
Categorising the Abnormal Behaviour from an

Indoor Overhead Camera

A PROJECT REPORT

Submitted in partial fulfilment of the requirement for the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND INSTRUMENTATION

By

GURKIRT SINGH

(06BEI080)

Under the Guidance of

Dr. R. B. Fisher Dr. P. Arulmozhivaraman

University of Edinburgh VIT University

SCHOOL OF ELECTRICAL ENGINEERING

VIT University

VELLORE – 632014, Tamil Nadu, India

June 2010

ii

ACKNOWLEDGEMENT

I am grateful to my Division leader and the Director of SELECT, for giving

me the permission to carry out this project.

I would like to sincerely thank Dr. Bob Fisher for giving me the opportunity to

carry out my project work in the School of Informatics at University of

Edinburgh. I express my heartfelt and deepest gratitude to Dr. Bob Fisher for

his guidance through the completion of the project and for providing us with the

necessary inputs. I would also like to thank Steven and Michal for their help and

support.

I would like to thank my guide, Dr. P. Arulmozhivarman for his guidance and

co-operation.

I extend my gratitude to all the teachers who have ever taught me. Without the

knowledge that they imparted over the 7 semesters, completion of this project

would not have been possible.

Finally I want to thank my parents for their help and supporting morally and

financially to carry out my work in Edinburgh.

Gurkirt Singh

(06BEI080)

iii

To my parents and family

 My father Mr. Rakha Singh and mother Mrs. Gobind Kaur and my Dear

nephews and niece.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise in the text, and that

this work has not been submitted for any other degree or professional

qualification except as specified.

v

Abstract

This dissertation describes a B.Tech project for which the purpose was to

develop a system that could be used for automated surveillance. The main

novelty is the use of a vertical camera. The project investigates whether such a

system can effectively detect the moving objects, track their trajectories, and

use these to recognise anomalous events. A vertical camera is used to capture

continuous video for detection, which involves low level of image processing to

detect the objects and stores their properties and positions. The tracking

program is used to track the person and form a trajectory from the detector

output file. The tracking program produce the file of tracked persons

trajectories, all trajectories have different lengths depending upon how much

time the person stays in view of camera. Normally a person stays in view of the

camera for 10 to 15 seconds. To describe each trajectory with an equal number

of attributes Spline fitting algorithm is used, which gives the six control points

for each trajectory. The detection of anomalous behaviour is described by

different number of parameters like error in spline fit, vector distance from

closest mean vector and multivariate Gaussian probability.

vi

Table of Contents

i. List of Figure .. vii

ii. List of Table ... ix

Chapter 1 Introduction .. 1

1.1 Motivation ... 1

1.2 System Objective .. 2

1.3 The Forum ... 2

Chapter 2 Background .. 4

Chapter 3 System Overview .. 5

3.1 Detection ... 5

3.2 Tracking .. 8

3.3 Representing Trajectories as Spline ... 8

3.4 Abnormality Detection ... 8

Chapter 4 Tracking .. 9

4.1 specification .. 9

4.1.1 Merging and Splitting ... 12

 4.1.2 Disappearing .. 13

4.1.3 People as Separate Blobs .. 13

4.2 Design ... 13

4.2.1 Corresponding Person and merging ... 13

 4.2.2 Splitting ... 15

 4.2.3 Splitting ... 15

 4.2.4 People as Separate Blobs ... 15

 4.2.5 Core Algorithm ... 16

vii

 4.2.6 Calculations .. 22

 4.2.6.1 Velocity ... 22

 4.2.6.2 Predict Position ... 22

 4.2.6.3 Radius ... 23

 4.2.6.4 Probabilities .. 24

 4.2.6.4.1 Prediction Error Probability .. 24

 4.2.6.4.2 Histograms Probability ... 25

 4.2.6.4.3 Angles Probability .. 25

4.3 Removing Bad Trajectories ... 26

4.4 Implementation ... 29

4.5 Output File Description .. 30

4.6 Evaluation ... 30

Chapter 5 Representing Trajectories as Spline .. 35

5.1 Specification ... 35

5.2 Design ... 35

5.2.1 Choosing Control Points ... 35

5.3 Implementation ... 37

5.4 Output File Description .. 37

Chapter 6 Abnormality Detection .. 39

6.1 Overview ... 39

6.2 Building the Model ... 40

6.2.1 Calculations .. 41

5.3 Choosing Parameters .. 44

5.4 Implementation ... 51

5.4 Results ... 51

viii

Chapter 7 Conclusions and Future Work ... 53

References ... 54

List of figures

S.No. Index No. Name Page No.

1 1.1 The view from the camera. 2

2 1.2 Entry and exit points 3

3 3.1 Detected points on 4
th

 January 2010 7

4 4.1 An example of two persons merge 10

5 4.2 An example of two person split 10

6 4.3 An example of a person disappearing and

another person appearing at the same time

11

7 4.4 An example of one person being detected as

several blobs
11

8 4.5 A simple scenario of people walking together 12

9 4.6 Bhattacharyya distances between histograms

of the same and different people.
14

10 4.7 The distribution of prediction errors 25

11 4.8 The marginal area where trajectories have to

start and end.
28

12 4.9 Block Diagram of Tracker program 29

13 4.10 Single person trajectory 31

14 4.11 Example of merging and splitting condition 31

15 4.12 Example of disappearing 32

16 4.13 Tracked object for 4
th
 January 2010. 33

17 4.14 Image plot of all the detection points after

tracking using all trajectories (65529).
34

18 5.1 Variation of Median fitting error with number

of control points
36

ix

19 5.2 Spline curves for 4
th

 January 2010 38

20 6.1 An example training cluster 40

21 6.2 Variation of number with the variation of

spline fit
41

22 6.3 Variation of vector distance to closest mean

vector.
42

23 6.4 Variation of numbers on each log(probability 43

24 6.5 Variation of false positive and false negative

at different values of spline fit error threshold
45

35 6.6 Variation of false positive and false negative at

different values of spline fit error threshold
46

36 6.7 variation of false positive and false negative at

different values of log(probability) threshold
46

37 6.8 Examples of false negative trajectories 47-48

38 6.9 Examples of false positive trajectory 48-49

39 3.10 Clusters those are modelled (107) 51

40 3.11 Shows four different clusters for different

paths
52

List of Tables

S.No. Index No. Name Page No.

1 4.1 The failure rate of correct identity 32

2 6.1 Shows equal error rate for each parameter 47

3 6.2 Thresholds values at best equal error rate for

training.
47

4 6.3 Shows number of trajectories in all 169

clusters present from total 65529 trajectories
49

1

Chapter 1

Introduction

1.1 Motivation

Video surveillance has been used for many purposes like crime prevention,

traffic monitoring, transport safety and industrial process monitoring. There are

up to 4.2million CCTV (Closed Circuit television) cameras in Britain - about

one for every 14 people in 2006 [1]. These cameras can be used to gather

information by observing the behaviour of objects and for security reasons or

for other process. However, the main use of surveillance systems is to provide a

safer environment through detection or even prevention of dangerous situations

and crimes. These cameras are used at public places to provide help and safety

in case of any accident, suicide attempts, assault, thefts or fight. CCTV cameras

have other benefits also like reducing the fear of crime and helping police to

obtain evidence in criminal cases. After installation of CCTV cameras in

Glasgow city centre overall crimes fell by 3156, crime of violence by 230, fire

raising by 57, offences of petty assault, breach of peace and drunkenness by

272, and vehicle offences by 318 [2]. According to same source CCTV cameras

has different perception by peoples 72% thought CCTV would prevent crime

and disorder, 81% thought it would be effective in deterring perpetrators and

79% thought it would make people feel they would be less likely to become

victims of crime.

