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event detection and behavioral analysis. Performance evaluation has been
carried out by comparing the algorithms’ results to hand-labeled ground truth
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1 Introduction
Fish detection and tracking is a fundamental task for the whole F4K system, since it provides

the basic evidence for higher-level analysis: species recognition, behaviour understanding, pop-
ulation statistics generation, workflow composition. However, the specific application context
makes these tasks very challenging: underwater video shooting constrains the quality of the
video (because of the technical difficulties in linking the cameras to mainland servers) and the
targets themselves (i.e. fish) have more degrees of freedom in motion than, for example, people
or vehicles in urban environments.

In order to deal with the various environmental difficulties found in underwater videos
(such as light changes, murky water, swaying plants), several fish detection algorithms have
been implemented: the well-known Gaussian mixture model, a mixture model variant based on
Poisson distributions, an approach based on intrinsic images to deal with illumination changes,
a frequency-decomposition technique to handle periodic movements of background elements,
such as plants.

These algorithms are based on a background-modeling approach, which consists in esti-
mating a “background image” (i.e. how the scene looks like without fish) and comparing each
new frame to this model, in order to detect pixels which deviate from it and which are marked
as foreground. Of course, since the environmental conditions are likely to change with time,
model update strategies have been implemented to keep the background description up-to-date
with the current scene.

The detection algorithms used in the project are described in Section 2. The reason for
implementing and testing several detection algorithms is to assess the suitability of each of
them to the different scene conditions in order to provide the higher processing levels (e.g. the
workflow composition level) with different alternatives to use for answering user queries.

The detection performance has been improved by adding a post-processing filtering stage,
in which objects are selected according to a quality score (referred in the F4K database as
detection certainty) describing how sure we are that a detected blob be a fish. The computing
of this score (described in Section 2.1) is based on the analysis of the color and motion vector
in the proximity of an object’s contour (to check whether there is a marked difference between
object and background) and inside the object itself (to check for uniformity of motion and
color).

The tracking algorithm relies on a covariance model (Section 3), and, similarly to the
detection stage, each tracking decision comes with a quality score (tracking certainty in the
F4K database), which has been used mainly for on-line self evaluation purposes (Section 3.1).
The extracted trajectories are then represented by an average quality score (average score of all
tracking decisions for the specific trajectory), which is an index of the goodness of the trajectory
in terms of the regularity of the motion (direction and speed smoothness) and similarity of the
object’s appearances (grey and color histograms and textures).

The detection and tracking quality scores have been used also to gather more data for
performance evaluation without resorting to hand-labeled ground truth, which is very time-
consuming to obtain.

Finally, in Section 4 we present some results on the performance of the described algorithms,
and a set of statistics on the current detection and tracking data available in the database (host:
f4k−db.ing.unict.it, database: f4k db, username: f4k−user, password: f4k−pwd) whose
schema is described in Deliverable 5.2.
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2 Fish detection
The characterization of video processing techniques for target detection and tracking in un-

derwater unconstrained environment is an important task that exemplifies the topical challenges
of monitoring real-life systems. In detail, detection and tracking techniques should handle
different effects that usually occur in the observed scenes:

• sudden and gradual light changes: typically, the videos are available starting from sunrise
until sunset, so it is necessary to consider the light transition due to these particular
moments of the day when brightness and contrast of the images are strongly compromised
by the absence of sunshine. Moreover, the periodical gleaming on underwater scene has
to be considered when designing the detection and tracking algorithms;

• bad weather conditions: the weather conditions are subject to unexpected changes such as
sudden cloudiness, storms and typhoons. Under these conditions the scene becomes very
difficult to analyze due to a worsening of image contrast which makes it hard to detect
and track targets accurately.

• murky water: in order to investigate the movement of fish in their natural habitat it is
important to consider that the clarity and cleanness of the water flow during the day could
change due to the drift and the presence of plankton. Under these conditions, targets that
are not fish might be detected as false positive;

• algae on camera lens: the direct contact of seawater with lens causes a rapid formation of
algae and filth that compromises the quality of the observed scene;

• periodic and multimodal background: handling background movements and variations
is one of the most difficult tasks and algorithms must be robust enough to cope with
arbitrary changes in the scene. Also periodic movements (e.g. plants affected by flood-
tide and drift) have to be taken into account to avoid the detection of moving non-fish
objects.

However, one of the most complex issues to deal with, when processing underwater videos,
concerns the targets to be detected (in our case fish). Indeed, differently from humans, fish
show erratic and fast movements (in three dimensions) that lead to frequently changes in size
and appearance. Hence, the detection and tracking modules have to adapt the model effectively
both to scene and fish appearance variations.

