX
Robot was used to grip the webcam. This then executed 2 pre-programmed trajectory whilst the
webcam captured the image sequence. It would have been much more preferable to incorporate

a camera self-calibration module into the reconstruction algorithm, which would have allowed
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the camera to move freely by hand as it captured the sequence. This addition is discussed in

Chapter 6.

5.2 Model Deformation

5.2.1 Internal energy weight calibration

The tracking accuracy of the DDM as it deforms to fit new image data is strongly influenced by
the choice of internal energy weight w,,. This reflects a trade-off in the model’s rigidity vs.

elasticity. Too high and the allowable deformation is inhibited by its internal rigidity. Too low
and the model deforms too freely, which may lead to the degeneration of its structure
throughout the sequence. The task is therefore to determine a weighting for which the model
will reliably deform, given any sequence. In one sense, emphasis on internal energy should
reflect the degree of uncertainty in the image-based evidence. The intuition is that for a node
whose image-based motion is poorly determined (i.e. at regions of low texture) more emphasis
should be placed on maintaining its geometric relations with neighbouring nodes. Experiments
were conducted to investigate this strategy by attributing a lower internal energy weight to nodes
with high intensity variation. However, the results were in general no better than when using a
static weight, and deformation stability in many cases. The reason for this is because when the
internal energy is static, nodes at regions of low intensity variation are already more influenced
by their internal energy. This is because their SSD scores within a local region are all similar,
causing the image energies to be more uniform, which results in the internal energy dominating

their combined energy.

The tracking performance when using various values of w,, is illustrated using the sequence

shown in Figure 47. This sequence has been captured by a camera zooming towards a textured
planar surface. The particular texture used has been chosen as it exhibits both areas of low and

high texture. For the purposes of this discussion, the internal energy comprises only local spring

energies (ie. w, =1, w_,, =0). The rigidity vs. elasticity trade-off is not affected by this
81 loc glob gl ty t} y

because W, and W, , are complements of one another (equations 3.4 and 3.5).

glo
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Figure 47: Sequence of a camera zooming towards a textured surface (left) 1%,
(middle) 5" and (right) 16® frames. The resolution is 250X250 pixels. Gaussian
noise has been added with zero mean and variance 0.002

Figure 48 shows a uniform DDM initalised over the textured surface using the first image of

the sequence. The DDM is then deformed throughout each frame of the sequence using a

variety of values for w,, . The results of these are compared in Figure 49.

Figure 48: Initialised DDM using the first frame of a sequence. Red points
indicate nodes and green lines indicate the mesh-like local spring networks.
The separation between nodes is 7 pixels. The expanded view of the texture is
in greyscale to improve clarity.
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Figure 49: Rigidity/elasticity trade-off using various internal energy weights.
(Top) plot of the mean errors of node positions as each frame is processed.
Images at the bottom show states of the models after the 16% frame using

w_ =0 (left), w_ =50 (middle) and w_ =30 (right)

A weighting w,, =0 is the case when only SSD energy us used. The benefit in using the DDM
over pure intensity-based matching is very evident. This is clear by contrasting both the error

rates over the sequence, and by inspecting the states of the DDM at the bottom of Figure 49.
We also observe that for w_ =50, the model is too tightly constrained because the internal

energy weight is too high (Figure 49 bottom centre). This results in an under-deformed model.
In this simple scene, a suitable internal energy weighting is within the range 20 to 40. For a

weight of 30, the model’s error is consistently under 1 pixel, which is close to the upper limit on
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accuracy without using sub-pixel matching, The fact that this is a constant error rate also
indicates that no drift is occurring. It was important to perform similar tests over a range of
sequences in which different surfaces, textures, camera velocities and node densities were used

(some of which are shown in the next few sections). This is because the optimal internal energy

may be scene specific. A calibrated internal energy weight of w,, =20 was found by taking the

intersection of the best performing w,

. Values for each sequence.

It is worth point out that these models were deformed using the node prediction method
discussed in section 3.5.3. The benefits of this are typically in a marked reduction of the hill
climbing process at each frame, because the predicted positions of the nodes at this next frame
are in general closer their true positions. Figure 50 shows an example of this reduction using the
same image sequence described above usingw,,, =30. The height of each spike in the two
graphs indicates the mean Euclidean distance between the nodes’ initial positions at a frame and
the true positions. Clearly, a lower height indicates a more desirable initial configuration. The

result of using node prediction is both a reduction in these spikes and a lower error after each

optimisation terminates.

Examgie o hill-climting optimisation with nods prediction Exarple o hill-climbing optimisation without node prediction
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Figure 50: Hill-climbing process made easier by using node prediction. Spikes in mean error
indicate the point where a new frame is presented to the model. The subsequent error decay
indicates the model deforming to fit the new image data

It is also worth considering the state of the DDM as it deforms throughout the sequence using

its spatiotemporal volume representation. This is shown in Figure 51.
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Figure 51: Spatiotemporal representation of DDM using a simple zooming
sequence

It is clear that for this simple scene, the DDM has deformed to maintain coherent, non-

intersecting paths throughout the spatiotemporal volume.