 A large number of cameras are needed to ensure the good coverage of area

[3]. One operator can watch at most four screens at a time, so good surveillance

require a lot of operators to watch multiple screens. And operator needs breaks,

so continuing surveillance is impossible with a small number of operators. Also

sometime operators suffer from boredom which decreases their level of

attention [4]. Manual surveillance systems are more expensive and vulnerable to

errors. Therefore it is beneficial to improve visual surveillance by automating

some of the tasks performed by operators. In particular, abnormal or suspicious

behaviour should be detected and the operator‟s attention directed to particular

video clip [5].

Tracking

2

1.2 System objectives

 The project investigates whether such a system can effectively detect moving

objects, track their trajectories, and use these to recognise anomalous events in

the Informatics Forum area. A camera pointing vertically downwards towards

the ground floor is used to capture continuous video for detection. A tracking

program is used to track the person and form a trajectory from the detector

output and produce trajectories of persons. The trajectories are used as input to

the final model which detect the abnormal behaviour. The system was

implemented to ensure the efficiency to cope with change in environmental

conditions, also problems with detector. The system was built on two platforms,

C++ and Matlab.

1.3 The Forum

The Forum is one of the University of Edinburgh buildings located on the

Central Campus. The camera is mounted on the ceiling, camera pointing

vertically downwards towards the ground floor. An example image obtained

from the camera is shown in Figure 1.1. The image covers most of the main

hall.

Figure 1.1: The view from the camera.

Tracking

3

There are many entry and exit points in Forum, those are shown in image given

below figure 1.2. Entry and exit points are given serially: {Auditorium big gate,

cafe, stairs, elevator, night exit door, robot lab small door, robot lab big door,

vision lab door, servitor box, reception, Main entry (11+12), auditorium small

door }. These entry and exit points will be used in chapter 6.

Figure 1.2 Entry and exit points.

4

Chapter 2

Background

This project is improvement to previous work by Barbara Majecka [4] at

University of Edinburgh. Automated surveillance has been a very popular

research field in recent years. A vast range of techniques have been developed

for different parts of surveillance systems. There are many techniques proposed

by different people.

Incorporating techniques based on local motion descriptors can provide more

precise information about the types of actions performed by a given target (e.g.

running or fighting [6]). Techniques based on trajectories are the most

appropriate for this project. Among them, the simplest are those that form a

geometric representation of the raw trajectory data [7]. In [8], the full

trajectories are approximated by cubic spline curves with seven control points.

In this way, each trajectory is represented by the same number of – the control

points and the duration of the object‟s existence in the scene [7].

 I start the work from tracking. Collection of detection data was started by

Barbara Majecka. There are many changes to the tracker which are explained

further in this thesis.

5

Chapter 3

System overview

The project consisted of four subtasks:

1. Detection of moving objects

2. Tracking objects

3. Representing trajectories as spline

4. Abnormality detection

Each of these subtasks was implemented as a separate component of the system.

3.1 Detection

The efficiency of the detection application was crucial because it determined the

maximum capture rate of video footage that would be used by the whole

system. The greater this rate, the more accurate the tracking could be, allowing

the detection of anomalous behaviour to be more successful. In order to allow

the frequent capture of live images and to minimise the amount of data stored,

the detection and tracking processes were carried out separately. The detection

focussed only on the extraction of the basic information, including bounding

boxes and colour histograms of the detected objects. At each new frame, this

information was used to update an appropriate file.

 Detection overview

The detector component was developed by Barbara Majecka as her MSc

project. A brief summary of the detector is described here. The purpose of the

detector is to segment each image obtained from the camera into two sets of

pixels: foreground and background. The background is not completely constant

throughout a day. The main changes to the background are caused by:

• Reflections from the ground (due to sunlight in building)

• Shadows (due to artificial lighting near staircase)

Tracking

6

• Changes in the ambient lighting (weather, time of day, and use of artificial

 light sources and their position)

 There were many methods compared to choose the best one to overcome all

these problems. Those methods are as following.

 Background subtraction

 Constant background updating

 Background subtraction using chromaticity coordinates

 Background division using chromaticity coordinates

 Principal Component Analysis

 The background subtraction technique performed very badly. The constant

background updating technique copes with changes in overall lighting

conditions and constant objects. Unfortunately, this method has some problems

too. The background subtraction using chromaticity coordinates was not able to

cope with shadows. The background division using chromaticity coordinates

performed similar to the previous technique. The principal component analysis

technique gave very good results so it was chosen.

 The model of the background image was built by using the Principal

Component Analysis. A set of 50 background images was gathered and used to

build the mean image by using Principal Component Analysis. This technique

required to choose two parameters: the number of eigenvectors used in the

model and the threshold. These parameters were chosen by number of

experiments.

 Greater efficiency of the detection process was achieved by implementing it

as a multithreaded C++ application. There were different tasks in detection

process: Fetching image, Obtain a binary image, Label image, Append frame

information to output file. To implement these tasks different threads were used.

More can be read in [4]. The detector produced one output file for each day.

The following description is from the project web page summary.

 Description of output file [7]: Each file contains one or more header

lines: BEGIN TTT where TTT is the "number of seconds since (00:00:00 UTC,

January 1, 1970)". Then, for each frame thereafter in which a target is

detected there is a line F M T where T is the time since the start of this file in

0.1 second units and M is the number of the downloaded frames since the start

of the program. Due to occasional detector program crashes, there may be more

than one BEGIN statements and even the occasional reset without the BEGIN,

which can be seen by the M and T values restarting. For each frame, there are

one or more detected blobs. Each blob is encoded on one line in the file in the

Tracking

7

form: [blob id]: [number of pixels] [x_center] [y_center] [x_top_left]

[y_top_left] [width] [height] HISTOGRAM. The blob ids are notional and the

same target in the next frame may have a different blob number. The number of

pixels is a count of the pixels that are detected as being foreground inside the

bounding box. The (x_center,y_center) is the center of mass of the foreground

pixels. The bounding box is defined from the pixel (x_top_left, y_top_left) at

the top left with the given width and height. The color histogram bin order is

rgb : 000, 001, 002, 003, 010, 011,012,013,020,...,033,100,...,133,200,...233,

300...333, where indices 0,1,2,3 cover the ranges given above. So bin 032

means red range 0, green range 3 and blue range 2.

Figure 3.1 shows the detected objects on 4
th
 January 2010 which will used later

in this thesis.

Figure 3.1 shows raw detected objects on 4

th
 January 2010.

Tracking

8

3.2 Tracking

The files written out by the detection process are used as input for the tracker to

infer trajectories of each object. The tracker needs to deal with different

scenarios, including merging silhouettes of people. Also, it has to cope with

imperfect detections. The trajectories constructed contain sequences of position

coordinates of a particular object together with times at which the coordinates

were sampled:

{(x1,y1, time1), (x2,y2, time2), ..., (xN,yN, timeN)}

The full sequences have different lengths N due to the different lifetimes of

objects within the scene. The tracking process is described in chapter 4.

3.3 Representing Trajectories as Spline

The trajectories are approximated by cubic spline curves and represented by the

vectors of their control points of same length. The average error of the spline fit

to the tracked trajectories was calculated to decide the number of control points.

When the behaviour of a person is very much abnormal, and then based on

average error of spline fit to tracked trajectory, we can say it is abnormal

behaviour. But this approach cannot detect all abnormal behaviours, So we need

more parameters to check the abnormality of trajectory, those are described in

next component. The fitting spline process is described in chapter 5.

3.4 Abnormality Detection

This process describes the modelling of detection of abnormal trajectories. Each

trajectory is represented by 6 control points. And clusters were chosen from

entry and exit points. For each cluster a mean vector and covariance matrix was

determined to calculate the probability for each trajectory belonging to the

cluster. Vector distance was calculated for each trajectory to the closest mean

vector or mean vector of the belonging cluster. Thresholds were chosen

experimentally for vector distance, logarithm of probability and spline fit error.