Although object detection is an extensively studied problem in the literature, none of the
existing approaches has been demonstrated to be generally superior to the other ones, rather the
performance depends on the specific application and context. Generally, a common approach
for discriminating moving visual objects in a scene consists of a preliminary description of
the background without any objects of interest followed by a comparison between the observed
image and the background reference to obtain a foreground mask. Unfortunately in our case dif-
ferent approaches are needed because of the presence of periodic and multimodal background,
illumination variations and arbitrary changes in the observed scene, which make difficult to
build a description of the background that can tolerate such scene changes. To deal with these
issues several approaches have been investigated and implemented.

Typically, to handle multi-modal backgrounds, a mixture of background models can be
adopted. The background is modeled by using statistical distributions representing each pixel’s
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history. A pixel is considered to belong to the background if there exists any distribution with
enough supporting evidence. As new frames are processed, the distributions’ parameters are
updated to reflect the changes which might occur in the scene. This approach is flexible
enough to handle sudden and global illumination changes and other arbitrary variations in
the scene. Mixture-of-model approaches can converge to any arbitrary distribution providing
enough number of observations, but the computational cost grows exponentially as the number
of models in the mixture increases. A drawback of these methods is that they ignore the
temporal correlation of color values. This does not allow to distinguish a periodic background
motion such as swaying plants driven by drift, algae on camera lens, rotating objects and so on,
from the foreground object motion.

We implemented two algorithms based on this mixture-of-model approach, the well-known
“Adaptive Gaussian Mixture Model” (AGMM) [1] and the “Adaptive Poisson Mixture Model”
(APMM) [2]. AGMM, which uses Gaussian distributions to model the background, deals very
well with videos containing multi-modal backgrounds but it cannot handle frequent or abrupt
lighting changes. APMM uses Poisson distributions instead, based on the observation that the
intensity of pixels is Poisson-distributed due to the natural variation of photons density hitting
the sensors.

Since real-world physics often induces near-periodic phenomena in the environment, fre-
quency decomposition-based representations of the background have been proposed [3] . These
algorithms detect objects by comparing the frequency transform representations of the back-
ground and the current scene. This requires to keep a fairly large number of past frames in
order to accurately model the current frequency map against which to compare the background
model.

The “Wave-back” algorithm [3] uses frequency decomposition of each pixel’s history to
catch periodic background movements (typical of underwater plants). In particular, given the
set of previous frames, the DCT (Discrete Cosine Transform) coefficients of each pixel are
calculated and are compared to the respective background coefficients resulting in a distance
map. By thresholding the distance map, the foreground objects can be identified. The “Wave-
back” algorithm performs well in videos with repetitive scenes and low-contrast colors but
cannot deal adequately with videos with erratic and fast fish movement and when sudden
lighting transitions take place.

A technique devised to handle problems related to noise and illumination changes consists of
representing the scene using intrinsic images, where each image is obtained as a multiplication
between its static and dynamic components [4]. This approach has been used as a basis for
another algorithm we implemented, called “Intrinsic Model”, which performs the multiplica-
tive background-foreground estimation under uncontrolled illumination using intrinsic images.
Every image is split into two components: the reflectance image (static component) and the
illumination image (dynamic component). The former is invariant to lighting changes and will
be almost identical under any light conditions. The background is modeled by calculating the
temporal median of these components. This algorithm performs well in videos with lighting
changes, fast and erratic fish movements or low-contrast but it suffered when multi-modal
backgrounds (e.g. algae) were present.
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2.1 Detection Quality Score
Because of the problems associated in handling false positives and false negatives, we

introduced a post-processing stage, which assigns a quality score to each object detected during
execution. This score is a numerical value computed by estimating the likelihood that a detected
object is actually a fish using a-priori knowledge on the shape, color and boundary features of
the object. This score, besides providing feedback data according to which it is possible to tune
the algorithms in order to improve their accuracy, has also been used to filter out objects with
low scores (see Section 4 for performance comparisons).

The overall score is a value included between 0 and 1 (the larger, the more certain), com-
puted as the average of the following features:

• Difference of color at object boundary: this index is based on the assumption that color
boundaries often coincide with fish/background boundaries; this value is highest when the
areas “just inside” and “just outside” of the contour of the detected object have markedly
different color values. It is computed according to the following procedure.

– Select N (currently, 25) equidistant points on the object’s contour.

– For each point Pi,

∗ Select two points Pi,in and Pi,out located just inside and just outside of the
contour on the line passing by Pi and such that it is orthogonal to the tangent of
the contour in that point.
∗ Compute Ci,in and Ci,out as the average color intensities in the 5× 5 neighbor-

hoods of Pi,in and Pi,out.

