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Particle Filtering for Visual Tracking

Author: Pedram Azad

In this chapter, particle filters and their application to visual tracking are
introduced. After giving a formal definition of the general particle filter, com-
monly used likelihood functions for evaluating a model configuration in the
context of visual tracking are introduced. Each of these likelihood functions
can be regarded as a separate cue, operating on extracted image informa-
tion that is specific to it. Finally, the general approach for fusing several cues
within a particle filter is presented. The Sections 1.2–1.4 explain the model
and the cues by the example of markerless human motion capture. The con-
cepts can be used analogously for the tracking of rigid objects, as mentioned
in Section 1.5

1.1 Particle Filters

Particle filters, also known as Sequential Monte-Carlo methods, are sampling-
based Bayesian filters. A variant of the particle filter is the Condensa-
tion algorithm (Conditional Density Propagation) [Isard and Blake, 1996,
Isard and Blake, 1998], which has become popular in the context of vision-
based tracking algorithms. In [Blake and Isard, 1998], the application of the
Condensation algorithm to the tracking of active contours is presented. In
the following, given a pre-specified model, a particle filter is understood as an
estimator, which tries to determine the model configuration that matches the
current observations in the best possible way. The general particle filtering
framework is implemented in the class CParticleFilterFramework from the
IVT (see Chapters 2 and 3).
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Particle filters approximate the probability density function of a probability
distribution, modeling the estimator’s state by a fixed number of particles. A
particle is a pair (s, π), where s ∈ Rn denotes a model configuration and π
is an associated likelihood; n denotes the dimensionality of the model. The
state of the set of all N particles at the discrete time step t is denoted as:

Xt = {(s(i)
t , π

(i)
t )} (1.1)

with i ∈ {1, . . . , N} and t ≥ 0. Particle filtering is an iterative algorithm
operating on this set. In each iteration, the following three steps are performed:

1. Draw n particles from Xt−1, proportionally to their likelihood.

2. Sample a new configuration st for each drawn particle (st−1, πt−1) .

3. Compute a new likelihood πt for each new configuration st by evaluating
the likelihood function p(zt | st) .

where p(z | s) is a likelihood function that computes the a-posteriori probabil-
ity of the configuration s matching the observations z. Here, z is an abstract
variable that stands for any type of data, e.g. for image data in the case of
vision-based tracking algorithms. The three steps of a particle filter iteration
are summarized in Algorithm 1 in pseudo code.

Algorithm 1 ParticleFilter(Xt−1,zt) → Xt

Xt := { }
for k := 1 to N do

Draw i with probability ∝ π
(i)
t−1

Sample s
(k)
t ∝ p(st | s(i)

t−1)

π
(k)
t := p(zt | s(k)

t )

Xt := Xt ∪ {(s(k)
t , π

(k)
t )}

end for

Drawing a particle (s(i)
t , π

(i)
t ) with probability ∝ π

(i)
t−1 can be accom-

plished efficiently by binary subdivision [Isard and Blake, 1998] (see method
CParticleFilterFramework::PickBaseSample of the IVT.

Sampling a new particle from p(st | s(i)
t−1) is usually accomplished by taking

into account a dynamic model of the object to be tracked, and by adding
Gaussian noise for handling unpredictable movements. The given formulation
for the sampling step is specific to the Condensation algorithm. In the general
particle filter, new particles are sampled from p(st | s(i)

t−1,zt), i.e. the current
observations are taken into account in the sampling step as well.

If no dynamic model is used, then the dimensionality of the model equals the
number of DoF to be estimated, for instance n = 2 for a 2D tracking problem.
Sampling is performed merely by adding noise:
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s
(k)
t = s

(i)
t−1 + B ω (1.2)

where ω ∈ Rn denotes Gaussian noise i.e. the components of the vector are
sampled (independently) from a Gaussian distribution. B ∈ Rn,n is a diagonal
matrix that contains weights for the components of ω.