5.2.2 Performance gain using global spring energies

Recall that the internal energy of a node is comprised of both local and global spring network

energies, weighted according to w equation 3.14). In this section a demonstration is
g g g glob q

presented of the gain in performance when incorporating global spring energy. This scene is
again simple, although the results generalise to any scene which has expansive areas of very low
texture, which is the case in many man-made scenes. In this example, a camera is translating
above a coloured, but completely textureless surface. Figure 52 shows two frames from this
sequence. Although simple, this type of scene would present great problems for area or
gradient-based optic flow methods. Shown at the bottom of Figure 52 are the states of a DDM
at the first and fourth frames in the sequence. This DDM is deformed without using global

spring energy.
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Figure 52: Frame 1 (top-left) and frame 4 (top-right) of a sequence in
which a camera is moving above a blue surface of zero texture. The
images are 250X250 pixels with added Gaussian noise. The states of the
DDM at these frames are shown in the two images below

The model has successfully deformed at the edges and corners of the region, and the structure is
preserved throughout the area. However, the spring forces at the edges and corners have failed
to propagate throughout the model. This results in compressed springs in the top right corner
and extended springs in the bottom left. The effect is even more apparent if we view the error

surface over the DDM (Figure 53):
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error (pivels)

Figure 53: Example error Surface of DDM when using only local neighbours

As suggested by the extension and compression within the DDM, the errors within the centre

of the DDM are considerably higher than at the corners and the edges. By contrast, the state of

the DDM when using global spring energy weighted by w,,, =0.5 after frame 4 is shown in

glob

Figure 54

Figure 54: Improved deformation by introducing global spring energy. The
global neighbours of two nodes are indicated by the blue lines. These have
been selected based on the suitability function given in chapter 3
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The resulting state of the model is much closer to the target state (which is where nodes are
uniformly spaced). This is because many of the nodes have connections with global neighbours
that have high image structure (i.e. those at the edges and corners). As a result, motion has
propagated much more readily throughout the model. Given that there are only four regions in
this scene where motion is completely resolvable (at the corners), the DDM has done well in

disambiguating image motion throughout the textureless region. One of the repercussions for

setting W, is for the local structure of the model to degrade, which is noticeable at several

points in Figure 54. To preserve local structure, w

elop USE be set accordingly. A good strategy

for achieving this is to incrementally reduce W, to zero with each optimisation iteration. In

particular, good results are achieved using:

w(i+1) w(i), ,, —0.05x(i+1) (5.1

glob -

where iis the optimisation iteration number and w(0)  =0.5. This enables motion to easily

glob
propagate throughout the model in earlier rounds, but in later rounds the emphasis is on
maintaining local structure. Using this strategy, the model’s state throughout this sequence is

very close to perfect.

5.2.3 Within-plane rotation invariance

The within-plane rotation invariance of the DDM is now presented using a scene in which a
camera rotates about its optical axis, which is directed towards a planar surface. Four example

frames from this sequence are shown in Figure 55.
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Figure 55: Frames from in image sequence used to demonstrate the within-plane rotation
invariance of the DDM. The camera rotates about its optical axis, which is directed towards a
planar surface. Frames 1 (top-left), 10 (top-right), 20 (bottom-left) 30 (bottom-right) are shown.

The DDM is initialised using the first frame and deform throughout the sequence. The model’s

structure in the 1% frame and 30% frame (after 30 deformations) is shown in Figure 56
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Figure 56: Within-plane rotation invariance of DDM. (Left) initial state.
(Right) state after 30 frames

We can see that the DDM has deformed very successfully throughout the sequence. It has also
performed well in the face of considerable pixel quantsaton noise. A great strength of the

DDM is that similar results are also attained when the surface has little or no texture (Figure 57)

Figure 57: Within-plane rotation invariance of DDM for areas of very low texture

There 1s slight loss of accuracy at three corners, which is almost certainly a product of the

relatively high quantisation noise. The spatiotemporal representation of the DDM is shown in
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Figure 58, which shows the DDM has performed well in maintaining the relationships between

nodes throughout the volume.

Figure 58: Spatiotemporal representation of a DDM where a camera rotates
about its optical axis. Nodes have been under-sampled to clarify the
visualisation

5.2.4 Out-of-plane rotation invariance

In the examples so far presented, motion between the scene and camera has been orthogonal to
the optic axis. An example is now presented where this is not the case. In this scene, the camera
is moving in an arc around a planar surface. Four frames from this sequence are shown in

Figure 59.