– Compute the result as:

∆CO =
1

N

N∑
i=1

||Ci,in − Ci,out||√
3 · d2

(1)

where the denominator represents the minimum Euclidean distance between two
pixels to be considered as belonging to markedly separate color regions (d is the
corresponding distance for a single color channel; its current value is 75).

• Difference of motion vectors at object boundary: similarly to the previous case, the
motion vector in the regions close to the object contour are compared; this value takes
into account the fact that, hypothetically, the motion vector outside of the object contour
should be zero (static background) or significantly different than inside (as shown in Fig.
1). In the following formula, Mi,in and Mi,out represent the average motion vectors
computed just inside and just outside of contour point Pi (obtained as in the previous
formula).

∆MV =
1

N

N∑
i=1

||Mi,in −Mi,out||
||Mi,in||+ ||Mi,out||

(2)

• Internal color homogeneity: due to the low resolution of videos, most fish (especially
the ones far away from the camera) appear as monochromatic, so this index gives an
indication on how homogenous the color distribution of the detected fish is. The body
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of the object is divided into a grid and for each cell the average color value is computed;
the more similar these average results are, the more likely it is that the detected object is
actually a fish. This value is computed as follows:

– For each cell j in the grid, compute the mean color Cj .

– Compute CM as the mean of all {Cj}.
– For each Cj , compute dj = ||Cj − CM ||.
– Compute dM as the mean of all {dj}.
– Return (−αICHdM + βICH) /γICH .

• Internal motion homogeneity. This index is based on the assumption that the internal
motion vectors of a correctly-detected fish are more uniform than the ones of an erroneous
fish detection (e.g. a moving plant), as shown in Fig. 2. Similarly to the previous case, the
object is divided into a grid and the average motion vectors for each cell are compared.
However, the computation of the corresponding score is slightly different:

– Given an object, its current bounding box and the bounding box of its last appear-
ance, compute the motion vector of the region R obtained as the union of the two
bounding boxes.

– For each motion vector point in R, mark it as “not valid” if its displacement projects
the point out of R. This might happen because the motion vector algorithm is not
accurate for points belonging to the common region between two detections.

– For each cell j in the grid which has at least one valid motion vector point, compute
the mean motion vector Vj , whose components are the average ∆x and ∆y.

– Compute the variances vx and vy of the first and second components of all {Vj}.
– Return 1− vx+vy

αIMH
.

• Internal texture homogeneity: again, an internal grid is defined and a set of Gabor filters is
applied to each cell; this score aims at checking that the object presents a uniform texture.

All symbols such as αICH in the descriptions above represent constant values which are exper-
imentally identified to normalize the results between 0 and 1.

To give a visual idea of the how such scores get mapped to actual detections, Figure 3 shows
a few examples of detection with the associated quality score.

The detection score as well as the tracking score has been also adopted for on-line perfor-
mance evaluation without resorting to hand-labeled ground truth. After the fish detection stage,
tracking is carried out. Tracking serves both as a proof of the correctness of the detected fish
– i.e. a moving fish usually remains in the monitored scene longer than a spurious object and
its movements (though erratic) are more regular than plants’ ones – and to consistently extract
fish paths, which are the basis for the subsequent event detection and behaviour understanding
modules.
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(a) Original frame (b) Motion vector

Figure 1: Motion vector boundaries typically coincide with object boundaries.

(a) Original frame (good detection) (b) Filtered motion vector (good detection)

(c) Original frame (bad detection) (d) Filtered motion vector (bad detection)

Figure 2: Correct object detections are made up of points generally orientated towards the same
direction. The circle to the right of subfigures (b) and (d) maps color to direction of motion.
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(a) Detection Score: 0.53 (b) Detection Score: 0.61

(c) Detection Score: 0.75 (d) Detection Score: 0.89

Figure 3: Examples of detection quality scores.
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3 Fish tracking
Visual tracking consists of following an object in a video across consecutive frames; in other

words, a tracking algorithm has to be able to recognize that two regions in two different frames
represent the same object.

However, this task presents a few major difficulties, which are even more difficult to manage
in unconstrained environments such as the one we are dealing with in the F4K project. First
of all, the search region of an object has to be limited to a neighborhood of its previous
detection, otherwise a new object appearing in the scene might be associated to the old one,
even if it is located in a different area of the video. The choice of the search area depends
on the motion characteristics of the objects which typically appear in the scene. For example,
in a urban environment we can safely assume that pedestrians and cars move approximately
always in the same direction, without swift changes, and this allows to restrict the search area to
something shaped like a cone oriented towards the main direction of the target. However, with
fish this is not necessarily true, because their typical erratic motion makes their direction less
predictable, especially in videos with low frame rate (for example, because of the difficulty in
the transmission of large amounts of data from underwater cameras to a central storage server).
Another tracking issue consists of the change in appearance of an object across the video,
because of variations of lighting, orientation, shape. This is especially true for fish, because
of their non-rigidity and, again, of erratic motion. Finally, another complication is caused by
occlusions, that is partial or total overlap of two objects, such that one of them is hidden by the
other one.