When using a constant velocity model, one common approach is to estimate
the velocity as well, by incorporating the velocity into the particles. Then, for a
2D tracking problem, it would apply n = 4. For this purpose, the configuration
s ∈ Rn is split up into a position part x ∈ Rn/2 and a velocity part v ∈ Rn/2,
i.e. s := (x,v). Sampling is then performed as follows:

x
(k)
t = x

(i)
t−1 + ∆t v

(i)
t−1 + Bx ω

v
(k)
t = v

(i)
t−1 + Bv ω (1.3)

where Bx, Bv ∈ Rn/2,n/2 and ∆t denotes the time elapsed between the discrete
time steps t and t − 1. In order to keep the characteristics of a constant
velocity model, the magnitudes of the components of the diagonal matrix Bx

must be small. If Bx is chosen to be the zero matrix, then the position is
strictly determined by the estimated velocity from the previous particle filter
iteration. Note that the likelihood function p(z | s) is usually implemented
as p(z |x) in this case, i.e. the velocity is not incorporated explicitly in the
weighting function.

Finally, the estimation of a particle filter after an iteration is usually calculated
by the weighted mean s over all particles:

s :=
N∑

k=1

πk · sk (1.4)

Various extensions to the standard particle filtering scheme have
been proposed. Among these are the partitioned sampling theory
[MacCormick and Isard, 2000, MacCormick, 2000], annealed particle fil-
tering [Deutscher et al., 2000, Deutscher et al., 2001], Rao-Blackwellization
[Casella and Robert, 1996, Doucet et al., 2000], and auxiliary particle filters
[Pitt and Shepard, 1999]. Switching between dynamic models in particle fil-
ters has been proposed in [Bando et al., 2004].

1.2 Problem Definition of Human Motion Capture

The general problem definition is to determine the correct configuration of an
underlying articulated 3D human model for each input image or image tuple,
respectively. The main problem is that search space increases exponentially
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with the number of degrees of freedom. A realistic model of the human body
consists of at least 25 DoF: 6 DoF for the base transformation, 3 DoF for the
neck, 2 · 4 DoF for the arms, and, 2 · 4 DoF for the legs; or 17 DoF if only
modeling the upper body. The large number of degrees of freedom in both
cases leads to a very high-dimensional search space.

1.3 Human Upper Body Model

1.3.1 Kinematics Model

For the system presented in [Azad et al., 2006b, Azad et al., 2007b], a kine-
matics model of the human upper body consisting of 14 DoF was used, not
modeling the neck joint. The shoulder is modeled as a ball joint, and the elbow
as a hinge joint. With this model, rotations around the axis of the forearm
cannot be modeled. Capturing the forearm rotation would require tracking of
the hand, which can be regarded a separate problem. The degrees of freedom
of the used upper body model are summarized as follows:

� Base transformation: 6 DoF

� Shoulders: 2 · 3 DoF

� Elbows: 2 · 1 DoF

The shoulder joints are implemented by an axis/angle representation in order
to avoid problems with singularities, which can occur when using Euler angles.
The elbows are modeled by the single angle θ for the rotation matrix Rx(θ).
The base rotation is modeled by Euler angles to allow a better imagination
so that joint space restrictions can be defined easily.

1.3.2 Geometric Model

Body sections are often fleshed out by sections of a cone with an elliptic
cross-section. However, using ellipses instead of circles for modeling the arms
causes additional computational effort without leading to considerable practi-
cal benefits for application with image-based human motion capture systems.
In practice, only the torso requires ellipses for being modeled with sufficient
detail. But even with such a model, the torso can hardly be tracked on the ba-
sis of projections to the image i.e. without explicit 3D information. The reason
is that the only valuable information that could be measured in images are
the left and right contour and the shoulder positions. However, the contour is
often occluded and changes its appearance depending on the clothing and the
arm configuration, as does the appearance of the shoulders, making it hard
to track the torso on the basis of edge or region information only.
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Fig. 1.1. 3D Visualization of the used human upper body model.