Four conditions were chosen to detect the abnormal trajectory. Based on these

conditions trajectories were flagged as anomalous.

9

Chapter 4

TRACKER

4.1 Specification

The detector output file is fed to the tracker process to get trajectories from

detected objects. Each trajectory is represented by a sequence of centre

positions with time when the object was detected at this position. To detection

of abnormal behaviour time is very important. Different trajectories can have

different lengths even if they start at same entry point and ends at same exit

point due to different lifetime of trajectory.

 The tracker component makes a distinction between the notions of a person

and a blob:

Person is a tracked real object that appeared in the scene.

Blob is an area of 8 point connectivity labelled as foreground by the

detector.

Each person has a unique identity based on the size and colour histogram.

Deciding which person corresponds to each blob in a given frame is not a trivial

task. There are several problems that the tracker has to overcome:

 1. Several people could merge together when walking side by side, and

therefore they could be represented by a single blob (Figure 4.1).

2. A group of people, represented in one frame as a single blob could split in the

next frame producing multiple blobs (Figure 4.2).

Tracking

10

In each figure

Circles represent blobs (which are inputs to tracker component).

Colours represent people‟s identities.

 Arrows represent the movement of person from one from to another

(a) Actual scenario: two people

merge.

(b) Failed tracking: the red person is

judged to have disappeared.

Figure 4.1: An example of two persons merging (figure copied from [4]).

(a) Actual scenario: Two people

split.

(b) Failed tracking: Red blob is

judged as new person but person

was there in last frame, here tracker

should copy trajectory of green to

red and assign red to a new person .

Figure 4.2: An example case of two persons split (figure copied from [2]).

Tracking

11

3. For some people the detection process could fail completely causing the

person to disappear for a few frames (Figure 4.3).

4. Some parts of a person‟s body may not be detected resulting in the

person being represented by several disjoint blobs (Figure 4.4).

(a) Actual scenario. Green person

not detected in second frame.

(b) Failed tracking: The blob that

appears in the second frame is

chosen as green but that should be

the new person. In the third frame

green is assigned as new person. So

tracker should allow a person to

disappear for a few frames.

Figure 4.3: An example of a person disappearing and another person appearing

at the same time (figure copied from [4]).

(a) Actual scenario: a

single person is

detected as separate

blobs in the second

frame.

(b) Failed tracking:

the second frame is

assumed to contain

three people, two of

who appeared only in

that frame?

(c) Failed tracking: all

Three frames are

assumed to contain

three people. In the

first and the third

frames the people are

merged together.

Figure 4.4: An example of one person being detected as several blobs(figure

copied from [4]).

Tracking

12

4.1.1 Merging and splitting

Occlusions possibility is very less due to perpendicular positioning of camera

but not zero there is very less occlusions is still present. These situations are the

most common on the edges of the scene. Therefore, it is possible that people

could enter into the scene as merged (two or many people represented by a

single blob) and then split into several blobs when they come closer to the

centre of the scene and again merged together in a single and once again split

into many at the end. Such a situation is depicted in Figure 4.5. Figure 4.2b

shows an undesirable tracking behaviour: the merged people are recognised as a

single person, and a new blob that appears after the splitting is assigned a new

identity with a trajectory starting in the middle of the floor. The tracker should

not allow this; it should try to reason about where the new blob came from and

create new person with same trajectory, so you have two trajectories of these

two person and last points are added those are different.

Figure 4.5: A simple scenario of people walking together. Two people enter the

scene merged together. They split before middle, merge again,walk together,

split again and walk away from each other, and then merge again before leaving

the scene[Figure copied from 4].

Tracking

13

4.1.2 Disappearing

It is showed in evaluation of the detector [in [4]] component sometimes a

person is not detected for a few frames. The tracker should be able to cope with

this problem. It should allow a person to disappear for few frames (4 or 5). It

should not terminate the trajectory of person as if it disappears for very few

frames. Also tracker should identify the correct person when that person

appears after disappearing for a few frames. It should terminate a trajectory if it

decides that there is a high probability that the person has left the scene or if the

person has been disappeared for a very large number of frames.

4.1.3 People as separate blobs

12% of people are represented by the detector as disjoint blobs [4]. This causes

several problems. If these blobs are recognised as separate people then the

merging and splitting rules will be applied. This way, many redundant

trajectories could be produced. There would be more than one trajectory instead

of one trajectory which will cause detecting the abnormal behaviour and also

increase the size of output file. Only one among these trajectories should be

preserved.

4.2 Design

The tracker keeps a list of all the people currently being tracked. It updates their

trajectories one frame at a time by processing the file provided by the detector.

Because one person can be represented by multiple blobs and one blob can

represent multiple people, an M-to-N relationship has to be preserved in the

program. Therefore, at every frame, a list of detected blobs is kept as current

frame data, and for each blob is stored a list of the people represented by it. A

copy of all current blobs is kept as in current frame data copy variables to use in

merging condition.

4.2.1 Corresponding Person and Merging

Check the every blob for people currently being tracked finds the corresponding

blob for that from the current frame data for every frame. For each new frame

data person perform the following tasks.

A. Get Velocity

B. Predict Next Position

C. Predict Radius

Tracking

14

After calculating velocity, expected position and radius, we check all the blobs

one by one. For each blob from current frame, calculate the Bhattacharyya

distance between the person‟s histogram and the blob‟s histogram. Then check

if the blob is in the area of person the being tracked by using expected position

and predicted radius. Also check if Bhattacharyya distance is less than a

threshold. The threshold is chosen from a number of experiments as in figure

4.6. I have chosen the threshold 0.48 to allow the variation in Bhattacharyya

Figure 4.6- Comparison of

Bhattacharyya distances between

histograms of the same and different

people. The former is shown in red

and the latter in blue colour (figure

copied from [4]).

distance due to every time update in histogram of person being tracked. The

most probable person is chosen by calculating the probability for each blob that

is are in area of the person and for which the Bhattacharyya distance is less than

the threshold.

 When a person merges with any other person in that frame we will have less

blobs. In this condition we check all the blobs again for the person who has

merged. Person who has merged with other person will seem to have

disappeared, So we will check all the blobs only if the trajectory of the person

has 6 or more points to ensure that the person is being tracked from the last 6 or

more frames because the person who has disappeared could be appeared just in

or two frames. Sometimes one person can produce two or three blobs as in

problem number 4 (figure 4.4) as in that condition we can‟t say the person has

merged.

 After choosing the corresponding blob we need add the blob to trajectory

and update the person‟s properties and histogram. Properties include [Average

size, Average width, Average height] and the colour histogram is averaged to

write out at the end, and another histogram is updated to use finding the

corresponding person and Bhattacharyya distance.

Tracking

15

4.2.2 Splitting

Two people, merged in the previous frame and split into separate blobs in the

next frame is the splitting condition. Problem number 2 describes it very well

with figure 4.2. So every time when adding a new person from the remaining

blobs that are not chosen by any person, check all remaining blobs if they had

split from other persons. If, yes then copy the trajectory of the corresponding

person to the blob which is added as new person as the trajectory of the

corresponding person is copied at the end when writing the trajectory of the new

person. When a person splits then we have two persons with the same trajectory

and then the last points are added to the trajectories of these two Persons, so we

have two Persons with exactly the same trajectory but the last points of these

trajectories differ.

4.2.3 Disappearing

To overcome disappearing, I allow the person to disappear for 4 frames and a

maximum of 1300 milliseconds and also check if the predicted position is out of

boundaries of image. In this case if the person has disappeared, then we will

write its trajectory to a final variable after checking if trajectory is right.