81



Chapter 5 Analysis and Results

Figure 59: Example frames from the a sequence of a camera moving in an arc
around a planar surface. Frames shown are (top-left 1, (top-right) 20, (bottom-
left) 40,(bottom-right) 50. Frames are 250X250.

The reason why this sequence will be problematc is for the same reason which drives the
motivation for the model-based energy term. The spring energies (and indeed any other image-
based regularisation) work to maintain the structure of the model in 2D image space rather than

in scene space. The results of deforming a DDM using this sequence are shown in Figure 60.
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Figure 60: Images of the sate of the DDM at frame 1 (top), frame 20 (left) and
fame 40 (right)

It is clear that the DDM has attempted to both fit the data but whilst trying to maintain its
projected 2D structure in the first frame. The solution to this, outlined in section 3.2.2 is to have
temporally discounted spring constraints. The discount factor A is used which varies from 0,
where only the first frame’s spring state is used, to 1, where only the previous frame’s spring
state is used. The inherent trade-off in choosing A is illustrated (using the sequence above) in
Figure 61, where all other factors have been kept equal. When A =0 only the state of the DDM
in the previous frame is used. This corresponds with a frame-pair approach for tracking
throughout the video sequence, and as shown in Figure 61 results in the worst performance. It
is clear that by incorporating spatiotemporal constraints, tracking performance is improved. On
the other hand, when A=1the result is again sub-optimal because the DMM is being

constrained to preserve its 2D structure in the first frame. A good choice for A in this scene is
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approximately 0.8, which means that after 5 frames, the influence of the spring configurations in

the initial frame has reduced from 1.0 to(0.8)5 =0.33.
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Figure 61: Performance trade-off regarding the proportion of past DMM
spring state used to constrain next-frame deformations
It is worth visualising the improved deformation when using A =0.8 contrasted with 1 =0
(the frame-pair approach). The states of the two DDMs after frame 40 using these discount

values are shown in Figure 62.

Figure 62: Improvement in tracking performance when incorporating historic
spring constraints after 40 frames. (Left) 4 = 0.0, (Right) 4 =0.8
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Whilst 4 =0.81s a good discount rate in this scene, it is difficult to guarantee an optimal choice

of A for points in an arbitrary scene. For local affine transformations, a smaller discount will

give better results, but for projective transformations a higher discount is preferable.

Results are now presented for this sequence using the model-based energy. This is to
demonstrate the potential performance gain once the model-based energy is incorporated into
the DDM. The following sequence of images shows the deformations using this model-based
energy, where a correct surface model is assumed (i.e. the surface normal of the textured plane is

known).

Figure 63: Performance gain using the model-based energy
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It is clear that by using the model-based energy, excellent results are atrainable for projective
transformations. Furthermore, these results are not limited to textured surfaces. Figure 64 shows

similar results in the final frame for a surface which has almost no texture.

Figure 64: Model-based energy for accurate deformations where there is very
little
The slight loss of accuracy at the top far corner is a result of the discrete hill-climbing
optimisation, which is not sub-pixel accurate. At this frame, the mean Euclidean error of the
nodes is 0.62 pixels, which is close to the theoretical upper limit of 0.35 (the expected error in
the discrete approximation of a point’s projection onto the image.) Even further performance
gains could be achieved using a sub-pixel post-deformation. This enhancement is further

discussed in Chapter 6.

5.3 Reconstruction of a simple scene

The previous section has proven the worth of the model-based energy. In this section, a full
multi-stage reconstruction is presented using a synthetic scene without prior knowledge of the

surface normals. This scene comprises three planar surfaces which form a corner. The surfaces
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have been textured by varying amounts to reflect the ability of the algorithm to reconstruct both
high and low textured surfaces. The test sequence is captured by a camera rotating around the
corner, although to make things interesting this is not about the corner point. The following

images are four example frames taken from this sequence:

Figure 65: Frames 1, 20, 40 and 50 taken from a synthetic 50-frame sequence of a camera
moving around a corner constructed from three textured surfaces. Frames are 250%250

5.3.1 Deformation

The next series of images shows the state of the DDM as it deforms throughout the sequence
without using the model-based energy. States at frames 1, 10, 30, 40 and 50 are shown in left-to-

right, top-down order.
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A uniform DDM has been used in this demonstration because it is easier to interpret the tracking
performance from the visualisadons, although the algorithm in 3.3.1 for distributing sparse DDMs
could equally have been used. Throughout the sequence, the DDM has deformed the most
accurately for the two surfaces facing and to the right of the camera in the initial frame. Notice also
the ability to maintain nodes which have moved beyond the viewable image plane, although this has
been done fairly unreliably. For the surface to the bottom, deformation is less satisfactory as a result

of the very low texture.

In addition to these visualisations, it is useful to gauge the mean tracking error as the DDM deforms
throughout the sequence. Unless tracking is perfect, there will be a progressive loss in accuracy with
each frame in the sequence. This is illustrated in Figure 66, which shows a roughly linear degradation

in performance.

