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Abstract 

 
This dissertation describes a B.Tech project for which the purpose was to 

develop a system that could be used for automated surveillance. The main 

novelty is the use of a vertical camera. The project investigates whether such a 

system can effectively detect the moving objects, track their trajectories, and 

use these to recognise anomalous events. A vertical camera is used to capture 

continuous video for detection, which involves low level of image processing to 

detect the objects and stores their properties and positions. The tracking 

program is used to track the person and form a trajectory from the detector 

output file. The tracking program produce the file of tracked persons 

trajectories, all trajectories  have different lengths depending upon how much 

time the person stays in view of camera. Normally a person stays in view of the 

camera for 10 to 15 seconds. To describe each trajectory with an equal number 

of attributes Spline fitting algorithm is used, which gives the six control points 

for each trajectory. The detection of anomalous behaviour is described by 

different number of parameters like error in spline fit, vector distance from 

closest mean vector and multivariate Gaussian probability.     

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

Table of Contents 

 

i. List of Figure  ...................................................................................... vii 

ii. List of Table ......................................................................................... ix 

Chapter 1 Introduction ......................................................................................  1 

1.1 Motivation ...................................................................................................  1 

1.2 System Objective  ........................................................................................ 2 

1.3 The Forum ...................................................................................................  2 

 

Chapter 2 Background  ...................................................................................... 4 

 

Chapter 3 System Overview  .............................................................................. 5 

3.1 Detection  ..................................................................................................... 5 

3.2 Tracking  ...................................................................................................... 8 

3.3  Representing Trajectories as Spline  ........................................................... 8 

3.4 Abnormality Detection  ............................................................................... 8 

 

Chapter 4 Tracking ............................................................................................  9 

4.1 specification  ................................................................................................ 9 

4.1.1 Merging and Splitting  ......................................................................... 12 

 4.1.2 Disappearing  ...................................................................................... 13 

4.1.3 People as Separate Blobs ....................................................................  13 

4.2 Design  ....................................................................................................... 13 

4.2.1 Corresponding Person and merging  ................................................... 13 

 4.2.2 Splitting  ............................................................................................. 15 

 4.2.3 Splitting .............................................................................................  15 

       4.2.4 People as Separate Blobs  ................................................................... 15 

 4.2.5 Core Algorithm  ..................................................................................... 16 



vii 
 

         4.2.6 Calculations  ...................................................................................... 22 

               4.2.6.1 Velocity  ................................................................................... 22 

               4.2.6.2 Predict Position  ....................................................................... 22 

               4.2.6.3 Radius  ..................................................................................... 23 

               4.2.6.4 Probabilities  ............................................................................ 24 

                      4.2.6.4.1 Prediction Error Probability ..........................................  24 

                      4.2.6.4.2 Histograms Probability  ................................................. 25 

                      4.2.6.4.3 Angles Probability ........................................................  25 

4.3 Removing Bad Trajectories   ..................................................................... 26 

4.4 Implementation  ......................................................................................... 29 

4.5 Output File Description  ............................................................................ 30 

4.6 Evaluation  ................................................................................................. 30 

 

Chapter 5 Representing Trajectories as Spline ............................................  35 

5.1 Specification  ............................................................................................. 35 

5.2 Design .......................................................................................................  35 

5.2.1 Choosing Control Points  ..................................................................... 35 

5.3 Implementation  ......................................................................................... 37 

5.4 Output File Description  ............................................................................ 37 

 

Chapter 6 Abnormality Detection ..................................................................  39 

6.1 Overview  ................................................................................................... 39 

6.2 Building the Model  ................................................................................... 40 

6.2.1 Calculations  ........................................................................................ 41 

5.3 Choosing Parameters  ................................................................................ 44 

5.4 Implementation  ......................................................................................... 51 

5.4 Results  ....................................................................................................... 51 



viii 
 

Chapter 7 Conclusions and Future Work  ..................................................... 53 

References  ......................................................................................................... 54 

List of figures 

S.No. Index No. Name Page No. 

1 1.1 The view from the camera. 2 

2 1.2 Entry and exit points 3 

3 3.1 Detected points on 4
th

 January 2010 7 

4 4.1 An example of two persons merge 10 

5 4.2 An example of two person split 10 

6 4.3 An example of a person disappearing and 

another person appearing at the same time 

11 

7 4.4 An example of one person being detected as 

several blobs 
11 

8 4.5 A simple scenario of people walking together 12 

9 4.6 Bhattacharyya distances between histograms 

of the same and different people. 
14 

10 4.7 The distribution of prediction errors 25 

11 4.8 The marginal area where trajectories have to 

start and end. 
28 

12 4.9 Block Diagram of Tracker program 29 

13 4.10 Single person trajectory 31 

14 4.11 Example of merging and splitting condition 31 

15 4.12 Example of disappearing 32 

16 4.13 Tracked object for 4
th
 January 2010. 33 

17 4.14 Image plot of all the detection points after 

tracking using all trajectories (65529). 
34 

18 5.1 Variation of Median fitting error with number 

of control points 
36 



ix 
 

19 5.2 Spline curves for 4
th

 January 2010 38 

20 6.1 An example training cluster 40 

21 6.2 Variation of number with the variation of 

spline fit 
41 

22 6.3 Variation of vector distance to closest mean 

vector.   
42 

23 6.4 Variation of numbers on each log(probability 43 

24 6.5 Variation of false positive  and false negative 

at different values of spline fit error threshold 
45 

35 6.6 Variation of false positive and false negative at 

different values of spline fit error threshold  
46 

36 6.7 variation of false positive and false negative at 

different values of log(probability) threshold 
46 

37 6.8 Examples of false negative trajectories 47-48 

38 6.9 Examples of false positive trajectory 48-49 

39 3.10 Clusters those are modelled (107) 51 

40 3.11 Shows four different clusters for different 

paths 
52 

 

 

 

List of Tables 

S.No. Index No. Name Page No. 

1 4.1 The failure rate of correct identity 32 

2 6.1 Shows equal error rate for each parameter 47 

3 6.2 Thresholds values at best equal error rate for 

training. 
47 

4 6.3 Shows number of trajectories in all 169 

clusters present from total 65529 trajectories 
49 



 

 



 

1 
 

Chapter 1 
 

Introduction 
 

 

1.1 Motivation 
 

Video surveillance has been used for many purposes like crime prevention, 

traffic monitoring, transport safety and industrial process monitoring. There are 

up to 4.2million CCTV (Closed Circuit television) cameras in Britain - about 

one for every 14 people in 2006 [1]. These cameras can be used to gather 

information by observing the behaviour of objects and for security reasons or 

for other process. However, the main use of surveillance systems is to provide a 

safer environment through detection or even prevention of dangerous situations 

and crimes. These cameras are used at public places to provide help and safety 

in case of any accident, suicide attempts, assault, thefts or fight. CCTV cameras 

have other benefits also like reducing the fear of crime and helping police to 

obtain evidence in criminal cases. After installation of CCTV cameras in 

Glasgow city centre overall crimes fell by 3156, crime of violence by 230, fire 

raising by 57, offences of petty assault, breach of peace and drunkenness by 

272, and vehicle offences by 318 [2]. According to same source CCTV cameras 

has different perception by peoples 72% thought CCTV would prevent crime 

and disorder, 81% thought it would be effective in deterring perpetrators and 

79% thought it would make people feel they would be less likely to become 

victims of crime.  

 

        A large number of cameras are needed to ensure the good coverage of area 

[3]. One operator can watch at most four screens at a time, so good surveillance 

require a lot of operators to watch multiple screens. And operator needs breaks, 

so continuing surveillance is impossible with a small number of operators. Also 

sometime operators suffer from boredom which decreases their level of 

attention [4]. Manual surveillance systems are more expensive and vulnerable to 

errors. Therefore it is beneficial to improve visual surveillance by automating 

some of the tasks performed by operators. In particular, abnormal or suspicious 

behaviour should be detected and the operator‟s attention directed to particular 

video clip [5]. 
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1.2 System objectives 

 
 The project investigates whether such a system can effectively detect moving 

objects, track their trajectories, and use these to recognise anomalous events in 

the Informatics Forum area. A camera pointing vertically downwards towards 

the ground floor is used to capture continuous video for detection. A tracking 

program is used to track the person and form a trajectory from the detector 

output and produce trajectories of persons. The trajectories are used as input to 

the final model which detect the abnormal behaviour. The system was 

implemented to ensure the efficiency to cope with change in environmental 

conditions, also problems with detector. The system was built on two platforms, 

C++ and Matlab. 