4.2.4 People as separate blobs

A single person can be detected as multiple blobs, which results in a new person

added to the list of current persons being tracked. But in the next frame person

or after two frames the person is again detected as a single blob. This will lead

us to a merging condition. As described earlier if the trajectory of a person has 6

or more points than only the merging condition is applied and all blobs are

checked again. This mean the new person will not find any new point to add to

the trajectory, so automatically these trajectories will not pass the right

trajectory test which means a trajectory should have a minimum of 15 points to

write it out.

Tracking

16

4..5 The Core Algorithm

The high level algorithm is illustrated by Pseudo code 1.

Where:

Trajectories of the current persons being tracked are stored in curr_Data.

Histograms of current persons being tracked are stored curr_Histgram.

Properties of current persons being tracked are stored curr_Properties.

Current frame blob‟s [CentreX, CentreY, Frametime] as curr_frame_Data.

Current frame blob‟s histogram as curr_frame_Histogram.

Current frame blob‟s properties as curr_fram_Properties.

 curr – stands for current.

 Track is final variable where we store all good trajectories. This is

written to a file along with them final Properties and their final averaged

Histogram

 Code of tracking can be downloaded from [9]
http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/.

http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/

Tracking

17

Pseudo code 1: The tracking algorithm (high level)

%%%%%%%%%%%%% Program Starts %%%%%%%%%%%%%%%

Initialization of variables

FOR EACH frame in file

curr_frame_Data = getframedata();

 %%%%%%%% ---- Step 1---%%%%%%%%

 FOR EACH person in list

 %%%%-- Step 1.1 --%%%% see next page for more details

 chosen = Findcorrespondingblob(curr_Data, curr_frame_Data);

 If chosen

 Addcorrespondingblob(curr_Data, curr_frame_Data(chosen));

 End

 %%%%-- Step 1.2 --%%%%

 EleseIf IsItTime_to_Write_Trajectory

 Save to Track (curr_Data)

 END

 %%%%-- Step 1.3 --%%%%

 ElseIf IsItMerged

 Find_and_add_blob(curr_Data, curr_frame_Data_copy);

 END

 END

 %%%%%%%%--- Step 2 ---%%%%%%%%

 FOR EACH remaining blob // those are not chosen by any person

 FindCorrespondingPerson(Remaining_curr_frame_Data, curr_Data);

 MakeCopyOfCommonPoints();

 END

 %%%%%%%%--- Step 3 ---%%%%%%%%

 FOR EACH person who has disappeared

 Remove(curr_Data)

 END

END

 %%%%%%%%--- Step 4 ---%%%%%%%%

 WriteOutFile(OutFilename,Track, Properties, Histogram)

%%%%%%%%%%%%% Program Ends %%%%%%%%%%%%%%%

Tracking

18

Pseudo code 2 Step 1.1: Choose corresponding blob

%%%%%% Step 1%%%%%%%%%

FOR EACH person in list

 Velocity = getvelocity(curr_Data)

 PredictedPosition = predictPos(curr_Data,velocity,frametime)

 Radius = PredictRadius(curr_Data Velocity,framtime,MinRadius)

 FOR EACH blob in current_frame_data

 HistDistance=Bhattacharyya(curr_Histgram,curr_frame_Histogram);

 IF Isinarea(PredictedPos,Radius, curr_frame_Data) && HistDistance<threshold

 Probability=getProbability(curr_Data,PredictedPos........);

 END

 END

 Chosen= getMostProbableblob(probability);

 %%%% adding chosen blob to person‟s trajectory %%%%%%

 IF chosen

 curr_Data=Addcorrespondingblob(curr_Data, curr_frame_Data(chosen));

 curr_Histgram=UpdateHistogram(curr_Histgram, curr_frame_Histogram);

 curr_Properties=UpdateProperties(curr_Properties, curr_frame_Properties);

 END

%%%%%%%/ Step 1 continued %%%%%%%%

Tracking

19

Pseudo code 3 Step 1.2: Saving trajectories

%%%%%%%/ Step 1 continued %%%%%%%%

 Time = frametime-Person_last_point_time;

ELSEIF (PersonHasDisappeared && Time >Maxtime && IsOutOfbound(curr_Data))

 IF personSplitted

 Curr_Data=add(CommonPointsBeforeSplitting, PointsAfterSplitting)

 %% common points are from variable these were copied in splitting part.

 END

 IF(IsTrajectoryRight(curr_Data))

 Track{h,1} = curr_Data

 Properties(h,:)=curr_Properties;

 Histogram(h,:)=averaged_curr_frame_Histogram;

 h=h+1;

 END

 %% Removing the blob from list, So it will not be chosen by other persons

 %% and increase the speed of program.

 Removeblobs(curr_frame_Data(chosen))

END

%%%%%%%/ Step 1 continued %%%%%%%%

Tracking

20

Pseudo code 4 Step 1.3: Two persons merged

 %%%%%%% Step 1 continued %%%%%%%%

 ElSEIF (TrajectoryLength>5 && Time>Maxtime)

 FOR EACH blob in current_frame_Data_copy

 HistDistance=Bhattacharyya(curr_Histgram,Curr_frame_Histogram_Copy);

 IF IsInArea(PredictedPos, Radius,curr_frame_Data_copy

 && HistDistance<threshold)

 Probability=getProbability(curr_Data, PredictedPos.......)

 END

 chosen= getMostProbableblob(Probability);

 END

 %%%% adding chosen blob to person‟s trajectory %%%%%%

 IF chosen

 curr_Data=Addcorrespondingblob(curr_Data,

 curr_frame_Data_copy(chosen));

 curr_Histgram= UpdateHistogram(curr_Histgram,

 curr_frame_Histogram_copy);

 curr_Properties=UpdatePpoperties(curr_Properties,

 curr_frame_PrOpperties_copy);

 END

%%%%%%% Step 1 Ends %%%%%%%%%

END

Tracking

21

Pseudo code 5 Step 2: Two person splits and adding new person

 FOR EACH remaining blob // those are not chosen by any person

 FOR EACH person in list

 HistDistance=Bhattacharyya(curr_frame_Histogram, curr_Histogram);

 IF IsInArea(LastPointOfTrajectory,20,current_frame_Data_copy

 && HistDistance<threshold2)

 Probability=getProbability(curr_Data, PredictedPos.......)

 END

 chosen= getMostProbableblob(Probability);

 MakeCopy(chosen);

 END

 AddNewPersons(curr_frame_Data)

 END

Tracking

22

4.2.6 Calculations

There are many calculations in the process of tracking. All are described here.

4.2.6.1 Velocity. Every time a new point is added to a trajectory, the person‟s

instantaneous velocity V is calculated at that point. Velocity is calculated as a

weighted average of short velocity and long velocity.

Short velocity: Vs =
Pos (n)−Pos (n−1)

𝑡𝑖𝑚𝑒 (𝑛)−𝑡𝑖𝑚𝑒 (𝑛−1)

Long velocity: Vl=
Pos (n)−Pos (n−3)

𝑡𝑖𝑚𝑒 (𝑛)−𝑡𝑖𝑚𝑒 (𝑛−3)

Velocity: V =|
Vs +Vl∗3

4
|

In this way, I minimise the error caused by the “jumping” centroid point. This

error is especially noticeable when different parts of a person‟s body are

detected at each frame causing their position, as described by the centre of mass

of all their pixels, to change significantly. At the same time, by choosing a small

number of previous points, I still allow for rapid changes in the trajectory. This

is important for detection of behaviour abnormalities. When a person walking

normal both short and velocity are same, which is more often observed

condition, but when stops and after spotting some time starts then short velocity

comes plays good role because this will be used to predict the next position.