Figure 66: loss of model accuracy throughout the ‘corner’ video sequence

5.3.2 Reconstruction

We now consider the task of reconstruction using the deformed DDM. Triangulation offers one
approach for this, although it raises the interesting problem of deciding which frames to use as
the triangulating pair. Further into the future and the baseline may become wider which reduces
the depth uncertainty, but the tracking error increases. Clearly, there is an optimal balance
between baseline width and tracking error, although without knowing theses error this can be
hard to determine [15). This problem is essentially removed if we use the spatiotemporal curve
matching method described in chapter 4, since depth is estimated using the positions of nodes
in all the frames rather than a selected pair. A significant finding in this project suggests that in

the presence of tracking errors, reconstruction using the spatiotemporal search outperforms
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triangulation irrespective of the baseline. The reconstruction of the corner using the deformed
DDM and the spatiotemporal search method is shown from two different views in Figure 67

and Figure 68. The optical axis of camera at the first frame is along the positive z-axis.
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Figure 67: Reconstructed corner using the deformed DDM and the
spatiotemporal search reconstruction method. Red crosses indicate the
ground truths and black dots indicate the recovered 3D coordinates of the
DDM nodes
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Figure 68: Reconstructed comer using the deformed DDM and the
spatiotemporal search reconstruction method (Bird’s eye view)

The results show a reasonably faithful reconstruction. The deformation of the DDM over the
central and right faces in the first image have lead to the most accurate reconstructed sections of
the corner, since these were most reliably tracked throughout the sequence. The outliers at the
extremities of the corner are those nodes which moved beyond the viewable image plane during
the sequence. Another problem is that nodes close to the edge joining the far and right surfaces
in the first frame have been smoothed, and the sharpness of this edge has been lost. The two
furthest rows of nodes on the ground surface have been the most poorly reconstructed. The
reason why this is the case for the farthest row is because the DDM has tracked these nodes as
part of the back facing surface rather than the ground surface. This is clear by looking at these
nodes in the deformed DDM images. The problem is a result of the SSD comparison windows
encompassing the hard edge intersecting these two surfaces. This strong intensity feature has
prevented these nodes from moving away from the edge with the ground surface as the camera
rotates around the corner. The second row has been poorly tracked simply because of

insufficient data. The mean Euclidean error of the reconstruction in scene space is 0.205 units.
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We can contrast this reconstruction with one using stereo triangulation. A view of the
reconstruction using the first and last frames as a stereo pair (i.e. the widest baseline) is given in

Figure 69.
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Figure 69: Reconstruction of corner using a wide triangulation baseline (bird’s-eye view)

We notice that this reconstruction is in fact poorer than when the spatiotemporal curve
matching method was used. This is particularly true of the two rows just discussed. The mean
scene-space error is 0.24 units, which is a 22% error increase. It is also insightful to compare the
spatiotemporal curve matching method against triangulation using a range of stereo pairs. Figure
70 shows the trend in mean error using the first frame, and each of the succeeding frames as a

triangulation pair.
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The parfomance trade-off the termporal sepetation between frame peirs used for triangutation
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Figure 70: Pertformance comparison between triangulaton and spatiotemporal
curve matching reconstruction methods. The blue line is the triangulation error using
frames 2,3,...,50 as the second triangulation frame. The black line is the spatiotemporal
curve matching method error

Some interesting points can be drawn from this graph. The first is that the increased stereo
baseline by using frames which are up to 37 frames apart outweighs the DDM tracking error,
although beyond frame 37 the tracking error results in worse reconstructions. This reflects the
stereo pair trade-off discussed above. The second point is that irrespective of the baseline, the
spatiotemporal curve matching method always outperforms triangulation by a noticeable
amount. This is a significant finding, particularly as these two methods have never been
compared before. A reasonable hypothesis for this is that spatiotemporal depth curves time-
integrate depth information over the entire duration of the sequence rather than only for a single
frame pair, which results in more robust depth estimates. It would be very worthwhile to further

investigate this finding. This is further discussed in the Future Work section of Chapter 6.

5.3.3 Surface normal estimation

The scene coordinates of the DDM nodes recovered using the spatiotemporal curve matching
method can be viewed as a 3D Point Cloud Distribution (PCD) in scene space. This distribution
can now be used to estimate the local surface normals of the corner using the PCD least squares
plane fitting method described in section 4.3. The results of this are shown in Figure 71 and
Figure 72. For each node, the &ur set used to fit the planes comprises the points of that node

and its local spring neighbours.