In [Azad et al., 2006b, Azad et al., 2007b], all body parts are modeled by sec-
tions of a cone with circular cross-sections. The computation of the projected
contour of such a 3D primitive is described in the following; the calcula-
tions for the more general case with an elliptic cross-section are given in
[Azad et al., 2004]. A section of a cone is defined by the center c of the base,
the radius R of the base circle, the radius r of the top circle, and the direction
vector n of the main axis. Given that all vectors are specified in the camera
coordinate system, the position vectors of the endpoints p1,p2,p3,p4 defining
the two projected contour lines P1P2 and P3P4 can be calculated as follows:

u =
n× c

|n× c|

ct = c + L · n

|n|
p1,3 = c±R · u
p2,4 = ct ± r · u (1.5)

All involved measures and vectors are illustrated in Fig. 1.2. The principle is
to calculate the intersection of the plane that runs through the main axis of
the cone and at the same time is orthogonal to the plane that goes through
the projection center and the main axis. As can be seen, using this model, only
very few computations are necessary for calculating the projected contour of a
body part. This is crucial for the goal of building a system that can be applied
in real-time, since the projection of the body model given a configuration must
be evaluated for each particle.
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Fig. 1.2. Illustration of the projection of the contour of a section of a cone.

1.4 General Particle Filter Framework for Human
Motion Capture

Particle filtering has become popular for various visual tracking applications.
The benefits of a particle filter compared to a Kalman filter are the ability
to track non-linear movements and the property to store multiple hypotheses
simultaneously. These benefits are bought at the expense of a higher compu-
tational effort. For methods using a Kalman filter as probabilistic framework,
it is typical that an optimization approach is used in the core. The robustness
and accuracy of the system is improved by using a Kalman filter for predict-
ing the configuration in the next frame. This prediction yields a considerably
better initial condition for the optimization approach. However, tracking ap-
proaches that rely on a sufficiently accurate prediction naturally lack the
ability to recover when tracking gets lost.

Approaches relying on particle filtering follow a completely different strat-
egy. Instead of using an optimization method, essentially a statisti-
cally profound search is performed for finding the optimal solution. In
[Deutscher et al., 2000], it was shown that powerful markerless human motion
capture systems operating on images can be built using particle filtering. The
proposed system uses three cameras distributed around the area of interest,
performs figure-ground segmentation by background subtraction, and has a
processing time of approx. 15 seconds per frame on a 1.5 GHz CPU. Neverthe-
less, the used likelihood functions and the general approach build a valuable
starting point for building a system that can be applied on the active head of
a humanoid robot system. In the following, these likelihood functions, namely
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the edge cue and the region cue, are introduced. In [Azad et al., 2006b], an
additional distance cue is introduced, incorporating tracked 3D positions of
the hands and the head of the person of interest. A system that is capable
of robust tracking of upper body motion of a person with a humanoid active
head is explained in detail in [Azad, 2008b].

1.4.1 Edge Cue

Given the current observations z and the projected contour of the human
model for a configuration s, the likelihood function p(z | s) for the edge cue
calculates the likelihood that the model matches the observations z, given a
configuration s.

Fig. 1.3. Illustration of the search for edge pixels.

The basic technique is to traverse the projected edges and search at
fixed distances ∆ for edge pixels in perpendicular direction to the pro-
jected edge within a fixed search distance δ, as illustrated in Fig. 1.3
[Isard and Blake, 1996]. For this purpose, the camera image I, which repre-
sents the observations z, is usually pre-processed to generate a gradient image
Ig using an edge filter. The likelihood is calculated on the basis of the SSD. In
order to formulate the likelihood function, first for a given point p ∈ R2 be-
longing to an edge ep, the set of high-gradient pixels in perpendicular direction
to ep is defined by the function g(Ig,p):

g(Ig,p) = { (x−p)2 | x ∈ R2∧|x−p| ≤ δ∧(x−p) ⊥ ep∧Ig(x) ≥ tg } (1.6)

where tg denotes a pre-defined gradient threshold. Given a set of projected
contour points P := {pi} with pi ∈ R2, i ∈ {1, . . . , |P |}, the evaluation or
error function w(Ig, P ) can be formulated as follows:

wg(Ig, P ) =
|P |∑
i=1

min (g(Ig,pi), µ2) (1.7)

where µ denotes a penalty distance that is applied in case no high-gradient
pixel could be found for a contour point pi i.e. g(Ig,pi) = { }. The notation
for the likelihood function now reads:
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pg(Ig | s) ∝ exp
{
− 1

2σ2
g

wg(Ig, fg(s))
}

(1.8)

The point set P is acquired by applying the function fg(s), which computes
the forward kinematics of the human model and projects the model’s contour
points of interest to the image coordinate system. A contour line of the model
is projected to the image by projecting its two endpoints (see Section 1.3.2).
The projection is performed by applying the projection matrix of the camera,
which has been computed by the calibration procedure beforehand. Having
projected the two endpoints, the line is sampled in the image with the dis-
cretization ∆.