The approach adopted in this work for designing the tracking algorithm consists of:

• Identification of objects of interest (performed by the above-described detection algo-
rithms).

• Extraction of a feature set from each identified object, used as a model to compare
currently tracked objects with the new detections in the scene.

• Association between tracked objects and detections in the scene, according to a best-
matching policy.

Many approaches have been studied in the literature on how to solve the visual tracking
problem [5]. Among these, the most famous and widely-used algorithms are Kalman filter-
based tracking [6], particle filter tracking [7], point feature tracking [8], mean shift tracking
[9].

Tracking algorithms based on covariance representation [10] model objects as the covari-
ance matrices of a set of feature built out of each pixel belonging to the object’s region. This
representation takes into account both the spatial and statistical properties, unlike histogram
representations (which disregard the structural arrangement of pixels) and appearance models
(which ignore statistical properties). In the context of F4K, fish tracking is necessary to consis-
tently count the number of unique fish in the video (which of course is less than the number of
total appearances) and to provide data for the following stage of event detection and behavior
understanding based on trajectory analysis.

The tracking algorithm chosen to handle all the phenomena typical of underwater domain, is
based on [11] and uses covariance matrices computed on a set of pixel-based features to model
the fish appearance.
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In the following description, we use “tracked object” to indicate an entity that represents a
unique fish and contains information about the fish appearance history and its current covariance
model; and “detected object” to indicate a moving object, which has not been associated to any
tracked object yet. For each detected object, the corresponding covariance matrix is computed
by first building a feature vector for each pixel, made up of the pixel coordinates, the RGB
and hue values and the mean and standard deviation of the histogram of a 5×5 window which
contains the target pixel. The covariance matrix, which models the object, is then computed
from this feature vector and associated to the detected object. Afterwards, the covariance matrix
is used to compare the object with the currently tracked objects, in order to decide which one it
resembles the most. For each tracked object, its search area (i.e. the region of the image inside
which the algorithm looks for detected objects which can be associated to that tracked object) is
made up of two rectangles: a “central search area”, which is a rectangle centered at the object’s
previous location and that expands evenly in all directions; and a “directional search area”
which takes into consideration the recent motion trend of the object to give a simple estimate
of its direction, and which consists of a rectangle with a vertex at the object’s previous location
and the correspondent opposite vertex located according to the estimated object’s direction.

The main issue in comparing covariance matrices is that they do not lie on the Euclidean
space—for example, the covariance space is not closed under multiplication with negative
scales. For this reason, we use Förstner’s distance [12], which is based on generalized eigen-
values, to compute the similarity between two covariance matrices

The model of each tracked object is then computed as a mean of the covariance matrices
corresponding to the most recent detections of that object. In order to deal with occlusions, the
algorithm handles the temporary loss of tracked objects, by keeping for each of them a counter
of how many frames it has been missing; when this counter reaches a user-defined value, the
object is considered lost and discarded. Of course, it is important to find a good trade-off for this
value: if it is too low, an object which temporarily disappears (for example, because it is hidden
behind a plant) might be treated as a different object when it reappears; if it is too high, different
objects might be recognized as the same one, which has long exited the scene. Moreover, this
value also influences the size of the search area: the longer an object has been missing, the
wider its search area will be. The current value of this parameter, optimized for 5-fps videos, is
6.

The results obtained with this algorithm show that it can accurately follow a fish even when
it is temporarily hidden behind plants or in presence of similar fish in the scene. However, the
accuracy of the algorithm is strongly linked to that of the detection algorithm, since it assumes
that all and only moving objects will be provided by the underlying motion algorithm; for this
reason, tracking may fail because of detection inaccuracy.

3.1 Tracking Quality Score
The fish tracking algorithm is one of the most important components of the proposed system

since it identifies the fish trajectories on which the behavior understanding and event detection
modules will rely. Thereafter, in order to consistently investigate fish behavior, it is necessary
to estimate the quality of each detected trajectory and to select the ones that respect a specific
criteria of goodness, thus avoiding to invalidate the final behavior analysis. To compute such
a quality score (referred in the following as qS), we have adopted a series of measurements
taken from [13] and [14] and combined them with new measurements in order to obtain values
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indicating the goodness and the plausibility of a trajectory. In detail, for each tracking decision
(i.e. an association between an object in frame t and one in frame t+ 1) the following features
are computed and combined into a single score as an average.