 When a trajectory has only one point the velocity assigned 0, and when a

trajectory has less than four points then the starting point is used in long rather

velocity than pos(n-3).

4.2.6.2 Predict position. Having the instantaneous velocity of the last point

in the trajectory, the expected position is estimated as follows:

Pos(n) = Pos(n−1)+V(n−1) × (time(n)−time(n−1))

The smaller the time difference, more accurate the predictions. After a longer

time, the predictions could be inaccurate, and I therefore allow a person to

disappear only for four frames. And most of the time prediction is very good.

If trajectory has only one point then Pos(n) remain same as first position as

velocity is 0.

Tracking

23

4.2.6.3 Radius.

The position prediction is not always accurate, therefore the prediction area

should be large enough to allow for those errors, but at the same time small

enough to avoid mistakes with other blobs. I chose the radius on the basis of the

previous instantaneous velocity of the considered person. If the velocity of a

person is known, the radius is chosen to be FACTOR = 1.5 times longer than

the distance from the last position to the next predicted position.

Pseudo code 6 Choosing the radius.

Rafius= getRadius(Minraduis,minraduis,trajectory)
{
IF (trajectory.hasOnlyOnePoint (trajectory))

 Radius =30;

ELSE

 Radius = velocity * time * FACTOR

 IF (velocity< 1.5 Radius < 7)

 Radius = 7;

 ELSE IF (velocity<2.65 & Radius<12)

 Radius = 14;

 ELSE IF (Radius<22)

 Radius= minRaduis1;

 ELSE IF (Radius<36)

 Radius = MinRaduis;

 END

END

}

I experimentally determined the maximum speed at which a person can walk:

MAX_SPEED = 26 pixels per 100ms [4]. Before the actual velocity of a

person is known (i.e. when there is only one point in trajectory) the maximum

velocity is assumed, so I assigned the radius 30 in very starting. When person

walks fast, in few cases centroid point jump it could lead the point to shift

nearly more than 30 pixels, so I used the minimum radius (MinRadius) 36.

Third conditions is used to avoid mistakes when person walks at normal speed

about 10 to 20, so I used chose the minimum radius 25 (MinRaduis1) in this

condition. First two conditions are very useful to avoid stationary objects to be

thetrajectory of any person.

Tracking

24

4.2.6.4 Probabilities:

 The Bhattacharyya distances Hnew from the figure 4.6 which show that there is

a clear distinction between the people based purely on their colour histograms.

However, the detection quality of some people varies from frame to frame, e.g.

some lighter parts of their clothing might not be detected in several frames. This

causes their colour histograms to differ, which:

1. Increases the Bhattacharyya distance between a person and the same person

in the previous frame, and

2. Raises the likelihood of confusing the person with another.

Also, some people might simply wear very similar clothes, which additionally

increases the difficulty of distinguishing them. Therefore, I have avoided

relying purely on the colour histograms Hnew, I have also used the error of

position prediction Errnew and angle between expected position and new point‟s

position from person‟s third from last position Angnew to estimate the

probability of a blob representing a particular person Pi. Using Bayes‟ theorem:

p(Pi |Hnew, Errnew, Angnew) =
p H𝑛𝑒𝑤, Err 𝑛𝑒𝑤, Ang 𝑛𝑒𝑤 P𝑖)p(P𝑖)

p(H𝑛𝑒𝑤,Err 𝑛𝑒𝑤,Ang 𝑛𝑒𝑤)

I assume that

∀i,j p(Pi)=p(P j)

∀i,j p(Hi, Erri, Angi) = p(Hj, Errj, Angj)

p(Pi |Hnew, Errnew, Angnew) = p(Hnew | Pi) p(Errnew | Pi) p(Angnew | Pi)

4.2.6.4.1 Prediction Error Probability. I define the error in position

prediction as the distance between the predicted and the actual positions. I

computed a histogram of error values for the position predictions of 25 people,

which totalled 4059 samples. I chose the bins to have a width of one pixel [4].

The numbers in each bin were divided by the number of samples; using this

maximum likelihood approach I obtained a likelihood measure for each bin. I

then tried to fit different continuous distributions to this discrete distribution.

The results are shown in Figures 4.6a–4.6b. Since the error values are positive,

the Gaussian distribution was fitted to the error distribution plus its reflection

about zero. Then the values of the Gaussian were multiplied by two and shown

only for positive error values. The multiplication was necessary to ensure that

the distribution would still integrate to one after removing half of it. I computed

the negative log likelihood for each fitted distribution. The exponential

distribution proved to be the best fit.

Tracking

25

p(Errnew | Pi)= 𝑒− λ×Err𝑛𝑒𝑤

Tracking

26

 (a) Gaussian fit: NLL = 11.319×10000 (b) Exponential fit (= 0.2762)

Figure 4.7: The distribution of prediction errors [figure copied from 4].

I also checked wheter this distribution worked in other different condition. And

found that value of lambda 0.18 works very good in most of the conditions, so I

changed the value of lambda to 0.18.

4.2.6.4.2 Histograms Probability. I approximate the probability distribution of

the colour histograms using Bhattacharyya distance. Bhattacharyya distance it

varies between 0 to 1. But it varies very much linearly which was not giving

satisfying results, so varied it exponentially as given below.

p(Hnew | Pi) = 𝑒− 5×H𝑛𝑒𝑤

Where - Hnew is Bhattacharyya distance.

4.2.6.4.3 Angles Probability. I approximate the angle probability using a

normal distribution. I calculated the angle between expected position and

current blob position to choose from third position from last of trajectory. I

gathered the 96 normal trajectories which gave 5457 samples of angles in

radians and calculated the mean and variance. Values of mean and variance

came 0.008 and 0.1023 respectively, so I chosen the mean 0. But results were

not satisfactory with this variance value, and then I tried the trial and error

method to find the correct value of the variance. I found 0.70 was very much

satisfactory. I tried some big values more than 1 also but didn‟t work out,

because with high values value of angle probability was negligible in front of

other probabilities.

In our case mean is zero. So: p(Angnew | Pi)=
1

 2𝜋𝜎2
𝑒
−

𝐴𝑛𝑔 2

2𝜎2

Tracking

27

Where: Ang is angle.

 𝜎 is variance(0.7).

 Angle probability is very useful when two people walk parallel, so there is

chance of confusion in error in position prediction probability and histogram

probability because it does not vary much so we need another factor in these

types of cases.

4.3 Removing bad trajectories

The detector and tracking components are not 100% accurate, so before writing

the trajectory to file, we need to remove all those bad trajectories. Some of these

may be recognisably incorrect, such as those falling into the following classes:

1. Tracker can produce a bad trajectory as the result of a stationary object.

Those have more than 100 points, but all are concentrated in one small

region. Normally successive points has very low distance, so I made

another trajectory from original trajectory whose successive points have

distance more than minimum distance (7). I repeated this process one

more time with minimum distance (14). So we have two new trajectories

different lengths (len2 and len3). I checked the change in length of the

two trajectories and calculated the change in percentage as (per2). Also I

calculated the change in percentage from original trajectory length (len1)

and len2 as (per2). To remove these bad trajectory if per1>55 than

minimum percentage is chosen 40 else minimum percentage is chosen 75.

Per2 should be more than minimum percentage. These parameters are

chosen by number of trails and experiments. It is described in Pseudo

code 7.

2. Trajectories shorter than 15 points or len1< 15. These could represent

spurious detections.

3. Trajectories which start or end outside the marginal area of the scene. The

marginal area is shown in Figure 4.7. These trajectories could be

produced if the detector did not detect a person in the initial or final

frames. Also, the tracker could fail to notice that two people split and

classify one of the resulting blobs as a new person in the scene. If they

split outside the marginal area, the new person would appear out of

nowhere. So these trajectories should be removed.