Another approach for a gradient-based evaluation function is to spread the
gradients in the gradient image Ig by applying a Gaussian filter or any other
suitable operator, and to add up the gradient values along a projected edge,
as done in [Deutscher et al., 2000]. By doing this, the computational effort
is reduced significantly, compared to performing a search perpendicular to
each pixel of the projected edge. The computation of the evaluation function
is efficient, even when choosing the highest possible discretization of ∆ = 1
pixel. Assuming that the spread gradient image has been remapped to the
interval [0, 1], the evaluation function can be formulated as:

wg(Ig, P ) =
1
|P |

|P |∑
i=1

(1− Ig(pi))2 (1.9)

1.4.2 Region Cue

The second cue commonly used is region-based, for which a figure-ground
segmentation technique has to be applied. The segmentation algorithm is
independent from the likelihood function itself. In the segmentation result Ir,
pixels belonging to the person’s silhouette are set to 1 and background pixels
are set to 0, i.e. I(u, v) ∈ {0, 1}. The evaluation function for the region cue
can then be formulated as [Deutscher et al., 2000]:

wr(Ir, P ) =
1
|P |

|P |∑
i=1

(1− Ir(pi))2 = 1− 1
|P |

|P |∑
i=1

Ir(pi) (1.10)

The main difference to the edge cue is that not projected contour points of
the model are sampled but points within the projected contour. This leads to
a considerably higher computational effort, since the points are sampled in a
grid rather than along a line. The likelihood function for the region cue finally
reads:

pr(Ir | s) ∝ exp
{
− 1

2σ2
r

wr(Ir, fr(s))
}

(1.11)
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where the function fr(s) computes the forward kinematics of the human model
and projects the model’s body part points to the image coordinate system.
This is achieved by computing a grid within the area defined by the four
projected contour endpoints p1,p2,p3,p4 (see Section 1.3.2).

1.4.3 Fusion of Multiple Cues

The general approach for fusing the results of multiple cues within a particle
filtering framework is to multiply the likelihood functions of the cues in order
to obtain an overall likelihood function. For the introduced edge cue and region
cue, this would yield:

p(Ig, Ir | s) ∝ exp
{
− 1

2σ2
g

wg(Ig, fg(s))
}
· exp

{
− 1

2σ2
r

wr(Ir, fr(s))
}

= exp
{
−
[

1
2σ2

g

wg(Ig, fg(s)) +
1

2σ2
r

wr(Ir, fr(s))
]}

(1.12)

Any other cue can be fused within the particle filter with the same rule. One
way of combining the information provided by multiple calibrated cameras is
to incorporate the likelihoods for each image in the exact same manner, as
done in [Deutscher et al., 2000]. This technique can also be used for combining
the likelihood functions for the left and right camera image. However, when
combining cues with different characteristics, fusion with this method often
results in noisy estimations and partly unstable behavior. In order to overcome
this problem, in [Azad, 2008b], a prioritized fusion method for fusing the edge
cue and a so-called distance cue [Azad et al., 2006b] is proposed.

1.5 Rigid Object Tracking

The introduced cues can be used for the tracking of rigid objects as well.
With rigid objects, the problem of tracking becomes more tractable, since the
dimensionality of the search space is reduced six: 3 DoF for the position and
3 DoF for the orientation. As a model-based rigid object tracking algorithm
using edge information one usually understands a method that relies on a 3D
rigid object model (usually CAD), which usually consists of a number of primi-
tives. Most often these primitives are (straight) lines, since their projection can
be computed very efficiently by the projection of the two endpoints. Various
non-curved 3D objects can be modeled using lines, such as cuboids or pyra-
mids, as illustrated in Fig. 1.4. Furthermore, other feasible 3D primitives are
cones and cylinders, for each of which the two characteristic contour lines can
be calculated with few additional computational effort; the (semi) ellipses can
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be neglected. Note that any 3D shape for which the projection of curved sur-
faces is crucial is problematic and cannot be tracked with the same approach.
An object recognition, pose estimation, and tracking approach for arbitrary
shapes combining stereo vision with model-based acquisition of views for an
appearance-based method is described in [Azad et al., 2006a, Azad, 2008b].