• Difference of shape ratio between frames: this score detects rapid changes in the object’s
shape, which might indicate tracking failure. This value is high if the shape ratio (R = W

H
,

with W and H , respectively, the width and the height of the bounding box containing the
object) between consecutive frames t− 1 and t keeps as constant as possible.

Rmax = max {Rt, Rt−1}
Rmin = min {Rt, Rt−1}

shape ratio score = αSR
Rmin

Rmax

• Histogram difference: this feature evaluates the difference between two appearances of
the same object by comparing the respective histograms (analyzing independently the
three RGB channels and the grayscale versions of the two objects). Given histograms Ht

and Ht−1, the corresponding score is proportional to the ratio between the intersection
and the union of the two histograms:

αHD

255∑
i=0

min {Ht (i) , Ht−1 (i)}
max {Ht (i) , Ht−1 (i)}

• Direction smoothness: although fish movements are erratic, we can safely assume that a
fish trajectory is as good as it is regular and without sudden direction changes in the short
term (i.e. in few consecutive frames). This value keeps track of the direction of the object
in the last frames and checks for unlikely changes in the trajectory. It is computed as:

direction smoothness = 1− |θ1 − θ2|
180

where θ1 and θ2 are the angles (with respect to the x axis) of the last two displacements
of the object. For simplicity, we use θ1 − θ2 in the formula, although the actual imple-
mentation handles the case of angles around the 0◦/360◦ boundary.

• Speed smoothness: similarly to the previous feature, this value checks whether the current
speed of the object (i.e. the displacement between the previous position and current one)
is similar to the average speed in the object’s history. Let Pt and Pt−1 be the last two
positions of the object, we compute st = ||Pt − Pt−1||, so that st represents the last
displacement (speed) of the object, and compare it with the average speed s̄ in order to
compute speed smoothness as:

smax = max {st, s̄}
smin = min {st, s̄}

speed smoothness = αSS
smin
smax
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• Texture difference: texture features (mean and variance of several Gabor filters) are com-
puted from two consecutive appearances and compared. Given two feature vectors v1 and
v2, this value is computed as:

1−

√√√√ n∑
i=1

(v1 (i)− v2 (i))2/αTD (3)

• Temporal persistence: this value is the number of frames in which a given object appears.

Similarly to the detection evaluation scores, all constants included in the above formulas are
experimentally identified to normalize the resulting values between 0 and 1. The overall quality
score qS is computed as follows:

• Compute the average µ of the above-described values, except the temporal persistence
TP .

• If TP > N , return µ;

• Else, return µ ·
(
0.9 + TP

10×N

)
(i.e. if an object appears in less than N frames, limit the

maximum score it can get).

Fig. 4 shows a few sample trajectories with related average qS scores; it is possible to
notice that the trajectory of the top-left image is unrealistic (and is caused by a temporary mis-
association between objects) and its average score, computed as average of the scores of each
tracking decision for all the appearances of a fish (four times, in this case), was 0.63, whereas
the image on the top-right side shows a correct trajectory whose average score is of 0.91. The
two bottom images show, from left to right, a complex but correct trajectory (with a 0.81 score)
and a trajectory which is correct up to a certain point, before an occlusion happened, so its total
tracking score is 0.71.

4 Experimental results
In order to evaluate the performance of the four current algorithms for fish detection, i.e.

Adaptive Gaussian Mixture Model (AGMM), Adaptive Poisson Mixture Model (APMM), In-
trinsic Model (IM) and Wave-back (WB), and of the covariance-based tracker, together with
a post-processing module for object filtering, we have compared the results obtained by the
algorithms to a set of manually-labeled ground-truth videos.

To evaluate the performance of the detection algorithms we adopted common metrics, i.e.
detection rate (DR) and false alarm rate (FAR) which are defined as:

DR =
NTP

NTP +NFN

(4)

FAR =
NFP

NTP +NFP

(5)

where NTP , NFP and NFN are, respectively, the number of true positives, false positives and
false negatives.
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(a) Unusual fish trajectory (b) Plausible fish trajectory

(c) Plausible fish trajectory (d) Fish-plant Occlusion

Figure 4: Examples of fish trajectories: (a) an erroneous path (average qS score 0.63) due to a
failure of the tracking algorithm; (b) a correct path (average qS score is of 0.91); (c) a complex
but correct fish path with an average qS score of 0.81; (d) trajectory with an average qS score of
0.71 due to a fish-plant occlusion.
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Video Description NF