Pseudo code 7 Remove Bad Trajectories

Tracking

28

len1= length(trajectory);

trajectory1=removeClosePoints(trajectory,7);

len2=length(trajectory1);

trajectory2= removeClosePoints(trajectory1,14);

len3=length(trajectory2);

per1=100*(len1-len2)/len1;

per2=100*(len2-len3)/len1;

IF per1>55

 MinPer=40;

ELSE

 Minper=75;

END

IF(len1<15 || per2< MinPer || len3<10)

 %%% bad trajectory

 return false

ELSE

 Return true

END

Tracking

29

Figure 4.8: The marginal area (green) shows the region where trajectories have

to start and end. The red area shows the region next to the lifts where the

trajectories were removed [figure copied from [2]].

Tracking

30

4.4 Implementation.

The tracker was implemented in Matlab. Main variables like current data storing

the trajectory of person being tracked and final variable storing all the

trajectories are cell array in Matlab. The main structure of the program is

illustrated by functions in diagram shown in Figure 4.8.

Figure 4.9 Block Diagram of Tracker program

 Main program Tracking

%%%%%%%%

Track;

Curr_Data;

Curr_farme_Data;

Histogram;

Curr_Histogram;

Curr_frame_Histogram;

Properties;

Curr_Properties;

Curr_frame_Properties;

getframeinformation();

findCorresponding();

addblobtotrajectory();

IsPersonDisappeared();

IsMerged();

findblobformerged();

addnewperson();

copysplittedtrajectory();

getVelocity() Returns

velocity

Writeout()

fopen(filename,wt);

fprintf(variables);

IsTrajRight() Returns

True or false

predictPosition()

Returns Expected

position.

IsinArea() Returns

true or false

getprobability()

Returns probability.

predictRadius()

Returns Radius

Tracking

31

4.5 Output File Description.

 These files contain sets of detections that have been tracked together into a

single target's trajectory. Tracker files start with "% Total number of

trajectories in file are [Number]", where Number defines the number of

trajectories. Files contain the information in the form of a Matlab structure.

The trajectory points and the properties are in two different variables with

same identifier. Each trajectory has a different identifier like "R1" for

trajectory number 1 and "R2" for trajectory number 2 and so on. The first

variable is Properties.{Identifier}= [Number_of_Points_in_trajectory,

Start_time, End_Time, Average_Size_of_Target, Average_Width,

Average_height, Average_Histogram];. The histogram has the same format

as in the detection file. The second varible contains the full trajectory

as TRACK.{Identifier}= [[centre_X(1) CentreY(1) Time(1)] ; [centre_X(2)

CentreY(2) Time(2)] and so on until [centre_X(end)

CentreY(end) Time(end)]];. The size of tracked files is about 1MB each.

These files can be downloaded from [7].

4.6 Evaluation.

The evaluation of the tracker was carried out on 5 categories with 60 trajectories

from day. Results were very satisfactory. Results are shown given below

category wise.

1. When there is only person in frame:

Total number of persons in scene: 41

Number trajectories preserved: 41

In case of single person in scene tracker performed very well. An

example of single trajectory is shown in figure 4.9.

2. When there were people walking closer together.

Number of persons: 3

Trajectories preserved: 4

This is the scenario of merging and splitting, so one trajectory is

produced redundantly, because sometime these persons were represented

by separate blobs. An example of this is shown in figure 4.10. The tracker

performed very well in when there were only two people in the scene.

Tracking

32

Figure 4.10: Single person trajectory

Figure 4.11: Example of merging and splitting condition.

Tracking

33

3. When a person disappears for a few frames.

Number of people disappear more than 2 frames: 11

Number of trajectories preserved: 9.

One person disappeared more than 5 frames, so the trajectory terminated.

An example figure of disappearing is shown in figure 4.11.

Figure 4.11: Example of disappearing. Red circle shows where a person

disappeared for 3 or more frames.

4. Failure rate

Tracker performed very well, but still it fails in some situations like there

is merging and splitting. Sometime it fails to identify correct blob after

merging and splitting.

#people #merging and splitting # correct identity

reassignment

%failure rate

2 2 2 0%

3 4 3 25%

total 6 5 16.6%

Table 4.1. The table shows the failure rate of correct identity

reassignment.

Tracking

34

Overall performance of tracker was very satisfactory. All trajectories of Jan 04

2010 are shown in figure 4.13.

Figure 4.13 Tracked object for 4
th

 Jan 2010. These are same day trajectories

corresponding to detected objects shown in figure 3.1.

Tracking

35

Figure 4.14: This figure is image plot of all the detection points after tracking

using all trajectories (65529). The colour varies from dark blue to dark red

through light blue, green and yellow with the variation of number of detected

point at that point. It tells us where people go most of the time. Colour

represents the density of visiting at a particular point. As we can see from the

figure most of the people go from the main entry to the stairs and vice versa.

Also density near the elevator is high, because people waiting for the elevator.

Density is high near all main entry and exit points like vision lab door, robot lab

door, night exit door, and near reception.

36

Chapter 5

Representing Trajectories as Spline

5.1 Specification

Trajectories have different numbers of points which makes it difficult to

compare them. In order to represent them using the same number of attributes,

each trajectory was approximated by a cubic spline curve with 6 control points.

The fitting algorithm and its implementation were provided by Rowland R.

Sillito [6] .

5.2 Design

First Spline read all the trajectories from tracker file. The trajectories produced

by the tracker have point X and Y positions. So all these trajectories are

transformed in 0 to 1 range both X and Y. After pre-processing according to

number of control points a spline fit to each trajectory. The average error of the

spline fit to the tracked trajectories is calculated assigned as deviation to each

trajectory. With abnormal behaviour deviation also increases.

5.2.1 Choose Control Points

I chosen the number of control points based on the average error of the spline fit

to tracked trajectories I used 2343 trajectories, and took the median of deviation

of all the trajectories for different number of control points and plotted it as

shown in figure 5.1.

Number of control points was chosen 6, after 6 there was very small change in

deviation. And also when number of control points is 6 deviations is about 1%

of image width. Trajectories used (2343) to calculate meadian also include the

bad trajectories.

Representing Trajectories Spline

37

Figure 5.1 Variation of Median fitting error with number of control points.

The high level algorithm is illustrated by Pseudo code 7.

Pseudo code 7 Fitting Spline

Trajectories=readTrackerFile();

FOR EACH Trajectory

 [x y]= transformTrajectory(trajectory);

 ContolPoints= splinefit(x,y,numberOfControlPoints);

 [Xr Yr]= constructSpline(x,y, controlPoints,LengthOfTrajectory);

 Deviation =getdeviation(x,y,Xr,Yr);

 writeOutput File(Deviation,ControlPoints);

END

Representing Trajectories Spline

38

5.2 Implementation

Spline is implemented in Matlab. Splinefit was developed by Rowland R.

Sillito. Other experiments related to spline were also done on Matlab like

choose number of points.

5.3 Output File Description

These files contain sets of 6 point spline descriptions of the tracked

trajectories. The spline file contains the average error of the spline fit to the

tracked trajectories, and the control points. This is for each trajectory

produced by tracker with same identifier as tracker. The first line of spline

file is "% Total number of trajectories in file are [Number]", where Number

defines the number of trajectories. "X and Y are normalized by dividing 640

and 460 respectively" and "Image size is 640*460". Normalization is done

because the spline fit works for variables in the range [0,1], so we

transformed the values of the trajectory points to fall into [0,1]. The file

contains the information in the form of a Matlab structure. Identifiers of

each spline are the same as given in the tracker file for the corresponding

trajectory. Deviation and Control points are stored

as Deviation.{Identifier}= [Standard deviation];. This is the average

distance between the tracked point and the closest point on the spline.