Fig. 1.4. Examples of simple 3D models suitable for model-based tracking.

As explained in Section 1.1, the goal is to find the model configuration that
maximizes a likelihood function which is specific to the problem. In the case
of edge-based rigid object tracking, the space of model configurations is the
space of possible object poses ∈ R6, and the likelihood function measures the
number of edge pixels along projected model edges (see Section 1.4.1). The
computational effort for such particle filter based approaches depends on the
number of evaluations of the likelihood function per frame. In conventional
particle filters, this number is equal to the number of particles.

In [Klein and Murray, 2006], a real-time system for rigid object tracking using
particle filtering is proposed. In order to achieve real-time performance, the
evaluation of the likelihood function is implemented on the GPU of a graphics
card. Particle filtering is performed in two stages: First, an automatically
adjusted number of particles is used on the down-sampled input image of
size 320×240, together with a broader i.e. smoothed likelihood function. In
the second stage, 100 particles are used with a peaked likelihood function,
which is applied on the input image at full resolution. The system achieves
a processing rate of 30 fps on a 3.2 GHz CPU with an nVidia GeForce 6800
graphics card.

In the most simple case of 2D position tracking of a segmented blob, the re-
gion cue presented in Section 1.4.2 can be used with a square model. The
evaluation of the likelihood function can be speeded up significantly by using
integral images, also referred to as summed area tables (for an implemen-
tation see the functions ImageProcessor::CalculateSummedAreaTable and
ImageProcessor::GetAreaSum of the IVT). The problem with 3D position
tracking of a segmented blob using the region cue is that the evaluation func-
tion from Eq. (1.10) prefers small areas. Therefore, a 3D position tracker would
tend to z → ∞. One possible solution is to modify Eq. (1.10) by division by
the z-coordinate, so that positions at far distances are not blindly preferred,
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yielding:

wr(Ir, P ) = − 1
z |P |

|P |∑
i=1

Ir(pi) (1.13)

The leading 1 from Eq. (1.10) is omitted, since the range of possible values is
not fixed when dividing by the z-coordinate. An effective solution is to collect
all results of Eq. (1.13) for one particle set, then linearly map the values to
the interval [0, 1], before applying the exponential function. From experience,
a weighting factor of ss = 10 leads to good result:

pr(Ir | s) ∝ exp {−ss · w′
r(Ir, fr(s))} (1.14)

where w′
r denotes the values after mapping to the interval [0, 1]. The neces-

sary computations, including sampling a square in an image for a 3D square
model, are summarized in the Algorithms 2 and 3. Here, f denotes the fo-
cal length, s the side length of the square in 3D, and Is,l, Is,r denote the
segmentation results for a stereo image pair. Implementations in the form
of example applications can be found in IVT/examples/TrackingApp and
IVT/win32/TrackingApp, respectively.

Tracking a segmented blob with the presented method results in a stable
tracker, which is robust to image noise, partial occlusions, and also succeeds
for imperfect segmentation results, e.g. unconnected sub-blobs of a blob. A
problem that remains is that the estimated 3D position, in particular the
z-coordinate, is not accurate. However, the estimate can be refined to an
accurate 3D position on the basis of a blob analysis and correlation-based
stereo triangulation, as shown in [Azad, 2008b].