 

1.3 The Forum 
 

The Forum is one of the University of Edinburgh buildings located on the 

Central Campus. The camera is mounted on the ceiling, camera pointing 

vertically downwards towards the ground floor. An example image obtained 

from the camera is shown in Figure 1.1. The image covers most of the main 

hall.  

        
 

Figure 1.1: The view from the camera. 
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There are many entry and exit points in Forum, those are shown in image given 

below figure 1.2.  Entry and exit points are given serially: {Auditorium big gate, 

cafe, stairs, elevator, night exit door, robot lab small door, robot lab big door, 

vision lab door, servitor box, reception, Main entry (11+12), auditorium small 

door }. These entry and exit points will be used in chapter 6.  

 

 
 

Figure 1.2 Entry and exit points. 
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Chapter 2 

 

Background 

 
This project is improvement to previous work by Barbara Majecka [4] at 

University of Edinburgh. Automated surveillance has been a very popular 

research field in recent years. A vast range of techniques have been developed 

for different parts of surveillance systems. There are many techniques proposed 

by different people. 

 

Incorporating techniques based on local motion descriptors can provide more 

precise information about the types of actions performed by a given target (e.g. 

running or fighting [6]). Techniques based on trajectories are the most 

appropriate for this project. Among them, the simplest are those that form a 

geometric representation of the raw trajectory data [7]. In [8], the full 

trajectories are approximated by cubic spline curves with seven control points. 

In this way, each trajectory is represented by the same number of   – the control 

points and the duration of the object‟s existence in the scene [7]. 

 

     I start the work from tracking. Collection of detection data was started by 

Barbara Majecka. There are many changes to the tracker which are explained 

further in this thesis.  
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Chapter 3 

 

System overview 
 
 

The project consisted of four subtasks: 

 

1. Detection of moving objects 

2. Tracking objects 

3. Representing trajectories as spline 

4. Abnormality detection 

 

Each of these subtasks was implemented as a separate component of the system. 

 

3.1 Detection 
 

The efficiency of the detection application was crucial because it determined the 

maximum capture rate of video footage that would be used by the whole 

system. The greater this rate, the more accurate the tracking could be, allowing 

the detection of anomalous behaviour to be more successful. In order to allow 

the frequent capture of live images and to minimise the amount of data stored, 

the detection and tracking processes were carried out separately. The detection 

focussed only on the extraction of the basic information, including bounding 

boxes and colour histograms of the detected objects. At each new frame, this 

information was used to update an appropriate file.  

 

      Detection overview  

 

The detector component was developed by Barbara Majecka as her MSc 

project. A brief summary of the detector is described here. The purpose of the 

detector is to segment each image obtained from the camera into two sets of 

pixels:  foreground and background. The background is not completely constant 

throughout a day. The main changes to the background are caused by: 

 

• Reflections from the ground (due to sunlight in building) 

• Shadows (due to artificial lighting near staircase) 
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• Changes in the ambient lighting (weather, time of day, and use of artificial 

  light sources and their position) 

 

    

   There were many methods compared to choose the best one to overcome all 

these problems. Those methods are as following. 

 Background subtraction 

 Constant background updating 

 Background subtraction using chromaticity coordinates 

 Background division using chromaticity coordinates 

 Principal Component Analysis 

  The background subtraction technique performed very badly. The constant 

background updating technique copes with changes in overall lighting 

conditions and constant objects. Unfortunately, this method has some problems 

too. The background subtraction using chromaticity coordinates was not able to 

cope with shadows. The background division using chromaticity coordinates 

performed similar to the  previous technique. The principal component analysis 

technique gave very good results so it was chosen. 

    

    The model of the background image was built by using the Principal 

Component Analysis.  A set of 50 background images was gathered and used to 

build the mean image by using Principal Component Analysis. This technique 

required to choose two parameters: the number of eigenvectors used in the 

model and the threshold. These parameters were chosen by number of 

experiments. 

      

      Greater efficiency of the detection process was achieved by implementing it 

as a multithreaded C++ application. There were different tasks in detection 

process: Fetching image, Obtain a binary image, Label image, Append frame 

information to output file. To implement these tasks different threads were used. 

More can be read in [4]. The detector produced one output file for each day.   

The following description is from the project web page summary. 

 

    Description of output file [7]:  Each file contains one or more header 

lines: BEGIN TTT where TTT is the "number of seconds since (00:00:00 UTC, 

January 1, 1970)". Then, for each frame thereafter in which a target is 

detected there is a line F M T where T is the time since the start of this file in 

0.1 second units and M is the number of the downloaded frames since the start 

of the program. Due to occasional detector program crashes, there may be more 

than one BEGIN statements and even the occasional reset without the BEGIN, 

which can be seen by the M and T values restarting. For each frame, there are 

one or more detected blobs. Each blob is encoded on one line in the file in the 
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form: [blob id]: [number of pixels] [x_center] [y_center] [x_top_left] 

[y_top_left] [width] [height] HISTOGRAM. The blob ids are notional and the 

same target in the next frame may have a different blob number. The number of 

pixels is a count of the pixels that are detected as being foreground inside the 

bounding box. The (x_center,y_center) is the center of mass of the foreground 

pixels. The bounding box is defined from the pixel (x_top_left, y_top_left) at 

the top left with the given width and height. The color histogram bin order is 

rgb : 000, 001, 002, 003, 010, 011,012,013,020,...,033,100,...,133,200,...233, 

300...333, where indices 0,1,2,3 cover the ranges given above. So bin 032 

means red range 0, green range 3 and blue range 2.  

 

Figure 3.1 shows the detected objects on 4
th
 January 2010 which will used later 

in this thesis. 

 

 
Figure 3.1 shows raw detected objects on 4

th
 January 2010. 
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3.2 Tracking 

 

The files written out by the detection process are used as input for the tracker to 

infer trajectories of each object. The tracker needs to deal with different 

scenarios, including merging silhouettes of people. Also, it has to cope with 

imperfect detections. The trajectories constructed contain sequences of position 

coordinates of a particular object together with times at which the coordinates 

were sampled:  

 

{(x1,y1, time1), (x2,y2, time2), ..., (xN,yN, timeN)} 

 

The full sequences have different lengths N due to the different lifetimes of 

objects within the scene. The tracking process is described in chapter 4. 

 

3.3 Representing Trajectories as Spline 
 

The trajectories are approximated by cubic spline curves and represented by the 

vectors of their control points of same length. The average error of the spline fit 

to the tracked trajectories was calculated to decide the number of control points. 

When the behaviour of a person is very much abnormal, and then based on 

average error of spline fit to tracked trajectory, we can say it is abnormal 

behaviour. But this approach cannot detect all abnormal behaviours, So we need 

more parameters to check the abnormality of trajectory, those are described in 

next component. The fitting spline process is described in chapter 5. 

 

3.4 Abnormality Detection 

 
This process describes the modelling of detection of abnormal trajectories. Each 

trajectory is represented by 6 control points. And clusters were chosen from 

entry and exit points. For each cluster a mean vector and covariance matrix was 

determined to calculate the probability for each trajectory belonging to the 

cluster. Vector distance was calculated for each trajectory to the closest mean 

vector or mean vector of the belonging cluster.  Thresholds were chosen 

experimentally for vector distance, logarithm of probability and spline fit error. 