1 Dynamic Background 156
Striped Fish Texture

2 Dynamic Background 1373
Camouflage phenomena

3 Typhoon 1790
Frequent illumination variations

Very low contrast

4 Typhoon 34
Plants movements

5 High illumination 840
Camouflage phenomena

Striped Fish Texture

Table 1: Description of the videos used as ground truth

For the evaluation of the detection and tracking performance we used five videos (10 minutes
long each) of the Fish4Knowledge repository. The videos had resolutions of 320×240 with a
24-bit color depth at a frame rate of 5 fps. The selection of these videos was based on the
presence of specific features to test the effectiveness of every algorithm when non-standard
conditions were encountered. In particular, the features taken into account were: dynamic
backgrounds, illumination variations, high water turbidity, low contrast and camouflage phe-
nomena. The ground truth on these videos was hand labeled. The videos are described in Table
1 together with the number of hand-labelled fish (NF ) in the ground truth data.
The performance evaluation of the detection algorithms was carried out both at blob level to
test their ability in detecting effectively objects and at pixel level to test their capabilities in
preserving objects’ shape.
The performance, at blob level, was evaluated by testing the detection algorithms when run
with and without the post-processing module (i.e. by using or not quality scores). When
this module was disabled, the blobs detected by the object detection algorithms were filtered
according to simple shape and area criteria, in order to exclude objects which were too small
or whose shape made it unlikely to be a fish. When the post-processing module was used, no
shape or area filtering was performed, however objects with a detection quality score lower
than 0.65 were discarded. To give an idea of the accuracy, Table 2 shows the achieved results
with and without the post-processing module at the best operating point. It is possible to see a
sensible improvement in both the detection rate (by about 15%, in average) and the false alarm
rate (reduced by about 10%) when using the post-processing module, showing how simple
discrimination criteria based on the analysis of the size and shape of an object are not enough
for a good blob filtering.

To test the performance at pixel level, we assessed the number of pixel-wise true positives
(pixels correctly detected as belonging to the fish), false positives (background pixels detected
as part of the object) and false negatives (object pixels mistaken for background) for each object
correctly identified by a detection algorithm. According to these values, we then computed the
pixel detection rate (PDR) and the pixel false alarm rate (PFAR) and the average values for each
ground-truth video are shown in Table 3.

We can see how all the algorithms have a good pixel detection rate, i.e. they are able to
correctly identify pixels belonging to a fish, however the results also show a relatively high
pixel false alarm rate (background pixels included into the objects’ blobs), especially IM and
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Without Post-processing With Post-processing

DR FAR DR FAR

Video 1 AGMM 65% 27% 83% 8%
APMM 72% 21% 85% 10%
IM 71% 11% 85% 7%
WB 52% 21% 69% 5%

Video 2 AGMM 70% 9% 82% 7%
APMM 67% 15% 85% 8%
IM 73% 11% 89% 6%
WB 75% 6% 70% 5%

Video 3 AGMM 70% 15% 81% 10%
APMM 61% 12% 84% 6%
IM 67% 9% 86% 9%
WB 55% 18% 71% 8%

Video 4 AGMM 76% 28% 88% 17%
APMM 65% 33% 85% 9%
IM 68% 26% 91% 11%
WB 47% 36% 63% 18%

Video 5 AGMM 67% 10% 82% 9%
APMM 71% 17% 82% 6%
IM 72% 22% 89% 7%
WB 60% 19% 71% 4%

Table 2: Experimental results achieved when the detection algorithms run with and without the
post-processing module

WB and mainly when the contrast of the video is low.
In order to compare the tracker’ performance to the actual results, tracking identification

numbers (IDs) were added to the ground-truth information to label detections in different frames
as belonging to the same unique fish, in such a way that fish which underwent temporary
occlusions would then be re-assigned to the same tracking ID. We directly fed our tracking
algorithm with the detection data (i.e. the fish) provided by the ground truth, so that the tracking
results would not be influenced by detection errors. The performance of our algorithm was also
compared with the one achieved by the classic CAMSHIFT algorithm (chosen because it is
the only approach tested on underwater videoclips in [15]). To assess the ground-truth-vs-
algorithm comparison we adopted the following metrics, which are based on the ones existing
in the literature [16], but that describe the performance of a tracking algorithm both globally,
at the trajectory level (e.g. the correct counting rate and the average trajectory matching), and
locally, at the single tracking decision level (e.g. the Correct decision rate):

• Correct counting rate (CCR): percentage of correctly identified fish out of the total num-
ber of ground-truth fish.

• Average trajectory matching (ATM): average percentage of common points between each
ground-truth trajectory and its best-matching tracker-computed trajectory.