93



Chapter 6 Analysis and Results

Figure 72: Plot 2 of surface normal estimates after first corner reconstruction
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The true normals of the three surfaces are N, = (0, (),I)T,Il2 = (O,I,O)T andny = (I,O,O)T. It

is clear that the estimates of these are in general quite reliable, although by inspecting Figure 71
problems have occurred at some of the surface boundaries. This is a result of the planes being
fitted to neighbouring points which belong to different surfaces, which causes smoothed
normals at these points. Normal estimates for the outlier points are also less accurate. The
alternative view in Figure 74 shows that the fitting algorithm has performed very well at the

intersection between the far and ground surfaces.

5.3.4 Reconstruction using model-based energies

The model-based energy E

wodet €aN now be phased into the DDM’s energy equation by

modifying the model-based/spring-based energy weighting parameter 0 < & <1 (equation 3.3).

It is important not to completely eliminate E_ . after the first reconstruction, since the

spring
model’s internal constraints would be entirely determined by posstbly inaccurate surface normal

estimates. If &is set to 0.80 (ie. we have both model constraints E, ,, and some 2D

spatiotemporal smoothness constraints from ) and the same DDM is deformed

E spring

throughout the same sequence, its state after frames 1, 10, 30, 40 and 50. is shown as follows:
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The incorporation of the model-based energy into the DDM energy has resulted in a substantial
improvement in tracking performance. This is particularly true of the nodes which are on the ground
surface. Also, the positions of nodes which have moved beyond the visible plane have been predicted with
much greater accuracy. A clear comparison between the states of the DDM after frame 50 is given in

Figure 73.

96



Chapter 6 Analysis and Results

Figure 73: Comparison between the tracking performances using the ‘corner
test sequence with no model-based energy is used (above) and model-based
energy used from first reconstruction (below)
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This improvement can be quantified by comparing the tracking errors of the two DDMs as they

deform throughout the sequence (Figure 74).

4]

—— Enmor after second reconstruction
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Figure 74 Improvement in deformation performance when using the model-
based energy

After the 50 frame, the mean node position error of the new DDM is just over 2.5 pixels, which marks a
45% performance gain over the first DDM. It is also important to notice that the rate of node drift for this
new DDM is somewhat less than linear in order. This is very desirable when the DDM is deforming over

longer time scales.

We can now reconstruct the corner using this second DDM and contrast the reconstruction quality with

the first. This is shown in Figure 75 and Figure 76.
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Figure 75: Improvement in reconstruction using DDM with model-based
energy (asymmetric view). First reconstruction (top) and second
reconstruction (bottom). Points highlighted in green are the outliers which
have been resolved in the second reconstruction. Yellow points are error
which have resulted from smoothing across surfaces, which have also been
improved.
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Figure 76: Improvemelit in reconstruction using DDM with model-based
energy (bird’s eye view). (Top) first reconstruction. (Bottom) Second
reconstruction
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These reconstructions show a good improvement when the second DDM using the model-based
energy is used. The root mean squared error in scene space has reduced from 0.205 to 0.142, which
is a 30.7% increase in accuracy. The points highlighted in Figure 75 show particular problems in the
first reconstruction which have been considerably improved in the second. The green points are
those which lost accuracy when they fell out of the camera’s sight in one or more frames of the
sequence. In such frames, the positions of these points are determined entirely by their internal
energy. By using the model-based energy, these points are constrained with respect to the plane
fitted locally to the surface at those points in the scene. This results in more accurate tracking in the
absence of data. The points highlighted in yellow are those which have been incorrectly tracked due
to the discontinuities at the edges. However, using the model-based energy, these problems have

been resolved.

The cycle of surface normal estimation, deformation and reconstruction can then be repeated until
the reconstruction converges. This has been performed for the corner sequence. The plot in Figure
77 shows the reduction in reconstruction error after five reconstruction cycles. It also shows the

reduction in the mean angular difference between the true and estimated surface normals.
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Figure 77: Improvement in reconstruction accuracy of corner after five
iterations. Te black plot shows the mean error of the surface normal estimates
at the start of each iteration before the DDM is deformed. The red plot shows

the reconstruction RMS error after each reconstruction iteration.

The reconstruction converges after four reconstruction iterations with a RMS error of 0.133

units. Between iterations 2 and 4 the surface model is improved, which reflects the drop in mean
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normal estimation error. This reduction results in an improved RMS error at the end of these
iterations. The surface model, and consequently the RMS error converges after iteration 4. The
reconstruction after iteration 5 is shown in Figure 78, and polygonised surface reconstruction

using these points in shown in Figure 79.
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Figure 78: Reconstructed corner after the DDM deformation-reconstruction cycle converges

Figure 79: Reconstructed surface of corner by triangulating the recovered 3D scene coordinates
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5.4 Reconstruction of non-planar scenes