Four conditions were chosen to detect the abnormal trajectory. Based on these 

conditions trajectories were flagged as anomalous.    
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Chapter 4 

 
TRACKER 

 

 

 

4.1 Specification 
 

The detector output file is fed to the tracker process to get trajectories from 

detected objects. Each trajectory is represented by a sequence of centre 

positions with time when the object was detected at this position. To detection 

of abnormal behaviour time is very important. Different trajectories can have 

different lengths even if they start at same entry point and ends at same exit 

point due to different lifetime of trajectory.     

  

    The tracker component makes a distinction between the notions of a person 

and a blob: 

 

Person is a tracked real object that appeared in the scene. 

 

Blob is an area of 8 point connectivity labelled as foreground by the       

detector. 

 

Each person has a unique identity based on the size and colour histogram. 

Deciding which person corresponds to each blob in a given frame is not a trivial 

task. There are several problems that the tracker has to overcome: 

 

  1. Several people could merge together when walking side by side, and 

therefore they could be represented by a single blob (Figure 4.1). 

 

2. A group of people, represented in one frame as a single blob could split in the 

next frame producing multiple blobs (Figure 4.2). 
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In  each figure 

Circles represent blobs (which are inputs to tracker component).  

Colours represent people‟s identities. 

 Arrows represent the movement of person from one from to another 

 

 

 

                            
 

(a) Actual scenario: two people 

merge.         

(b) Failed tracking: the red person is    

judged to have disappeared. 

 

Figure 4.1: An example of two persons merging (figure copied from [4]). 

 

 

                
 

 

(a) Actual scenario: Two people 

split. 

 

 

 

 

(b) Failed tracking: Red blob is 

judged as new person but person 

was there in last frame, here tracker 

should copy trajectory of green to 

red and assign red to a  new person . 

 

 

Figure 4.2: An example case of two persons split (figure copied from [2]). 
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3.  For some people the detection process could fail completely causing the 

person to disappear for a few frames (Figure 4.3). 

4.  Some parts of a person‟s body may not be detected resulting in the 

person being represented by several disjoint blobs (Figure 4.4). 

 

 

 

                  
 

(a) Actual scenario. Green person 

not detected in second frame.  

 

 

 

 

 

 

(b) Failed tracking: The blob that 

appears in the second frame is 

chosen as green but that should be 

the new person. In the third frame 

green is assigned as new person. So 

tracker should allow a person to 

disappear for a few frames. 

 

 

Figure 4.3: An example of a person disappearing and another person appearing 

at the same time (figure copied from [4]). 

 

  

   
(a) Actual scenario: a 

single person is 

detected as separate 

blobs in the second 

frame. 

 

(b) Failed tracking: 

the second frame is 

assumed to contain 

three people, two of 

who appeared only in 

that frame? 

 

(c) Failed tracking: all 

Three frames are 

assumed to contain 

three people. In the 

first and the third 

frames the people are 

merged together. 

 

Figure 4.4: An example of one person being detected as several blobs(figure 

copied from [4]). 
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4.1.1 Merging and splitting 
 

Occlusions possibility is very less due to perpendicular positioning of camera 

but not zero there is very less occlusions is still present. These situations are the 

most common on the edges of the scene. Therefore, it is possible that people 

could enter into the scene as  merged (two or many people represented by a 

single blob) and then split into several blobs when they come closer to the 

centre of the scene and again merged together in a single and once again split 

into many at the end. Such a situation is depicted in Figure 4.5. Figure 4.2b 

shows an undesirable tracking behaviour: the merged people are recognised as a 

single person, and a new blob that appears after the splitting is assigned a new 

identity with a trajectory starting in the middle of the floor. The tracker should 

not allow this; it should try to reason about where the new blob came from and 

create new person with same trajectory, so you have two trajectories of these 

two person and last points are added those are different. 

      

       
  

Figure 4.5: A simple scenario of people walking together. Two people enter the 

scene merged together. They split before middle, merge again,walk together, 

split again and walk away from each other, and then merge again before leaving 

the scene[Figure copied from 4]. 
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4.1.2 Disappearing 
 

It is showed in evaluation of the detector [in [4]] component sometimes a 

person is not detected for a few frames. The tracker should be able to cope with 

this problem. It should allow a person to disappear for few frames (4 or 5). It 

should not terminate the trajectory of person as if it disappears for very few 

frames.  Also tracker should identify the correct person when that person 

appears after disappearing for a few frames. It should terminate a trajectory if it 

decides that there is a high probability that the person has left the scene or if the 

person has been disappeared for a very large number of frames. 

 

4.1.3 People as separate blobs 
 

12% of people are represented by the detector as disjoint blobs [4]. This causes 

several problems. If these blobs are recognised as separate people then the 

merging and splitting rules will be applied. This way, many redundant 

trajectories could be produced. There would be more than one trajectory instead 

of one trajectory which will cause detecting the abnormal behaviour and also 

increase the size of output file. Only one among these trajectories should be 

preserved. 

 

4.2 Design 
 

The tracker keeps a list of all the people currently being tracked. It updates their 

trajectories one frame at a time by processing the file provided by the detector. 

Because one person can be represented by multiple blobs and one blob can 

represent multiple people, an M-to-N relationship has to be preserved in the 

program. Therefore, at every frame, a list of detected blobs is kept as current 

frame data, and for each blob is stored a list of the people represented by it. A 

copy of all current blobs is kept as in current frame data copy variables to use in 

merging condition.  

 

4.2.1 Corresponding Person and Merging  
 

Check the every blob for people currently being tracked finds the corresponding 

blob for that from the current frame data for every frame. For each new frame 

data person perform the following tasks. 

 

A. Get Velocity  

B. Predict Next Position 

C. Predict Radius 
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After calculating velocity, expected position and radius, we check all the blobs 

one by one. For each blob from current frame, calculate the Bhattacharyya 

distance between the person‟s histogram and the blob‟s histogram. Then check 

if the blob is in the area of person the being tracked by using expected position 

and predicted radius. Also check if Bhattacharyya distance  is less than a 

threshold. The threshold is chosen from a number of experiments as in figure 

4.6. I have chosen the threshold 0.48 to allow the variation in Bhattacharyya  

 

 
 

Figure 4.6- Comparison of 

Bhattacharyya distances between 

histograms of the same and different 

people. The former is shown in red 

and the latter in blue colour (figure 

copied from [4]). 

 

 

 

 

 

 

distance due to every  time update in histogram of person being tracked. The 

most probable person is chosen by calculating the probability for each blob that 

is are in area of the person and for which the Bhattacharyya distance is less than 

the  threshold. 

 

      When a person merges with any other person in that frame we will have less 

blobs. In this condition we check all the blobs again for the person who has 

merged. Person who has merged with other person will seem to have 

disappeared, So we will check all the blobs only if the trajectory of the person 

has 6 or more points to ensure that the person is being tracked from the last 6 or 

more frames because the person who has disappeared could be appeared just in 

or two frames. Sometimes one person can produce two or three blobs as in 

problem number 4 (figure 4.4) as in that condition we can‟t say the person has 

merged. 

 

      After choosing the corresponding blob we need add the blob to trajectory 

and update the person‟s properties and histogram. Properties include [Average 

size,  Average width,  Average height ] and the colour histogram is averaged  to 

write out at the end, and another histogram is updated  to use finding the 

corresponding person and Bhattacharyya distance. 
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4.2.2 Splitting 
 

Two people, merged in the previous frame and split into separate blobs in the 

next frame is the splitting condition. Problem number 2 describes it very well 

with figure 4.2. So every time when adding a new person from the remaining 

blobs that are not chosen by any person, check all remaining  blobs if they had 

split from other persons. If, yes then copy the trajectory of the corresponding 

person to the blob which is added as new person as the trajectory of the 

corresponding person is copied at the end when writing the trajectory of the new 

person. When a person splits then we have two persons with the same trajectory 

and then the last points are added to the trajectories of these two Persons, so we 

have two Persons with exactly the same trajectory but the last points of these 

trajectories differ.  