• Correct decision rate (CDR): let a “tracking decision” be an association between a fish
at frame t1 and a fish at frame t2, where t1 < t2; such tracking decision is correct if
it corresponds to the actual association, as provided by the ground truth. The correct
decision rate is the percentage of correct tracking decisions, and gives an indication on
how well the algorithm performs in following an object, which is not necessarily implied
by the average trajectory matching (see Figure 5).
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Video Algorithm PDR PFAR

1 AGMM 90.7% 12.5%
APMM 88.7% 12.9%

IM 84.4% 13.8%
WB 94.9% 18.1%

2 AGMM 94.0% 17.7%
APMM 97.2% 25.7%

IM 89.4% 26.6%
WB 98.5% 29.8%

3 AGMM 93.5% 26.9%
APMM 89.5% 22.1%

IM 89.3% 29.3%
WB 96.1% 31.3%

4 AGMM 92.9% 20.4%
APMM 92.4% 19.9%

IM 85.4% 39.0%
WB 89.9% 35.6%

5 AGMM 91.7% 13.0%
APMM 95.8% 26.3%

IM 88.8% 17.0%
WB 93.5% 26.3%

Table 3: Segmentation results obtained by the detection algorithms on the ground-truth videos

(a) (b)

(c)

Figure 5: Difference between the trajectory matching score and the correct decision rate. Fig.
5(a) shows two ground truth trajectories of two fish, whereas the other two images represent two
examples of tracking output. In Fig. 5(b), although the tracker fails at each tracking decision,
the trajectory matching score is relatively high (50%), whereas the correct decision rate is 0.
Differently, in Fig. 5(c) the tracker fails only in one step and the trajectory matching score is
50% (as the previous case) whereas the correct decision rate is 80% (4 correct associations out
of 5).
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Table 4 shows the results obtained by the covariance tracking algorithm compared to the
ones achieved by the CAMSHIFT algorithm, in terms of the above-described indicators. It is
clear how our approach performs better than CAMSHIFT and also has a very good absolute
accuracy, being able to correctly identify more than 90% of unique objects with a very high
degree of correspondence to the ground-truth trajectories.

Covariance tracker CAMSHIFT

CCR 91.3% 83.0%
ATM 95.0% 88.2%
CDR 96.7% 91.7%

Table 4: Comparison between the results obtained by the proposed algorithm and CAMSHIFT
on the ground-truth data.

5 Database Content Overview
Further results have been obtained by analyzing the quality scores computed by the sys-

tem and the distribution of the detection entries in the database, among the different camera
locations. These results are shown in tables from 5 to 9 and refer to the database’s content
as available on October 15th, 2011. Most of the processed videos are taken from the NPP-3
location and very few from Lan-Yu. This is mainly because there is a higher availability of
320×240-resolution videos in NPP-3 and we are not currently processing 640×480 videos
because of the low quality (however, at the time of writing, work is in progress to assure
the availability of high-frame-rate and high-quality 640×480 videos). Let us recall that each
processed video is 10 minutes long, with a 24-bit color depth at a frame rate of 5 fps. The
videos were recorded by using 8 underwater cameras organised per location, namely NPP-3
(four cameras), HoBiHu (three cameras) and Lanyu (one camera).

Table 5 depicts the total number of processed videos, detections and fish of the four detection
algorithms, whereas Tables 6 and 7 show the categorisation, respectively, by algorithm and
location.

Number of processed videos 2825
Number of detections 3869473
Number of fish 456622

Table 5: Total number of processed videos, detections and fish for all the detection algorithms
and all the locations in the F4K database

AGMM APMM IM WB

Number of processed videos 2825 2825 2825 2825
Number of detections 731049 708292 1326058 1104074
Number of fish 97267 91925 177609 89821

Table 6: Number of processed videos, detections and fish by algorithm

Fig. 6, instead, shows the distribution by camera and algorithm of the average number of
fish per frame (Fig. 6(a)) and per video (Fig. 6(b)) and of the average number of detections per
video (Fig. 6(d)) and per fish (Fig. 6(c)).

Version 2.0; 2011–11–22 Page 18 of 23 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable D1.1

(a) (b)

(c) (d)

Figure 6: Average results by camera and algorithm.
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NPP-3 HoBiHu Lanyu

Number of processed videos 2367 545 138
Number of detections 1007794 43926 3572
Number of fish 123528 7753 603

Table 7: Number of processed videos, detections and fish by location

As aforementioned ground-truth generation cannot be performed on a large number of
videos, as it is a very time-consuming and error-prone operation; for this reason we also per-
formed an on-line performance evaluation of detection and tracking algorithm on the processed
videos (unlabeled) by computing the mean and the standard deviation of the quality scores
assigned to each detection and trajectory extracted by the system. A comprehensive evaluation
of the reliability of the quality scores is beyond the aim of this document, however, we compared
the detection and tracking scores achieved by our algorithms with the ones obtained on high
quality hand-labeled ground truth data and the results are shown, respectively, in Tables 8 and
9. Let us note that we assessed the tracking quality scores by taking into account the detection
algorithms (namely, AGMM, APMM, IM and WB) together with our covariance-based tracking
approach, since tracking quality score, unlike the detection one (which relies only on detection
algorithms), is influenced by both detection and tracking.