In this section, the reconstruction of a simple scene involving a non-planar object is described.
The purpose of this is twofold. Firstly, it is to demonstrate the ability of the DDM to
successfully deform over non-planar surfaces. Secondly, we will show in this section that the
reconstructed scene can still be improved using the model-based energy, using the assumption
that the local surfaces of objects can be approximated by a plane. The scene used is very simple.
It comprises a textured sphere raised above a low-textured planar background. The sequence is
20 frames long and is captured by a camera moving towards the sphere whilst undergoing a
small amount of transladon orthogonal to the optical axis. Frames 1, 6, 12, 16 and 20 are shown

in the following sequence of images:

Figure 80: Example frames taken by a camera moving towards a textured
sphere raised above a planar background

Similar to the previous section, a uniform DDM is initialised using the first frame, and deforms
throughout the 20-frame sequence. The states of the DDM at each of these frames are shown in

the following sequence of images:
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Figure 81: States of a DDM at various frames of an image sequence captured
by a camera moving towards a non-planar object
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The DDM appears to have deformed successfully throughout the image sequence. Notice that it
has also predicted fairly accurately the positions of nodes which are beyond the viewable image
plane towards the end of the sequence. It is perhaps clearer to gauge the error of the DDM as it
deforms by plotting its RMS error as a function of time (or frame number). This is given in

Figure 93.
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Figure 82: Growth in mean error of node positions as the DDM deforms
throughout the image sequence in 5.4

The RMS error of the DDM grows over time to just over 2 pixels after frame 20. The reason for
the accelerated growth is a consequence of the camera moving towards the scene, since the
smaller the distance berween the camera and scene, the more the projection of two consecutive
frames will differ. Because the SSD comparison windows are not scale invariant, the SSD error
becomes less reliable as a matching function the further into the sequence. Furthermore,
because the spring energies constrain the deformation in 2D image space, these constraints also

become less reliable.

Using this deformation, we can perform an initial reconstruction of the scene using the methods
described previously. The next sequence of images shows this reconstruction compared with the
scene’s true 3D coordinate taken from three different views. The direction of the camera’s

optical axis in the first frame is along the z-axis.
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Figure 83: Asymmetric view comparing reconstructed and true scene
coordinates of a non-planar scene. (Top) True coordinates. (Bottom)
Reconstructed coordinates
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Figure 84: Bird’s eye view comparing reconstructed and true scene
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y axis
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Figure 85: View along x-axis comparing reconstructed and true scene
coordinates of a non-planar scene. (Top) True coordinates. (Bottom)
Reconstructed coordinates

This series of views shows that the system has recovered the general structure of the scene.
Although this is less accurate than the first reconstruction of the (planar) corner sequence, this
provides evidence that the system can recover the surfaces of both planar and non-planac
objects. However, it is clear that this reconstruction is not perfect. By looking at the three views,

two problems are apparent. The first is related to the undesirable smoothing between the
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background and the sphere. This has resulted in the separation in 3D between these objects (as
shown in the ground truth views) being lost. The reason why this smoothing is occurring is
because the depth discontinuity where the plane and the sphere intersect is relatively smali, and
this is not being detected by the disparity discontinuity preservation mechanism. This means
that node connections crossing the object boundaries are not being severed, which results in the
smoothing across the object boundaries. The second problem which can be seen is the loss of
accuracy towards the centre of the sphere. This is because points in this region are very close to
the centre of expansion, which results in very small disparites (Figure 86). When disparities are
small, the depth estimates are much more sensitive to tracking errors caused by pixel
quantisation and the discrete positioning of nodes for example. The result is worse

reconstructions for nodes closer to the centre focus of expansion.
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Figure 86: Plot of disparity vectors using the positions of nodes in the first and
last frames

We can now use this initial reconstruction to estimate the surface normals at each point. An
interesting problem which will affect the accuracy of these estimates is in choosing an
appropriate neighbourhood size for the knn plane fitting algorithm. This problem is more

significant in this scene than the previous because the sphere surface has higher curvature. Too
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small, and the normal estimates become very sensitive to noise. However, too large and the local
surface curvature is lost. Figure 94 illustrates this trade-off by plotting the mean surface normal

estimation error against k , the number of nearest points used to fit the local plane.

5 10 15 20 25 30 35 40 45 S0

Figure 87: Trade-off in choosing the number of nearest neighbours used for
fitting local planes to the reconstructed points

It appears that for this sequence a good choice for kis between 15 and 20 neighbours. When
Hoppe ¢ al. [29] used a similar method for fitting planes to Point Cloud Distributions, they
manually selected k by inspecting the quality of the reconstructions. They also used a fixed
value of k for all points. This is the approach taken in this work, although there are some
obvious shortcomings. The first relates to the manual intervention, which is undesirable in any
computer vision algorithm. This can be removed by using a k value which has been suitable in
past reconstructions. The second problem is that a single, static & value will not be suitable for
all points in the reconstruction. Points where there is a lower reconstruction noise should use
fewer neighbours for fitting local planes than points where there is higher noise. Furthermore,
the problem of smoothing normal estimates across depth discontinuities raises its ugly head
again. These problems support the argument that k should be determined locally based on the
certainty of the surrounding data and is an idea which warrants future investigation. A plot of

the estimated surface normals using k =15 viewed from above is given in Figure 88.
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Figure 88: Estimate of surface normals after first reconstruction of a non-
planar scene

We can see that the surface normals are reasonable approximations of the true surface normals,
which differ by an average of 10°. Notice also that the normals at the poorly reconstructed

points at the end of the sphere have been well estimated.