 

4.2.3 Disappearing  
 

To overcome disappearing, I allow the person to disappear for 4 frames and a 

maximum of 1300 milliseconds and also check if the predicted position is out of 

boundaries of image. In this case if the person has disappeared, then we will 

write its trajectory to a final variable after checking if trajectory is right. 

 

4.2.4 People as separate blobs 
 

A single person can be detected as multiple blobs, which results in a new person 

added to the list of current persons being tracked. But in the next frame person 

or after two frames the person is again detected as a single blob. This will lead 

us to a merging condition. As described earlier if the trajectory of a person has 6 

or more points than only the merging condition is applied and all blobs are 

checked again. This mean the new person will not find any new point to add to 

the trajectory, so automatically these trajectories will not pass the right 

trajectory test which means a trajectory should have a minimum of 15 points to 

write it out. 
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4..5 The Core Algorithm  
 

The high level algorithm is illustrated by Pseudo code 1. 

 

Where:   

 

Trajectories of the current persons being tracked are stored in curr_Data. 

 

Histograms of current persons being tracked are stored curr_Histgram. 

 

Properties of current persons being tracked are stored curr_Properties. 

 

Current frame blob‟s [CentreX, CentreY, Frametime] as curr_frame_Data. 

 

Current frame blob‟s histogram as curr_frame_Histogram. 

 

Current frame blob‟s properties as curr_fram_Properties. 

 

 curr – stands for current. 

 

              Track is final variable where we store all good trajectories. This is 

written to a file along with them final Properties and their final averaged 

Histogram 

 

 Code of tracking can be downloaded from [9] 
http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/. 

 

 

 

 

 

 

 

 

 

http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/
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Pseudo code 1:  The tracking algorithm (high level)                                                      

  
%%%%%%%%%%%%% Program Starts %%%%%%%%%%%%%%% 

Initialization of variables  

  
FOR EACH frame in file  

 

curr_frame_Data = getframedata();       

          %%%%%%%% ---- Step 1---%%%%%%%% 

 

         FOR EACH person in list 

                    %%%%-- Step 1.1 --%%%% see next page for more details 

                   chosen = Findcorrespondingblob( curr_Data, curr_frame_Data ); 

                    If chosen 

                                Addcorrespondingblob(curr_Data, curr_frame_Data(chosen)); 

                   End 

 

                   %%%%-- Step 1.2 --%%%% 

                   EleseIf   IsItTime_to_Write_Trajectory 

                                 Save to Track (curr_Data) 

                   END   

                

                   %%%%-- Step 1.3 --%%%% 

                   ElseIf  IsItMerged 

                                 Find_and_add_blob(curr_Data, curr_frame_Data_copy); 

                   END 

        END 

 

        %%%%%%%%--- Step 2 ---%%%%%%%% 

 

        FOR EACH remaining blob       // those are not chosen by any person 

 

                  FindCorrespondingPerson(Remaining_curr_frame_Data, curr_Data ); 

                  MakeCopyOfCommonPoints(); 

         END  

 

         %%%%%%%%--- Step 3 ---%%%%%%%% 

   

         FOR EACH person who has disappeared 

                             Remove(curr_Data) 

         END 

END 

 

        %%%%%%%%--- Step 4 ---%%%%%%%% 

 

       WriteOutFile(OutFilename,Track, Properties, Histogram) 

 

%%%%%%%%%%%%% Program Ends %%%%%%%%%%%%%%% 
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Pseudo code 2 Step 1.1:   Choose corresponding blob                                    

 

%%%%%% Step 1%%%%%%%%% 

 

FOR EACH person in list 

 

            Velocity = getvelocity(curr_Data) 

 

            PredictedPosition = predictPos(curr_Data,velocity,frametime) 

  

            Radius = PredictRadius(curr_Data Velocity,framtime,MinRadius) 

      

            FOR EACH blob in current_frame_data 

 

                   HistDistance=Bhattacharyya(curr_Histgram,curr_frame_Histogram); 

 

                    IF Isinarea(PredictedPos,Radius, curr_frame_Data) && HistDistance<threshold 

 

                               Probability=getProbability(curr_Data,PredictedPos........); 

 

                   END 

 

             END   

 

      Chosen= getMostProbableblob(probability); 

 

            %%%% adding chosen blob to person‟s trajectory %%%%%% 

             IF chosen 

                  curr_Data=Addcorrespondingblob(curr_Data, curr_frame_Data(chosen)); 

                  curr_Histgram=UpdateHistogram(curr_Histgram, curr_frame_Histogram); 

                  curr_Properties=UpdateProperties(curr_Properties, curr_frame_Properties); 

             END 

%%%%%%%/  Step 1 continued %%%%%%%%  
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Pseudo code 3 Step 1.2:   Saving trajectories                                  

 

%%%%%%%/  Step 1 continued %%%%%%%%  

 Time = frametime-Person_last_point_time; 

 

ELSEIF ( PersonHasDisappeared && Time >Maxtime &&  IsOutOfbound(curr_Data)) 

 

               IF personSplitted 

                    

                    Curr_Data=add( CommonPointsBeforeSplitting, PointsAfterSplitting) 

                                 %% common points are from variable these were copied in splitting part. 

               END 

 

              IF(IsTrajectoryRight(curr_Data)) 

 

                   Track{h,1} = curr_Data 

 

                   Properties(h,:)=curr_Properties; 

 

                  Histogram(h,:)=averaged_curr_frame_Histogram;  

                  h=h+1; 

              END 

              %% Removing the blob from list, So it will not be chosen by other persons  

              %% and increase the speed of program. 

             Removeblobs(curr_frame_Data(chosen))  

END 

 

%%%%%%%/  Step 1 continued %%%%%%%%  
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Pseudo code 4 Step 1.3:   Two persons merged                              

  

 
   %%%%%%%  Step 1 continued %%%%%%%%  

   

  ElSEIF (TrajectoryLength>5 && Time>Maxtime ) 

  

 
            FOR EACH blob in current_frame_Data_copy 

 

                       HistDistance=Bhattacharyya(curr_Histgram,Curr_frame_Histogram_Copy); 

 

                       IF  IsInArea(PredictedPos, Radius,curr_frame_Data_copy 

                                                                                                        && HistDistance<threshold) 

 

                          Probability=getProbability(curr_Data, PredictedPos.......) 

 

                   END 

 

                   chosen= getMostProbableblob(Probability); 

 

             END   

       

            %%%% adding chosen blob to person‟s trajectory %%%%%% 

             IF chosen 

                       curr_Data=Addcorrespondingblob(curr_Data,  

                                                                                  curr_frame_Data_copy(chosen)); 

                       curr_Histgram= UpdateHistogram(curr_Histgram, 

                                                                                  curr_frame_Histogram_copy); 

                       curr_Properties=UpdatePpoperties(curr_Properties,  

                                                                                     curr_frame_PrOpperties_copy); 

             END 

 
%%%%%%%  Step 1 Ends %%%%%%%%%  

END 
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Pseudo code 5 Step 2:   Two person splits and adding new person                           

 
   FOR EACH remaining blob       // those are not chosen by any person 

     

                FOR EACH person in list 

 

                        HistDistance=Bhattacharyya(curr_frame_Histogram, curr_Histogram); 

 

                           IF  IsInArea(LastPointOfTrajectory,20,current_frame_Data_copy 

                                                                                                      && HistDistance<threshold2) 

      

                               Probability=getProbability(curr_Data, PredictedPos.......) 

 

                        END 

 

                        chosen= getMostProbableblob(Probability); 

                        MakeCopy(chosen); 

              END 

 

             AddNewPersons(curr_frame_Data) 

                 

  END  
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4.2.6 Calculations 
 

There are many calculations in the process of tracking. All are described here. 

   

4.2.6.1 Velocity. Every time a new point is added to a trajectory, the person‟s 

instantaneous velocity V is calculated at that point. Velocity is calculated as a 

weighted average of short velocity and long velocity. 