NPP-3 HobiHu Lanyu

1 2 3 4 1 2 3 1

AGMM 0.80± 0.10 0.82± 0.09 0.79± 0.09 0.74± 0.08 0.74± 0.08 0.70± 0.07 0.70± 0.07 0.73± 0.09
APMM 0.76± 0.09 0.82± 0.11 0.76± 0.09 0.68± 0.05 0.79± 0.08 0.70± 0.07 0.70± 0.06 0.68± 0.06

IM 0.74± 0.10 0.79± 0.10 0.74± 0.08 0.71± 0.07 0.66± 0.08 0.67± 0.07 0.68± 0.07 0.74± 0.09
WB 0.67± 0.08 0.68± 0.10 0.66± 0.08 0.68± 0.06 0.73± 0.11 0.69± 0.07 0.70± 0.07 0.64± 0.07

Ground Truth Object 0.75± 0.09 0.78± 0.07 0.80± 0.08 0.74± 0.05 0.75± 0.08 0.77± 0.08 0.66± 0.04 0.70± 0.05

Table 8: Average and standard deviation of the detection quality scores achieved by the
detection algorithms categorised by camera and algorithm.

NPP-3 HobiHu Lanyu

1 2 3 4 1 2 3 1

AGMM 0.80± 0.11 0.81± 0.11 0.80± 0.11 0.79± 0.12 0.81± 0.11 0.79± 0.13 0.79± 0.13 0.84± 0.10
APMM 0.75± 0.14 0.79± 0.13 0.79± 0.13 0.76± 0.15 0.82± 0.12 0.79± 0.13 0.72± 0.17 0.77± 0.13

IM 0.77± 0.12 0.79± 0.12 0.76± 0.12 0.77± 0.13 0.78± 0.14 0.78± 0.14 0.78± 0.13 0.85± 0.10
WB 0.74± 0.11 0.79± 0.11 0.74± 0.11 0.75± 0.12 0.80± 0.12 0.81± 0.12 0.80± 0.12 0.83± 0.11

Ground Truth Trajectory 0.77± 0.11 0.78± 0.10 0.74± 0.12 0.77± 0.12 0.78± 0.12 0.75± 0.13 0.77± 0.13 0.81± 0.11

Table 9: Average and standard deviation of the tracking quality scores achieved by the detection
algorithms categorised by camera and algorithm.

6 Conclusions
In this deliverable we have described the work done for fish detection and tracking. The

results of both stages are satisfactory, especially considering the difficulties of underwater
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environments. For detection we have developed four different approaches that deal with the
presence of periodic and multimodal background, illumination variations and arbitrary changes
in the observed scene. Although such methods have demonstrated good performance they are
not able to handle the cases when all the above phenomena appear at the same time. None of
the developed approaches seems to be generally superior to the other ones, even though the
approaches that rely on modeling background pixels with a pdf (AGMM and APMM) represent
the best compromise for all the considered scenarios. We are now investigating an approach
that does not opt for a particular form of the probability density function, as deviations from
the assumed model are ubiquitous. The idea is that each background pixel is modeled with
a set of samples of values rather than with an explicit pixel model. A pixel is then classified
as background if the number of samples from which the color distance is low is higher than a
certain threshold. However, we also noticed that the detection performance is influenced by the
low video resolution of initial set of videos, therefore, we aim to achieve better detection results
once videos with higher resolution (both spatial and temporal) will be available. Moreover, we
are also working on the integration of the detection algorithms by using AdaBoost integrated
with local histogram/texture features [17] in order to find the optimal decision (optimal ROC
curve) rule for the detection step.

Unlike detection algorithms, the covariance based tracker is very reliable achieving an aver-
age performance (about 95%), estimated taking into account scores computed at the trajectory
level and at the at the single tracking decision level. Currently, the trajectories of fish are
described using a simple point-based representation [18], i.e. a fish path is a sequence of
2D coordinates. Since this representation does not describe the real fish movement and may
affect higher level video analysis such as event detection and behaviour understanding, we
are working on a more comprehensive 3D spatio-temporal representation of trajectories that
comprises speed, direction, contour points and fish size.

Finally, we are also investigating techniques for background objects extraction which rely on
image segmentation and description [19] in order to establish possible correlations between fish,
its trajectories and the static scene (e.g. corals, plants, etc.). Furthermore, since the behavior
of a fish is often correlated to the behavior of another fish (e.g. predator fish chasing small
fish), future work will be directed on correlating temporal and spatial events among different
fish species.
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