Algorithm 2 ProjectAndSampleSquare(p, s) → P

1. (x, y, z)T = p
2. (u, v) ← CalculateImageCoordinates(p)

3. k :=
s · f
2z

4. Sample points from [u− k, u + k]× [v− k, v + k] and store the 2D positions in
the point set P .
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Algorithm 3 ComputeProbabilities(Is,l, Is,r, {pi}) → {πi}
1. N := |{pi}| { number of particles }
2. For each i ∈ {1, . . . , N} perform the steps 3–5:
3. Pl ← ProjectAndSampleSquare(pi, s) { Algorithm 2, left camera }
4. Pr ← ProjectAndSampleSquare(pi, s) { Algorithm 2, right camera }
5. wi := ws(Is,l, Pl) + ws(Is,r, Pr) { using Eq. (1.13) }
6. wmin := min {wi}
7. wmax := max {wi}
8. For each i ∈ {1, . . . , N} calculate the final likelihood by:

πi := exp
{
−ss

wi − wmin

wmax − wmin
)
}
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Integrating Vision Toolkit (IVT)

Author: Pedram Azad

2.1 Implementation

The Integrating Vision Toolkit (IVT) [Azad, 2008a] is an image processing
library developed at the chair of Professor Dillmann. It is freely available
under the GNU license in source code, and can be downloaded from Source-
Forge.net.1 Detailed instructions for the installation of the IVT can be found
in Chapter 3. A theoretically well-founded but yet practical and easy-to-
understand introduction to computer vision including various example ap-
plications using the IVT is given in [Azad et al., 2008] (resp. in German in
[Azad et al., 2007a]).

The highest goal with the development of the IVT was to lay a clean, object-
oriented architecture as foundation and at the same time to offer efficient
implementations of the algorithms. A core component, by which the IVT
stands out from most image processing libraries – and also from the popular
OpenCV – is the abstraction of image acquisition by an appropriate camera
interface. This enables the development of image processing solutions that are
perfectly independent of the used image source from a software point of view.
Thus changing only one line of code for the choice of the camera module is
sufficient, in order to run an application with another camera.

Throughout the implementation of the IVT, the focus was on avoiding depen-
dencies on libraries and between files of the IVT whenever possible. The strict
separation of the files which contain only proprietary developments, and those
which encapsulate calls to external libraries, allows to configure the IVT in

1 http://sourceforge.net.
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a convenient manner. The core of the IVT is written in pure ANSI C/C++
and can be compiled without any library. Alternatively, it is possible to in-
clude classes or namespaces which encapsulate the libraries Qt, OpenCV and
OpenGL. Due to the strict separation, no mutual dependencies exist, so that
these libraries can be added independently.

2.2 Architecture

In this section a compact summary of the architecture of the IVT is given. For
this, the interfaces of the image sources, graphical user interfaces, OpenCV
and OpenGL are explained. At the end of this chapter, short sample programs
illustrate the use of the individual interfaces.

2.2.1 The Class CByteImage

The class CByteImage forms the core of the IVT, and is able to represent an
8 bit grayscale image and a 24 bit color image. It is written in pure ANSI C++
and is thus platform independent. In addition to the pure representation of
an image, this class can read and write bitmap files2.

CByteImage

pixels : ref unsigned char
width : int
height : int
type : ImageType
bytesPerPixel : int

Constructor()
Constructor(width : int, height : int, type : ImageType,
                    bHeaderOnly : bool)

LoadFromFile(pFileName : ref char) : bool
SaveToFile(pFileName : ref char) : bool

Fig. 2.1. Representation of the public attributes and methods of the class CByteIm-
age in UML.

The public attributes of this class are the integer variables width and height,
which describe the width and height of the image in pixels, the pointer pixel

2 Image files with the file ending .bmp.
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of type unsigned char*, which points to the beginning of the storage area
of the image, and the variable type, which contains the value eGrayScale
for grayscale images, and the value eRGB24 for 24 bit color images. Images of
type eRGB24 can likewise contain a 24 bit HSV color image, since these are
identical in terms of the representation in memory. As an additional attribute,
the variable bytesPerPixel is offered, which contains the value 1 for grayscale
images and the value 3 for color images.

2.2.2 Connection of Graphical User Interfaces

The elements of graphical user interfaces (GUIs) for image processing appli-
cations can be divided into two groups: Input elements such as input fields,
slide controls, buttons etc., and the display of images. The latter functionality
is encapsulated in the IVT by the interface CGUIInterface. The implementa-
tion of the input elements is left to the application and can be made directly
with the library.

<< CGUIInterface >>

Destructor()

DrawImage(pImage : ref CByteImage, x : int, y : int)
ShowWindow() : void
HideWindow() : void

Fig. 2.2. Representation of the methods of the interface CGUIInterface in UML.