   

Short velocity:       Vs = 
Pos (n)−Pos (n−1)

𝑡𝑖𝑚𝑒 (𝑛)−𝑡𝑖𝑚𝑒 (𝑛−1)
 

 

 

Long velocity:      Vl= 
Pos (n)−Pos (n−3)

𝑡𝑖𝑚𝑒 (𝑛)−𝑡𝑖𝑚𝑒 (𝑛−3)
 

 

Velocity:                V =| 
Vs +Vl∗3

4
| 

 
In this way, I minimise the error caused by the “jumping” centroid point. This 

error is especially noticeable when different parts of a person‟s body are 

detected at each frame causing their position, as described by the centre of mass 

of all their pixels, to change significantly. At the same time, by choosing a small 

number of previous points, I still allow for rapid changes in the trajectory. This 

is important for detection of behaviour abnormalities. When a person walking 

normal both short and velocity are same, which is more often observed 

condition, but when stops and after spotting some time starts then short velocity 

comes plays good role because this will be used to predict the next position. 

           

           When a trajectory has only one point the velocity assigned 0, and when a 

trajectory has less than four points then the starting point is used in long rather  

velocity than pos(n-3).   

 

4.2.6.2 Predict position. Having the instantaneous velocity of the last point 

in the trajectory, the expected position is estimated as follows: 

 

Pos(n) = Pos(n−1)+V(n−1) × (time(n)−time(n−1)) 

 
The smaller the time difference, more accurate the predictions. After a longer 

time, the predictions could be inaccurate, and I therefore allow a person to 

disappear only for four frames. And most of the time prediction is very good. 

If trajectory has only one point then Pos(n) remain same as first position as 

velocity is 0. 
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4.2.6.3 Radius.  
 

The position prediction is not always accurate, therefore the prediction area 

should be large enough to allow for those errors, but at the same time small 

enough to avoid mistakes with other blobs. I chose the radius on the basis of the 

previous instantaneous velocity of the considered person. If the velocity of a 

person is known, the radius is chosen to be FACTOR = 1.5 times longer than 

the distance from the last position to the next predicted position. 
 
___________________________________________________________________ 

Pseudo code 6 Choosing the radius. 

Rafius= getRadius(Minraduis,minraduis,trajectory) 
{ 
IF (trajectory.hasOnlyOnePoint (trajectory)) 

             Radius =30; 

ELSE 

            Radius = velocity * time * FACTOR 

            IF (velocity< 1.5 Radius < 7) 

                 Radius = 7; 

           ELSE IF ( velocity<2.65  & Radius<12) 

                 Radius = 14; 

           ELSE IF (Radius<22) 

               Radius= minRaduis1; 

          ELSE IF (Radius<36) 

               Radius = MinRaduis; 

           END      

END 

} 

 

I experimentally determined the maximum speed at which a person can walk: 

MAX_SPEED = 26 pixels per 100ms [ 4 ]. Before the actual velocity of a 

person is known (i.e. when there is only one point in trajectory) the maximum 

velocity is assumed, so I assigned the radius 30 in very starting. When person 

walks fast, in few cases centroid point jump it could lead the point to shift 

nearly more than 30 pixels, so I used the minimum radius (MinRadius) 36. 

Third conditions is used to avoid mistakes when person walks at normal speed 

about 10 to 20, so I used chose the minimum radius 25 (MinRaduis1) in this 

condition. First two conditions are very useful to avoid stationary objects to be 

thetrajectory of any person. 
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4.2.6.4 Probabilities:  

 
 The Bhattacharyya distances Hnew from the figure 4.6 which show that there is 

a clear distinction between the people based purely on their colour histograms. 

However, the detection quality of some people varies from frame to frame, e.g. 

some lighter parts of their clothing might not be detected in several frames. This 

causes their colour histograms to differ, which: 

 

1. Increases the Bhattacharyya distance between a person and the same person 

in the previous frame, and  

2.  Raises the likelihood of confusing the person with another. 

 

Also, some people might simply wear very similar clothes, which additionally 

increases the difficulty of distinguishing them. Therefore, I have avoided 

relying purely on the colour histograms Hnew, I have also used the error of 

position prediction Errnew and angle between expected position and new point‟s 

position  from person‟s third from last position Angnew to estimate the 

probability of a blob representing a particular person Pi. Using Bayes‟ theorem: 

 

p(Pi |Hnew, Errnew, Angnew) =
p H𝑛𝑒𝑤,   Err 𝑛𝑒𝑤,   Ang 𝑛𝑒𝑤  P𝑖)p(P𝑖)

p(H𝑛𝑒𝑤,Err 𝑛𝑒𝑤,Ang 𝑛𝑒𝑤 )
 

 
I assume that  

∀i,j  p(Pi)=p(P j) 

 

∀i,j  p(Hi, Erri, Angi) = p(Hj, Errj, Angj) 

 

p(Pi |Hnew, Errnew, Angnew) = p(Hnew | Pi ) p(Errnew | Pi ) p(Angnew | Pi ) 

 

4.2.6.4.1 Prediction Error Probability. I define the error in position 

prediction as the distance between the predicted and the actual positions. I 

computed a histogram of error values for the position predictions of 25 people, 

which totalled 4059 samples. I chose the bins to have a width of one pixel [ 4 ]. 

The numbers in each bin were divided by the number of samples; using this 

maximum likelihood approach I obtained a likelihood measure for each bin. I 

then tried to fit different continuous distributions to this discrete distribution. 

The results are shown in Figures 4.6a–4.6b. Since the error values are positive, 

the Gaussian distribution was fitted to the error distribution plus its reflection 

about zero. Then the values of the Gaussian were multiplied by two and shown 

only for positive error values. The multiplication was necessary to ensure that 

the distribution would still integrate to one after removing half of it. I computed 

the negative log likelihood for each fitted distribution. The exponential 

distribution proved to be the best fit. 
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p(Errnew | Pi )=  𝑒−  λ×Err𝑛𝑒𝑤 
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          (a) Gaussian fit: NLL = 11.319×10000                                 (b) Exponential fit ( = 0.2762) 

 

Figure 4.7: The distribution of prediction errors [figure copied from 4]. 

 

 

I also checked wheter this distribution worked in other different condition. And 

found that value of lambda 0.18 works very good in most of the conditions, so I 

changed the value of lambda to 0.18.  

 

4.2.6.4.2 Histograms Probability. I approximate the probability distribution of 

the colour histograms using Bhattacharyya distance. Bhattacharyya distance it 

varies between 0 to 1. But it varies very much linearly which was not giving 

satisfying results, so varied it exponentially as given below. 

 

 

p(Hnew | Pi ) =  𝑒−  5×H𝑛𝑒𝑤 
 
Where - Hnew is Bhattacharyya distance. 

 

 

4.2.6.4.3 Angles Probability. I approximate the angle probability using a 

normal distribution. I calculated the angle between expected position and 

current blob position to choose from third position from last of trajectory. I 

gathered the 96 normal trajectories which gave 5457 samples of angles in 

radians and calculated the mean and variance.  Values of mean and variance 

came 0.008 and 0.1023 respectively, so I chosen the mean 0. But results were 

not satisfactory with this  variance value, and then I tried the trial and error 

method to find the correct value of the variance. I found 0.70 was very much 

satisfactory. I tried some big values more than 1 also but didn‟t work out, 

because with high values value of angle probability was negligible in front of 

other probabilities. 

In our case mean is zero. So:   p(Angnew | Pi )= 
1

 2𝜋𝜎2
𝑒
−

𝐴𝑛𝑔 2

2𝜎2  
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Where:       Ang is angle. 

                    𝜎 is variance(0.7). 

 

 Angle probability is very useful when two people walk parallel, so there is 

chance of confusion in error in position prediction probability and histogram 

probability because it does not vary much so we need another factor in these 

types of cases.  