We can now deform the DDM for a second time using the model-based energy. By setting the

model weight a=0.5, the reconstruction from this second deformation process are shown

from various views in the next three images:
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Figure 91: Decrease in reconstruction error with each reconstruction cycle

These plots show that as soon as the model-based energy is introduced in iteration 2, there is a
clear performance gain; the reconstruction RMS error decrease from iteration 1 to iteration 2 by
10.6%. However, in subsequent iterations, this improvement is much less considerable. The
reason for this is similar to the reconstruction in the previous section. This is due to a
combination of the accuracy of the surface normal estimates reaching an upper limit, and the
DDM deforming incorrectly even in light of better surface normal estimates. A side-by-side

comparison of the reconstructions after iterations 1 and 4 is given in Figure 92.

Za]s

Figure 92: Improved reconstruction accuracy after four reconstruction
iterations for a simple non-planar scene. (Left) Reconstruction after 1%
iteration. (Right) Reconstruction after 4% iteration. Black dots mark predicted
coordinates and red crosses mark true coordinates
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It is worthwhile noting the effects on performance when the model energy weight @is
increased too hastily (i.e.@ =1). In this case, the internal constraints are only imposed in scene
space, and are based on potentially inaccurate surface normal estimates. This is significant, since
poortly estimated surface normals can result in reconstruction errors spiralling. This is because
bad model constraints will encourage bad deformations, which will result in even worse
reconstructions. The decision to use & =0.5reflects a trade-off in realising the benefits of the
model-based energy, but preventing this spiralling effect. Clearly, the model-based energy weight
should be higher for those nodes whose normals have been well estimated. A mechanism is
therefore needed for adapting & using estimates of the certainty of the surface normal

estimates. This is further discussed in the future work section in the next chapter.
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Conclusion and Future Work

6.1 Summary of Work

This dissertation has outlined a new approach for reconstructing the 3D structure of a scene
from a sequence of images captured by a moving camera. 3D Scene reconstruction is of great
importance in the fields of computer vision, image processing and computer graphics, and finds
many applications including the construction of 3D environments, the automatic construction
of 3D CAD models from photographs and the creation of large photorealistic virtual
environments. This approach has been primarily inspired by two fields in computer vision;
Structure from Motion (SfM) and deformable (or active) models. A clear divide is present in the
current SEM paradigm which separates those methods which are flow-based from those which
are feature-based. While flow-based methods attempt to compute dense motion fields between
image pairs or triples, these become unstable and computationally expensive when used over
longer sequences. Indeed, Structure from Motion using dense image flow fields is notoriously
unreliable. By contrast, feature-based motion methods provide more stable motion estimates
although can only be used for sparse reconstructions. These sparse reconstructions must be
interpolated if denser reconstructions are required, which itself remains a challenging and
unsolved problem. In this work, a new approach has been developed which models motion
through video sequences using a deformable model. The major contributions in this work are

summarised as follows:
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® Reliable semi-dense point correspondences throughout a video sequence using the
Deformable Disparity Model. The model performs well using a number of test

sequences at regions of both high and low texture.

® A new type of moton constraint imposed in scene space, rather than image space.
When the normals to the surface at reconstructed points are reliably estimated, this can

significantly improve reconstruction results.

® A process for iteratively refining reconstructions using by progressively more reliable

scene-space constraints

® The estimation of surface normals directly from a 3D Point Cloud Distribution (PCD).
This eliminates the usual cost of fitting a smoothed polygonised surface model to the

PCD to estimate surface normals, and is inherently robust to noise.

® The reconstruction of a dense or semi-dense set of points by matching curves in the
spatiotemporal volume. Evidence gathered has suggested that the spatiotemporal curve

matching algorithm outperforms conventional triangulation

® A new way of detecting disparity discontinuities in an image sequence using the

correlation between multiple SSD sub-window scores

6.2 Future Directions

In addition to the progress so far made in the reconstruction of 3D scenes using the DD},
there are a number of possible directions for future development. Several of these are now

presented.