The control points are stored as: Controlpoints.{Identifier}=

[[Controlpoint_x1 Controlpoint_y1]; [Controlpoint_x2

Controlpoint_y2]........ and so on until six points]];

Representing Trajectories Spline

39

 Figure 5.2: This figure shows spline curves of all the trajectories shown in

figure 4.13 on 4
th

 January 2010.

40

Chapter 6

Abnormality Detection

6.1 Overview

The purpose of this model is to detect the abnormal behaviour from the given

trajectory based on the multiple parameters. Spline is used to define all

trajectories with same number of attributes (Control points). There are many

step involved in the detection of abnormal trajectories. Trajectories provided by

tracker component are fed to this component. There are three parts involved in

abnormal behaviour detection

1. Training dataset was used for training the model (section 6.2)

2. Training dataset for choosing threshold of parameters was used to

choose the appropriate parameter for process of detection of anomalous

trajectories (sub section 6.3).

3. Test dataset was used to evaluate the robustness of component (section

6.5).

According to figure 1.2 there are 13 entry and exit points, which means there

are 13 possible paths from one entry point to other exit points (including entry

point as exit point as a path), so there are total 169 possible paths (which make

169 clusters). I gathered the samples for each cluster to calculate the mean

vector and covariance matrix for each cluster.

 Choosing the classifier parameters was a difficult task, which required a lot

of calculation and manual understanding. We were looking for multiple

parameters for decision making, so it was difficult to choose parameters by

observing manually. I used several possible combinations of parameter and set

the threshold for each, which is described further in subsection 6.2.1. A

trajectory is flagged abnormal if it met the criterion.

Abnormality Detection

41

6.2 Building the Model

I gathered the 60 samples for each possible path, 20 normal behaviour tracks

were selected for each path for building the model of normal trajectories. Paths

where entry and exit points were same and paths where sufficient number of

tracks for modelling (less than 20 normal tracks) was not available were not

modelled, because 6 control points are represented by a 12 point vector, so a

minimum 13 samples needed to calculate covariance matrix. There were 107

clusters modelled, because only 107 out of 156 (excluding those clusters where

start and end points were same) had 20 more tracks. If a trajectory starts and

ends on same point or if it belongs to un- modelled path it is flagged as

abnormal. From 20 training trajectories of a cluster, the mean vector of control

points and covariance matrix were calculated. As shown in figure 6.1 all

trajectories are very much similar except few are little different (e.g. Right most

trajectory and one it‟s near) which allow little variation in normal behaviour.

Figure 6.1 An example training cluster. Where training spline are in blue colour

with their control points in black and red colour spline represent mean vector

with green mean control points

Abnormality Detection

42

6.2.1 Calculations

There are three main calculations to compute the parameters.

6.2.1.1 Spline Fit Error :

Spline fit error is the deviation of spline curve to original trajectory curve. It

was computed as given in equation 6.1.

SFE= (Traj𝑖 − Spline𝑖)2𝑙𝑒𝑛𝑔𝑡 ℎ
𝑖=1

 Where: Traj is original trajectory point

 Spline is spline fit curve closest point

 length is number of points in trajectory

Figure 6.2: figure shows the variation of number with the variation of spline fit

error most of the trajectories having a spline fit error of less than 0.01.

Abnormality Detection

43

6.2.1.2 Vector Distance:

With the samples of 107 clusters I computed 107 mean vector and 107

covariance matrixes. Each mean vector contain 6 control points and length of

vector is 12 as 6 X and 6 Y in each mean vector. Vector distance was computed

between present trajectory‟s control points vector and closest mean vector.

Matlab‟s norm function was used to compute vector distance.

VD= norm(X-Mean)

 Where: X is present vector

 Mean is mean vector

Figure 6.3 shows the variation of numbers with variation of vector distance to

closest mean vector. Most of the trajectories have vector distance about 0.2.

Abnormality Detection

44

6.2.1.3 Probability

 Each trajectory is represented by control points, which gives us a 12

point vector. This vector was used to calculated multivariate Gaussian

probability. 12 dimensional Gaussian probability is computed for every

trajectory as give below.

P(x| µ,∑) =
1

 2𝜋 𝑘/2 | |
1
2

𝑒−
1

2
 𝑥−𝜇 ′ −1(𝑥−𝜇)

 Where μ is mean vector

 ∑ is covariance matrix

Figure 6.4: figure shows the variation of numbers on each log(probability). I

took the log of probability because the spam of probability was very wide,

which was not suitable for plotting. There are some trajectories whose log of

probability minus infinity, because when log of probability is less than -744,

then Matlab round it to minus infinity.

Abnormality Detection

45

6.3. Choosing Parameters Threshold

I gathered another training dataset of 535 trajectories (5 from each cluster those

were not used in building the model) for choosing the appropriate threshold of

parameters. First I looked on all trajectories and labelled the bad trajectories. I

found there were total 80 bad trajectories. Three criteria for detection of bad

trajectories are given below.

1. If spline fit error greater than threshold of spline fit error (Thres1_Sfe) .

2. If vector distance greater than threshold of vector distance (Thres2_Vd).

3. It is combination of all three parameters a). Log (probability) (Thres3_P)

b) Vector distance (Thres4_Vd) c) spline fit error (thres5_Sfe).

 Threshold values are given in table 6.2.

 In logical form 3
rd

 condition is described as given below.

IF (Thres3_P && Thres4_Vd && Thres5_sfe)

 % It is bad trajectory;

 Plot (bad)

END

Combination of all 3 is expressed as given below:

IF (Thres1_Sfe || Thres2_Vd || (Thres3_P && Thres4_Vd && Thres5_sfe))

 % It is bad trajectory;

 Plot (bad)

END

To find the appropriate threshold for each I used the concept of false positive

and false negative and tried all the possible combinations for all five threshold

hold.

False positive: bad trajectory accepted as good.

False negative: good trajectory rejected as bad.

 FP=
A∩B

N
 FN=

R∩G

N

 Where: FP - False positive.

 FN - False negative.

Abnormality Detection

46

 A - Accepted trajectories.

R - Rejected trajectories.

 B - Bad (80 out of 535) (pre-labelled).

 G - Good (465 out of 535) (pre-labelled).

 N – G + B (535).

 To figure out the equal false positive and false negative rate for all three

variables (spline fit error, vector distance and log (probability)) I plotted three

graph (FN(%) Vs FP(%)) for each variable. Plots are shown in figures 6.5, 6.6

and 6.7. These plots gave a good rough idea for choosing the thresholds.

Figure 6.5: This figure shows the variation of false positive (Y) and false

negative (X) at different values of spline fit error threshold (Z). This plot show

the effect of only spline fit error, only spline fit error was used to detect the bad

trajectories (only 1
st
 condition).

It has equal error rate (about 4.3%) at spline fit error threshold is near 0.0195.

Abnormality Detection

47

Figure 6.6: This figure shows the variation of false positive (X) and false

negative (Y) at different values of vector distance threshold (Z). This plot show

the effect of only spline vector distance.

Figure 6.7: This figure shows the variation of false positive (Y) and false

negative (X) at different values of log(probability) threshold (Z). This plot show

the effect of only log(probability).

Abnormality Detection

48

Parameter Spline fit error Vector distance Log(probability)

Equal error rate 4.3 % 1.6% 4.0%

Threshold 0.0195 0.41 -130

Table 6.1: shows equal error rate for each parameter with threshold at that EER.

 From table 6.1, we can say that vector distance has lowest error rate, so it

most effective parameter for detecting the bad trajectory. I tried all the possible

combination of five thresholds to find minimum equal error rate on 535 training

trajectories. I found minimum equal error rate equal to be 1.2245% at following

values of thresholds. These threshold values are used to recognise anomalous

behaviour. Equal error rate for false negative and false positive is about 1.2%.