 

4.3 Removing bad trajectories 

 
The detector and tracking components are not 100% accurate, so before writing 

the trajectory to file, we need to remove all those bad trajectories. Some of these 

may be recognisably incorrect, such as those falling into the following classes: 

 
1. Tracker can produce a bad trajectory as the result of a stationary object. 

Those  have more than 100 points, but all are concentrated in one small 

region. Normally successive points has very low distance, so I made 

another trajectory from original trajectory whose successive points have 

distance more than minimum distance ( 7 ). I repeated this process one 

more time with minimum distance (14). So we have two new trajectories 

different lengths (len2 and len3). I checked the change in length of the 

two trajectories and calculated the change in percentage as (per2). Also I 

calculated the change in percentage from original trajectory length (len1) 

and len2 as (per2).  To remove these bad trajectory if per1>55 than 

minimum percentage is chosen 40 else minimum percentage is chosen 75. 

Per2 should be more than minimum percentage. These parameters are 

chosen by number of trails and experiments. It is described in Pseudo 

code 7.  

  

2. Trajectories shorter than 15 points or len1< 15. These could represent 

spurious detections. 

 

3. Trajectories which start or end outside the marginal area of the scene. The 

marginal area is shown in Figure 4.7. These trajectories could be         

produced if  the detector did not detect a person in the initial or final          

frames. Also, the tracker could fail to notice that two people split and          

classify one of the resulting blobs as a new person in the scene. If they          

split outside the marginal area, the new person would appear out of           

nowhere. So these trajectories should be removed. 

 

Pseudo code 7 Remove Bad Trajectories 
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len1= length(trajectory); 

trajectory1=removeClosePoints(trajectory,7); 

len2=length(trajectory1); 

trajectory2= removeClosePoints(trajectory1,14); 

len3=length(trajectory2); 

per1=100*(len1-len2)/len1; 

per2=100*(len2-len3)/len1; 

IF per1>55 

   MinPer=40; 

ELSE 

  Minper=75; 

END 

IF(len1<15 || per2< MinPer || len3<10) 

    %%% bad trajectory 

      return false 

ELSE  

     Return true 

END 
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Figure 4.8: The marginal area (green) shows the region where trajectories have 

to start and end. The red area shows the region next to the lifts where the 

trajectories were removed [ figure copied from [2]]. 
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4.4 Implementation.  

 
The tracker was implemented in Matlab. Main variables like current data storing 

the trajectory of person being tracked and final variable storing all the 

trajectories are cell array in Matlab. The main structure of the program is 

illustrated by functions   in diagram shown in Figure 4.8.

Figure 4.9 Block Diagram of Tracker program 

 Main program Tracking 

%%%%%%%%                

Track;                                                  

Curr_Data;                                

Curr_farme_Data;                      

Histogram;                                    

Curr_Histogram;                                   

Curr_frame_Histogram;          

Properties;                            

Curr_Properties;                              

Curr_frame_Properties;              

getframeinformation();          

findCorresponding();                  

addblobtotrajectory();          

IsPersonDisappeared();            

IsMerged();                               

findblobformerged();                

addnewperson();                    

copysplittedtrajectory(); 

getVelocity() Returns 

velocity 

Writeout() 

fopen(filename,wt); 

fprintf(variables); 

IsTrajRight() Returns 

True or false 

predictPosition() 

Returns Expected 

position. 

 

IsinArea() Returns 

true or false  

getprobability() 

Returns probability. 

predictRadius() 

Returns Radius 
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4.5 Output File Description. 
 

  These files contain sets of detections that have been tracked together into a 

single target's trajectory. Tracker files start with "% Total number of 

trajectories in file are [Number]", where Number defines the number of 

trajectories. Files contain the information in the form of a Matlab structure. 

The trajectory points and the properties are in two different variables with 

same identifier. Each trajectory has a different identifier like "R1" for 

trajectory number 1 and "R2" for trajectory number 2 and so on. The first 

variable is  Properties.{Identifier}= [ Number_of_Points_in_trajectory,             

Start_time, End_Time, Average_Size_of_Target, Average_Width,  

Average_height,  Average_Histogram ];. The histogram has the same format 

as in the detection file. The second varible contains the full trajectory 

as TRACK.{Identifier}= [[ centre_X(1) CentreY(1) Time(1)] ; [ centre_X(2) 

CentreY(2) Time(2)] ........ and so on .......... until ........ [ centre_X(end) 

CentreY(end) Time(end) ]];. The size of tracked files is about 1MB each.  

These files can be downloaded from [7]. 

 

4.6 Evaluation.  

 
The evaluation of the tracker was carried out on 5 categories with 60 trajectories 

from day. Results were very satisfactory. Results are shown  given below 

category wise. 

 

1. When there is only person in frame: 

Total number of persons in scene:  41 

Number trajectories preserved:       41 

 

In case of single person in scene tracker performed very well. An 

example of single trajectory is shown in figure 4.9. 

 

2. When there were people walking  closer together. 

Number of persons: 3  

Trajectories preserved: 4 

 

This is the scenario of merging and splitting, so one trajectory is 

produced redundantly, because sometime these persons were represented 

by separate blobs. An example of this is shown in figure 4.10. The tracker 

performed very well in when there were only two people in the scene.  
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Figure 4.10: Single person trajectory 

 

 
Figure 4.11: Example of merging and splitting condition. 
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3. When a person disappears for a few frames. 

Number of people disappear more than 2 frames: 11   

Number of trajectories preserved: 9. 

 

One person disappeared more than 5 frames, so the trajectory terminated. 

An example figure of disappearing is shown in figure 4.11. 

 
Figure 4.11: Example of disappearing. Red circle shows where a person 

disappeared for 3 or more frames. 

 

4. Failure rate 

 

Tracker performed very well, but still it fails in some situations like there 

is merging and splitting. Sometime it fails to identify correct blob after 

merging and splitting. 

 

#people #merging and splitting # correct identity 

reassignment 

%failure rate 

2 2 2 0% 

3 4 3 25% 

total 6 5 16.6% 

Table 4.1.  The table shows the failure rate of correct identity 

reassignment. 
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Overall performance of tracker was very satisfactory. All trajectories of  Jan 04 

2010 are  shown in figure 4.13.  

 

 
 

 

Figure 4.13 Tracked object for 4
th

 Jan 2010. These are same day trajectories 

corresponding to detected objects shown in figure 3.1. 
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Figure 4.14: This figure is image plot of all the detection points after tracking 

using all trajectories (65529). The colour varies from dark blue to dark red 

through light blue, green and yellow with the variation of number of detected 

point at that point. It tells us where people go most of the time. Colour 

represents the density of visiting at a particular point. As we can see from the 

figure most of the people go from the main entry to the stairs and vice versa. 

Also density near the elevator is high, because people waiting for the elevator. 

Density is high near all main entry and exit points like vision lab door, robot lab 

door, night exit door, and near reception. 
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Chapter 5 

 
Representing Trajectories as Spline 

 

5.1 Specification  

 
Trajectories have different numbers of points which makes it difficult to 

compare them. In order to represent them using the same number of attributes, 

each trajectory was approximated by a cubic spline curve with 6 control points. 

The fitting algorithm and its implementation were provided by Rowland R. 

Sillito [6] . 

 

5.2 Design  
  

First Spline read all the trajectories from tracker file. The trajectories produced 

by the tracker have point X and Y positions. So all these trajectories are 

transformed in 0 to 1 range both X and Y. After pre-processing according to 

number of control points a spline fit to each trajectory. The  average error of the 

spline fit to the tracked trajectories is calculated assigned as deviation to each 

trajectory. With abnormal behaviour deviation also increases. 

 

 

5.2.1 Choose Control Points 
 

I chosen the number of control points based on the average error of the spline fit 

to tracked trajectories I used 2343 trajectories, and took the median of deviation 

of all the trajectories for different number of control points and plotted it as 

shown in figure 5.1. 

 

Number of control points was chosen 6, after 6 there was very small change in 

deviation. And also when number of control points is 6 deviations is about 1% 

of image width. Trajectories used (2343) to calculate meadian also include the 

bad trajectories.   
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Figure 5.1 Variation of Median fitting error with number of control points. 

 

 

The high level algorithm is illustrated by Pseudo code 7. 