Camera auto-calibration

A very useful extension to the reconstruction system so far outlined is to incorporate camera
auto-calibration, which removes the requirement for known camera parameters. Clearly, this
addition would greatly increase the system’s scope, since it could then handle free camera
motion. The introduction of the autocalibratdon paradigm was a major breakthrough in the early
nineties related to the intrinsic calibration, according to which calibration is achieved not with
the aid of a calibration pattern but by observing a number of image features in a set of

successive images. Maybank and Faugeras [51] proved that if intrinsic parameters are constant,
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autocalibration can be used for the Euclidean reconstructions of a scene. A Euclidean
reconstruction differs from a metric reconstruction by a ridged Euclidean transformation, which
reflects the scene’s arbitrary reference frame, and a uniform scale factor. Autocalibration is in
general performed by first computing the fundamental matrix from a set of correspondences
[43]. This is usually done by making use of the Kruppa equations [36}, where with a minimum of
three displacements we can obtain the internal parameters of the camera using a system of
polynomial equations. The fact that the DDM provides semi-dense correspondences is an
advantage, as the additional redundancy is likely to increase the robustness of the fundamental
matrix estimate. From this, the essential matrix can be immediately obtained, from which we
can decompose into the rotation and translation motion parameters. A good review of camera

autocalibration can be found in [28].

Improving the surface normal estimates

The method described in section 4.3 for fitting least-squares local planes to reconstructed points
in the Point Cloud Distribution (PCD) suffers several shortcomings which prevent more
accurate surface normal estimates in later reconstruction iterations. It is useful to consider some
of the factors which may affect the accuracy of the surface normal estimates. Four of these have

been identified as follows:
®  The amount of noise in the PCD
®  The local curvature of the underlying surface
®  The density and distribution of the points in the PCD
®  The neighbourhood size used in the estimation process

It would be worthwhile to study the contribution of these factors on the normal estimation
process, since we may then be in a better position to understand how best to choose the
neighbourhood sizes. This analysis would then pave the way for computing the optimal
neighbourhood size adaptively at each point, based on local information such as estimated
noise, local sampling density and curvature. Another considerable benefit of this analysis is that
we can use this informaton to adapt &, the model-based energy weight. For example, if a
DDM node’s potion in the PCD has high local curvature, or large amounts of noise, then

& should be reduced accordingly.
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Sub-pixel intensity matching

The Sum of Squared Differences, like most area based matching functions operates by
comparing areas of discrete intensity. While this may be suitable for high resolution images, the
loss of accuracy incurred in lower resolution images can be a considerable source of node drift.
To estimate the sub-pixel displacements, two general methods have been used. The first
searches for the maximum local intensity correlatdon using high spatial resolution images
obtained by image interpolation. For example, Matthies e 4/ interpolated scanlines by a factor of
4 using a cubic interpolant before computing the SSD score [50]. Tian and Huhns have written a
survey paper comparing a number of these algorithms for sub-pixel stereo matching [73]. The
alternative approach is to estimate the maxima of the similarity function by fitting a parabola to
the three pixels near its maxima [69]. The problem with the first approach is that they require a
large amount of memory, and are computationally expensive [39]. With respect to the DDM,
sub-pixel matching at every optimisation iteration is not computationally feasible. However,
sub-pixel accuracy can be attained using either method applied as a post-processing operation

once the DDM has fitted (discretely) to the new image dara.

Denser models

The majority of the DDMs used throughout this dissertation have been initialised with a
constant density. In many applications however, this density will be chosen to reflect the
required reconstruction density, the computational resources available and the resolution of the
image sequence. The density of the DDM does not affect its internal energy, because the spring
networks are invariant to scale. This is useful because it means little tuning is necessary. The
major difference is in the increased computational cost of deforming the model. An interesting
application for sparser DDMs that would be worthwhile investigating is to use their recovered
surface normals for denser DDMs. This equates to a coarse-to-fine reconstruction process; the
surface models from coarser reconstructions are passed down to finer DDMs. The advantage of
this is to essentially remove the first reconstruction iteration where the model-based energy is

unused.

Does the matching of spatiotemporal curves always out-perform triangulation?

In section 5.3, evidence was presented to suggest that the matching of spatiotemporal curves

can outperform conventional stereo triangulation irrespective of the frame pair sued. This is a
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significant finding, particularly as these two methods have never been compared before. A
reasonable hypothesis for this is that spatiotemporal depth curves time-integrate depth
information over the entire duration of the sequence rather than only for a single frame pair,
which results in more robust depth estimates. It would be very worthwhile to further investigate

this finding.
Implementation efficiency

At present, the entire system has bee implemented in Matlab. During the developmental stages
this has had considerable advantages over most other programming languages because of its
excellent visualisation and prototyping capabilities. However, because Matlab is an interpreted
language, it can be very inefficient. There is no doubt that a large processing speed improvement

can be made by implementing the system in a compiled language such as C

More extensive evaluation

It is necessary to provide a more rigorous evaluation of its performance, particularly using real
scenes. This has been hindered somewhat by the lack of benchmark sequences, and the system’s
current requirement for known camera parameters. This restricts the range of possible scenes
and image sequences which can be used for the evaluation. This problem will be reduced once

autocalibration has been introduced into the system.
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