Some examples of false negative and false positive trajectories are shown

below. Here mean vector (control points) are in green colour, its spline in cyan,

original trajectory in blue, control points in black and spline in red.

Equal error rate 1.2245

Thres1_Sfe 0.038

Thres2_Vd 0.44

Thres3_P -20

Thres4_Vd 0.006

Thres5_sfe 0.37

Table 6.2: shows thresholds values at best equal error rate for training.

Figure 6.8 (a) An example of false negative trajectory. The vector distance is

large because the mean vector is very far from the trajectory control points, but

this is because the area 1 is very big so it is difficult to find a mean vector to suit

every trajectory.

Abnormality Detection

49

 Figure 6.8 b) An example of false negative. Trajectory is normal, but it starts

and ends at very corners of start area (3) and end area (4), however mean vector

is from middle of start and end areas.

Figure 6.9 a) An example of false positive trajectory. Path distance is very

small, so the positioning of a bad trajectory‟s control points does not differ very

much so it passes away. Also small path has small trajectory (fewer number of

points), so spline fit error cannot be very high

Abnormality Detection

50

Figure 6.9 b) An example of false positive trajectory. It is same situation as

above (small path).

Table 6.3: table shows number of trajectories in all 169 clusters present from

total 65529 trajectories.

Abnormality Detection

51

Main structure of abnormal behaviour detection program is described by Pseudo

code 8.

Pseudo code 8 abnormal behaviour detection

Load trajectories

Load Mean_Vectors % in cell array form

Load Covariance_Matrixes % in cell array form

FOR EACH Trajectory

 Start_Area=AreaNumber(trajectoryi(start point));

 End_Area=AreaNumber(trajectoryi(End point));

 Mu= Mean_Vectors{ Start_Area , End_Area } ;

 Sigma= Covariance_Matrixes { Start_Area , End_Area } ;

 IF(path is modelled?)

 [x y]= transformTrajectory(trajectory);

 ContolPoints= splinefit(x,y,numberOfControlPoints);

 [Xr Yr]= constructSpline(x,y, controlPoints,LengthOfTrajectory);

 Deviation =getdeviation(x,y,Xr,Yr);

 Vector_dist =norm(ContolPoints-Mu);

 Probability = log(getprobability(ControlPoints,Mu,Sigma));

 IF (Thres1_Sfe || Thres2_Vd || (Thres3_P && Thres4_Vd && Thres5_sfe))

 % It is bad trajectory;

 Plot (bad);

 Title(„BAD‟)

 END

 ELSE

 % It is a un-modelled path, so it is a bad trajectory;

 Plot (bad);

 Title(„um-modelled‟);

 END

END

Abnormality Detection

52

6.3 Implementation

Abnormality detection is implemented in Matlab. Covariance matrixes and

mean vectors for each cluster were calculated from the training dataset in

Matlab and saved as mat file format. And covariance matrices and mean vectors

load to main program to calculate 12 dimensional Gaussian probability (which

is inbuilt function in Matlab). Also other experiments related to Abnormality

detection were done on Matlab.

6.4 Results

To evaluate the performance of the abnormality detection process, another 535

trajectories were gathered, 5 from each cluster to ensure that chosen parameters

satisfy all the paths (107). False negative and false positive rate were computed

for the new dataset. Results were found very satisfactory, with the error rate for

false positive and false negative was equal at 1.2069 %, while for training

dataset equal error rate (EER) was 1.2245 %.

Figure 6.10: figure shows all the clusters those are modelled (107). There two

mean vector seems to be abnormal (one at left most corner in red colour and one

at right side in green colour) because around 40 trajectories were there for each

but normal were very few, so abnormal trajectories were used in modelling.

Abnormality Detection

53

a) Cluster 2 to 5

b) Cluster 3 to 8

c) Cluster 11 to 2

d) Cluster 3 to 11

Figure 6.11: figure shows four different clusters for different paths given above.

54

Chapter 7

Conclusions and future work

 Tracking of persons is a difficult task. The tracker has to overcome with the

problems of the detector (ambiguities in the data and problems of occlusion and

lost detections). The tracking algorithm is used to track the person and form a

trajectory from the detector output file. The tracking program produces a file of

tracked persons‟ trajectories. All trajectories have different lengths depending

upon how much time the person stays in view of the camera. Normally a person

stays in view of the camera for 10 to 15 seconds. Which produces trajectories

with 50 150 detections. Overall the tracking process was very satisfactory but

some modifications can be done when more than two people merge together to

increase the performance of tracker component. To describe each trajectory with

an equal number of attributes a Spline fitting algorithm is used. The Spline

fitting algorithm gives six control points. The control points are represented by

a 12 point vector for each trajectory. The Spline fit algorithm was temporal, sp

stationary people can produce unbalanced splines. Some other algorithm can be

used for spline fitting to increase the performance of the abnormal behaviour

detection component such as basing spline fitting on a spatial description.

 The abnormality detection process gave very good results. The model was

built by gathering 20 normal trajectories for each clusters. Covariance matrices

and mean vectors were determined to calculate a multivariate Gaussian

probability for the 12 point vector of each trajectory. Choosing the classifier

parameters was a difficult task, which required a lot of calculation and manual

understanding. We were looking for multiple parameters for decision making,

so it was difficult to choose parameters by observing manually. I used several

possible combinations of parameter and set the threshold for each and

calculated the error rate of false positive and false negative. The Equal Error

Rate (EER) algorithm was used to find the appropriate values of the classifier

parameters. Three criteria were chosen for detection of bad trajectories. A

trajectory is flagged abnormal if it failed any of the criteria. Results show that it

has 1.2% equal error rates. This can be decreased by some more experiments,

like changing the number of control point and choosing perfect boundary for

each entry and exit points.

55

References:

[1] Kirstie Ball, David Lyon, David Murakami Wood, Clive Norris,

 Charles Raab, A Report on the Surveillance Society September 2006

[2] http://www.scotcrim.u-net.com/researchc2.htm, Crime and Criminal Justice

 Research Findings no 30, the Scottish office central research unit, last

 Accessed May 10, 2010.

[3] H. Dee and S. Valestin. How close are we to solving the problem of

 Automated visual surveillance? Machine Vision and Applications, 2007.

[4] Barbara Majecka, Statistical models of pedestrian behaviour in the Forum,

 Msc thesis, School of informatics, University of Edinburgh 2009.

[5] B. Brown, Police Research Group. CCTV in Town Centres : Three Case

 Studies, 1995.

[6] Liberty CCTV, 2005. http://www.liberty-human-rights.org.uk/issues/3-

 privacy/32-cctv/index.html, last accessed May 13, 2010.

[7] R.R. Sillito and R.B. Fisher. Semi-supervised learning for anomalous

 trajectory detection. In BMVC08, 2008.

[8] A. Datta, M. Shah, and N. Da Vitoria Lobo. Person-on-person violence

 detection in video data. In 16th International Conference on Pattern

 recognition, volume 1, pages 433–438, 2002.

[9] Robert Fisher, Barbara Majecka, Gurkirt Singh ,

 http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING

 © 2009 Robert Fisher, last accessed May 12, 2010

http://www.scotcrim.u-net.com/researchc2.htm
http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING,

56

Bio data:

Name : Gurkirt Singh

Father Name: Rakha Singh

Degree: Bachelors‟ of Technology

 in Electronics and instrumentation.

Area of Interest: Computer Vision

 and Robotics.

Email: gurkirt_singh@yahoo.in

 and guru094@ gmail.com.

Ph. +91-9790369110 and

 +91-9464740436

Permanent Address:

 Vill. Padarth Khera ,

 P.O. Dabhi tak Singh,

 Teh. Narwana, Disst Jind,

 Haryana (India). 126116