 

Pseudo code 7 Fitting Spline 

 

Trajectories=readTrackerFile(); 

 

FOR EACH Trajectory 

 

              [x y]= transformTrajectory(trajectory); 

 

              ContolPoints= splinefit(x,y,numberOfControlPoints); 

 

              [Xr Yr]= constructSpline(x,y, controlPoints,LengthOfTrajectory); 

 

               Deviation =getdeviation(x,y,Xr,Yr); 

 

              writeOutput File(Deviation,ControlPoints); 

END 
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5.2 Implementation 

 

Spline is implemented in Matlab. Splinefit was developed by Rowland R. 

Sillito. Other experiments related to spline were also done on Matlab like 

choose number of points. 

 

5.3 Output File Description  

 

These files contain sets of 6 point spline descriptions of the tracked 

trajectories. The spline file contains the average error of the spline fit to the 

tracked trajectories, and the control points. This is for each trajectory 

produced by tracker with same identifier as tracker. The first line of spline 

file is "% Total number of trajectories in file are [Number]", where Number 

defines the number of trajectories. "X and Y are normalized by dividing 640 

and 460 respectively" and "Image size is 640*460". Normalization is done 

because the spline fit works for variables in the range [0,1], so we 

transformed the values of the trajectory points to fall into [0,1]. The file 

contains the information in the form of a Matlab structure. Identifiers of 

each spline are the same as given in the tracker file for the corresponding 

trajectory. Deviation and Control points are stored 

as Deviation.{Identifier}= [ Standard deviation ];. This is the average 

distance between the tracked point and the closest point on the spline. 

The control points are stored as: Controlpoints.{Identifier}= 

[[Controlpoint_x1 Controlpoint_y1]; [Controlpoint_x2 

Controlpoint_y2]........ and so on until six points ]]; 
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 Figure 5.2: This figure shows spline curves of all the trajectories shown in 

figure 4.13 on 4
th

 January 2010. 

 

 

 



 

40 
 

Chapter 6 

 

Abnormality Detection 

 

 
6.1 Overview 

 

 

The purpose of this model is to detect the abnormal behaviour from the given 

trajectory based on the multiple parameters. Spline is used to define all 

trajectories with same number of attributes (Control points). There are many 

step involved in the detection of abnormal trajectories. Trajectories provided by 

tracker component are fed to this component. There are three parts involved in 

abnormal behaviour detection 

 

1. Training dataset   was used for training the model (section 6.2) 

 

2. Training dataset for choosing threshold of parameters was used to 

choose the appropriate parameter for process of detection of anomalous 

trajectories (sub section 6.3).  

 

3.  Test dataset was used to evaluate the robustness of component (section 

6.5). 

 

According to figure 1.2 there are 13 entry and exit points, which means there 

are 13 possible paths from one entry point to other exit points (including entry 

point as exit point as a  path), so there are total 169 possible paths (which make 

169 clusters). I gathered the samples for each cluster to calculate the mean 

vector and covariance matrix for each cluster. 

 

    Choosing the classifier parameters was a difficult task, which required a lot 

of calculation and manual understanding. We were looking for multiple 

parameters for decision making, so it was difficult to choose parameters by 

observing manually. I used several possible combinations of parameter and set 

the threshold for each, which is described further in subsection 6.2.1. A 

trajectory is flagged abnormal if it met the criterion. 
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6.2 Building the Model 
 

I gathered the 60 samples for each possible path, 20 normal behaviour tracks 

were selected for each path for building the model of normal trajectories.  Paths 

where entry and exit points were same and paths where sufficient number of 

tracks for modelling (less than 20 normal tracks) was not available were not 

modelled, because 6 control points are represented by a 12 point vector, so a 

minimum 13 samples needed to calculate covariance matrix. There were 107 

clusters modelled, because only 107 out of 156 (excluding those clusters where 

start and end points were same) had 20 more tracks. If a trajectory starts and 

ends on same point or if it belongs to un- modelled path it is flagged as 

abnormal. From 20 training trajectories of a cluster, the mean vector of control 

points and covariance matrix were calculated. As shown in figure 6.1 all 

trajectories are very much similar except few are little different (e.g. Right most 

trajectory and one it‟s near) which allow little variation in normal behaviour.  

 

 
 

Figure 6.1 An example training cluster. Where training spline are in blue colour 

with their control points in black and red colour spline represent mean vector 

with green mean control points  
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6.2.1 Calculations  
 

There are three main calculations to compute the parameters. 

 

6.2.1.1 Spline Fit Error :  

 
Spline fit error is the deviation of spline curve to original trajectory curve. It 

was computed as given in equation 6.1.  

 

SFE=   (Traj𝑖 − Spline𝑖)2𝑙𝑒𝑛𝑔𝑡 ℎ
𝑖=1  

         Where:  Traj is original trajectory point 

                       Spline is spline fit curve closest point 

                       length is number of points in trajectory 

                        

 
 
Figure 6.2:  figure shows the variation of number with the variation of spline fit 

error most of the trajectories having a spline fit error of less than 0.01. 
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6.2.1.2 Vector Distance: 

 
With the samples of 107 clusters I computed 107 mean vector and 107 

covariance matrixes. Each mean vector contain 6 control points and length of 

vector is 12 as 6 X and 6 Y in each mean vector. Vector distance was computed 

between present trajectory‟s control points vector and closest mean vector. 

Matlab‟s norm function was used to compute vector distance. 

 

VD= norm(X-Mean) 

 

              Where: X is present vector  

                           Mean is mean vector 

 

 
Figure 6.3 shows the variation of numbers with variation of vector distance to 

closest mean vector.  Most of the trajectories have vector distance about 0.2. 
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6.2.1.3 Probability  
 

            Each trajectory is represented by control points, which gives us a 12 

point vector. This vector was used to calculated multivariate Gaussian 

probability. 12 dimensional Gaussian probability is computed for every 

trajectory as give below. 

  

P(x| µ,∑)   =   
1

 2𝜋 𝑘/2  | | 
1
2

𝑒−
1

2
 𝑥−𝜇 ′  −1(𝑥−𝜇 )

        

 

            Where    μ is mean vector  

                          ∑ is covariance matrix  

   

 

 
 

 

Figure 6.4: figure shows the variation of numbers on each log(probability). I 

took the log of probability because the spam of probability was very wide, 

which was not suitable for plotting. There are some trajectories whose log of 

probability minus infinity, because when log of probability is less than -744, 

then Matlab round it to minus infinity.  
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6.3. Choosing Parameters Threshold 
 

I gathered another training dataset of 535 trajectories (5 from each cluster those 

were not used in building the model) for choosing the appropriate threshold of 

parameters. First I looked on all trajectories and labelled the bad trajectories. I 

found there were total 80 bad trajectories. Three criteria for detection of bad 

trajectories are given below. 

 

1. If spline fit error greater than threshold of spline fit error (Thres1_Sfe) . 

2. If vector distance greater than threshold of vector distance (Thres2_Vd). 

3. It is combination of all three parameters a). Log (probability) (Thres3_P) 

b) Vector distance (Thres4_Vd) c) spline fit error (thres5_Sfe). 

    

 Threshold values are given in table  6.2. 

 In logical form 3
rd

 condition is described as given below. 

 

IF (Thres3_P && Thres4_Vd && Thres5_sfe) 

       % It is bad trajectory;  

       Plot (bad) 

END 

 

Combination of all 3 is expressed as given below: 

 

IF (Thres1_Sfe || Thres2_Vd || (Thres3_P && Thres4_Vd && Thres5_sfe)) 

       % It is bad trajectory;  

       Plot (bad) 

END 

 

To find the appropriate threshold for each I used the concept of false positive 

and false negative and tried all the possible combinations for all five threshold 

hold. 

 

False positive: bad trajectory accepted as good. 

False negative: good trajectory rejected as bad. 

   

                  FP=
A∩B

N
     FN= 

R∩G

N
 

 

   Where:  FP - False positive. 

                FN - False negative. 
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                 A - Accepted trajectories. 

R - Rejected trajectories. 

                 B - Bad (80 out of 535) (pre-labelled). 

                 G - Good (465 out of 535) (pre-labelled). 

                 N – G + B (535). 

 

 

      To figure out the equal false positive and false negative rate for all three 

variables (spline fit error, vector distance and log (probability)) I plotted three 

graph (FN(%) Vs FP(%)) for each variable. Plots are shown in figures 6.5, 6.6 

and 6.7. These plots gave a good rough idea for choosing the thresholds.  

 

 

 

 
Figure 6.5: This figure shows the variation of false positive (Y) and false 

negative (X) at different values of spline fit error threshold (Z). This plot show 

the effect of only spline fit error, only spline fit error was used to detect the bad 

trajectories (only 1
st
 condition). 

 

It has equal error rate (about 4.3%) at spline fit error threshold is near 0.0195. 
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Figure 6.6: This figure shows the variation of false positive (X) and false 

negative (Y) at different values of vector distance threshold (Z). This plot show 

the effect of only spline vector distance. 

 
 

Figure 6.7: This figure shows the variation of false positive (Y) and false 

negative (X) at different values of log(probability) threshold (Z). This plot show 

the effect of only log(probability). 
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Parameter Spline fit error Vector distance Log(probability) 

Equal error rate 4.3 % 1.6% 4.0% 

Threshold  0.0195 0.41 -130 

 

Table 6.1: shows equal error rate for each parameter with threshold at that EER. 

 

        From table 6.1, we can say that vector distance has lowest error rate, so it 

most effective parameter for detecting the bad trajectory. I tried all the possible 

combination of five thresholds to find minimum equal error rate on 535 training 

trajectories. I found minimum equal error rate equal to be 1.2245% at following 

values of thresholds. These threshold values are used to recognise anomalous 

behaviour. Equal error rate for false negative and false positive is about 1.2%. 

Some examples of false negative and false positive trajectories are shown 

below. Here mean vector (control points) are in green colour, its spline in cyan, 

original trajectory in blue, control points in black and spline in red. 

Equal error rate  1.2245 

Thres1_Sfe  0.038 

Thres2_Vd  0.44 

Thres3_P  -20 

Thres4_Vd  0.006 

Thres5_sfe  0.37 

 

Table 6.2: shows thresholds values at best equal error rate for training. 

 
Figure 6.8 (a) An example of false negative trajectory. The vector distance is 

large because the mean vector is very far from the trajectory control points, but 

this is because the area 1 is very big so it is difficult to find a mean vector to suit 

every trajectory. 
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 Figure 6.8 b) An example of false negative. Trajectory is normal, but it starts 

and ends at very corners of start area (3) and end area (4), however mean vector 

is from middle of start and end areas. 

 
Figure 6.9 a) An example of false positive trajectory. Path distance is very 

small, so the positioning of  a bad trajectory‟s control points does not differ very 

much so it passes away. Also small path has small trajectory (fewer number of 

points), so spline fit error cannot be very high 
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Figure 6.9 b) An example of false positive trajectory. It is same situation as 

above (small path). 

 

 

 

 
 

Table 6.3: table shows number of trajectories in all 169 clusters present from 

total 65529 trajectories. 
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Main structure of abnormal behaviour detection program is described by Pseudo 

code 8.  
 

Pseudo code 8 abnormal behaviour detection 

 

Load trajectories 

Load Mean_Vectors                        % in cell array form  

Load Covariance_Matrixes              % in cell array form 

              

FOR EACH Trajectory 

 

           Start_Area=AreaNumber(trajectoryi(start point)); 

           End_Area=AreaNumber(trajectoryi(End point)); 

           Mu= Mean_Vectors{ Start_Area , End_Area } ;  

           Sigma= Covariance_Matrixes { Start_Area , End_Area } ;  

                

           IF( path is modelled?)           

      

                [x y]= transformTrajectory(trajectory); 

  

                ContolPoints= splinefit(x,y,numberOfControlPoints); 

 

                 [Xr Yr]= constructSpline(x,y, controlPoints,LengthOfTrajectory); 

 

                 Deviation  =getdeviation(x,y,Xr,Yr); 

                 Vector_dist =norm(ContolPoints-Mu); 

                 Probability = log(getprobability(ControlPoints,Mu,Sigma)); 

 

                 IF (Thres1_Sfe || Thres2_Vd || (Thres3_P && Thres4_Vd && Thres5_sfe)) 

                         % It is bad trajectory;  

                          Plot (bad); 

                          Title(„BAD‟)         

                END 

           ELSE 

                     % It is a un-modelled  path, so it is a bad trajectory;  

                          Plot (bad); 

                          Title(„um-modelled‟); 

           END 

 

END 
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6.3 Implementation 

 
Abnormality detection is implemented in Matlab. Covariance matrixes and 

mean vectors for each cluster were calculated from the training dataset in 

Matlab and saved as mat file format. And covariance matrices and mean vectors 

load to main program to calculate 12 dimensional Gaussian probability (which 

is inbuilt function in Matlab). Also other experiments related to Abnormality 

detection were done on Matlab. 

 

6.4 Results  
 

To evaluate the performance of the abnormality detection process, another 535 

trajectories were gathered, 5 from each cluster to ensure that chosen parameters 

satisfy all the paths (107).  False negative and false positive rate were computed 

for the new dataset. Results were found very satisfactory, with the error rate for 

false positive and false negative was equal at 1.2069 %, while for training 

dataset equal error rate (EER) was 1.2245 %.  

 

 
Figure 6.10: figure shows all the clusters those are modelled (107). There two 

mean vector seems to be abnormal (one at left most corner in red colour and one 

at right side in green colour) because around  40 trajectories were there for each 

but normal were very few, so abnormal trajectories were used in modelling.    
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a) Cluster 2 to 5 

 

 

 

 
 

 
b) Cluster 3 to 8 

 

 
 

c) Cluster 11 to 2 

 
 

d) Cluster 3 to 11  

 

 
Figure 6.11: figure shows four different clusters for different paths given above.  
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Chapter 7 

Conclusions and future work 

 

    Tracking of persons is a difficult task. The tracker has to overcome with the 

problems of the detector (ambiguities in the data and problems of occlusion and 

lost detections).  The tracking algorithm is used to track the person and form a 

trajectory from the detector output file. The tracking program produces a file of 

tracked persons‟ trajectories. All trajectories have different lengths depending 

upon how much time the person stays in view of the camera. Normally a person 

stays in view of the camera for 10 to 15 seconds. Which produces trajectories 

with 50 150 detections.  Overall the tracking process was very satisfactory but 

some modifications can be done when more than two people merge together to 

increase the performance of tracker component. To describe each trajectory with 

an equal number of attributes a Spline fitting algorithm is used. The Spline 

fitting algorithm gives six control points. The control points are represented by 

a 12 point vector for each trajectory. The Spline fit algorithm was temporal, sp 

stationary people can produce unbalanced splines. Some other algorithm can be 

used for spline fitting to increase the performance of the abnormal behaviour 

detection component such as basing spline fitting on a spatial description.  

     The abnormality detection process gave very good results. The model was 

built by gathering 20 normal trajectories for each clusters. Covariance matrices 

and mean vectors were determined to calculate a multivariate Gaussian 

probability for the 12 point vector of each trajectory. Choosing the classifier 

parameters was a difficult task, which required a lot of calculation and manual 

understanding. We were looking for multiple parameters for decision making, 

so it was difficult to choose parameters by observing manually. I used several 

possible combinations of parameter and set the threshold for each and 

calculated the error rate of false positive and false negative. The Equal Error 

Rate (EER) algorithm was used to find the appropriate values of the classifier 

parameters. Three criteria were chosen for detection of bad trajectories. A 

trajectory is flagged abnormal if it failed any of the criteria. Results show that it 

has 1.2% equal error rates. This can be decreased by some more experiments, 

like changing the number of control point and choosing perfect boundary for 

each entry and exit points.   
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