A class inheriting the CGUIInterface must implement its three virtual
methods and the virtual destructor. The method DrawImage possesses the
parameter pImage of type CByteImage* as the image to be drawn, and the
two optional integer parameters x and y, with which it is possible to indicate
an offset to the top left-hand corner of the window for the beginning of the im-
age. The methods Show and Hide are responsible for the visibility/invisibility
of the window.

Additionally, an initialization must be carried out at the beginning of
the program for most libraries, and control given briefly in each run of
the main loop, in order to give the library the possibility of handling
input and output. The encapsulation of these calls is made by the in-
terface CApplicationHandlerInterface, which consists of the two vir-
tual methods Reset and ProcessEventsAndGetExit. The method Reset
must be called first, before creating and displaying windows. The method
ProcessEventsAndGetExit should be called at the end of each cycle run; the
return value true signals that the user wants to terminate the application.
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<< CApplicationHandlerInterface >>

Destructor()

ProcessEventsAndGetExit() : bool
Reset() : void

Fig. 2.3. Representation of the methods of the interface CApplicationHandlerIn-
terface in UML.

In the IVT, the classes COpenCVWindow/COpenCVApplicationHandler and
CQTWindow/CQTApplicationHandler are available as ready-to-use implemen-
tations of this interface. Throughout the example applications, the Qt imple-
mentation is used, since with it, and by using Qt, it is easy to add graphi-
cal input elements. The implementation uses the library Qt3, which is freely
available for purely private or scientific purposes. Detailed instructions for the
installation of Qt3 can be found in Chapter 3. An example of the use of this
interface with Qt is given in Section 2.3.2.

2.2.3 Connection of Image Sources

In the IVT, for each image source, a module is implemented, which supplies
images of the type CByteImage, using the interface CVideoCaptureInterface.
This interface is defined in such a manner that it can transfer any number of
images with one call, which is necessary with multi-camera systems. Below,
the designation camera module is used synonymously for the module of an
image source.

<< CVideoCaptureInterface >>

Destructor()

OpenCamera() : bool
CloseCamera() : bool
CaptureImage(ppImages : ref ref CByteImage) : bool

GetWidth() : int
GetHeight() : int
GetType() : ImageType
GetNumberOfCameras() : int

Fig. 2.4. Representation of the methods of the interface CVideoCaptureInterface
in UML.
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A camera module must implement the seven virtual methods of the inter-
face and the virtual destructor. The method OpenCamera accomplishes the
necessary initializations, starts the image recording and returns a boolean
value which indicates the result of the initialization. The parameters nec-
essary for the configuration of the module, for example the choice of the
resolution or the encoding, differ from image source to image source, and
are therefore to be selected through the constructor of the respective mod-
ule. The method CloseCamera terminates the image recording, deletes the
objects and frees memory space. The method CaptureImage possesses the
parameter ppImages as input, which is of the type CByteImage**. Thus
it is possible to transfer as many images as desired with one call. The in-
stances of CByteImage must already be allocated and consistent in size, type
and number with the requirements of the camera module. For this purpose,
this information can be retrieved using the methods GetWidth, GetHeight,
GetType and GetNumberOfCameras. In order to receive valid values, the
method OpenCamera must have already been successfully called. An exam-
ple of the use of a camera module is given in Section 2.3.3.

2.2.4 Integration of OpenCV

The OpenCV3 is a very popular image processing library, which is also avail-
able on SourceForge.net as an open source project. It offers a broad spectrum
of image processing algorithms, but, however, does not have an overall object-
oriented architecture.

Due to its broad spectrum of offered functionality, the OpenCV is merged
optionally into the IVT. For this, functions of the OpenCV were encapsulated
and can be used via calls to the IVT, which usually operate on instances of
the class CByteImage. In this way, functions in the OpenCV are used perfectly
transparently, i.e. the called methods are independent of the OpenCV. Since
the images do not have to be converted themselves, but only an image header
of a few bytes is created, the calls to the OpenCV are made with virtually
no additional computational effort. Files which encapsulate functions of the
OpenCV, carry the letters CV as ending, as for example ImageProcessorCV.h
and ImageProcessorCV.cpp. An example of the use of the OpenCV within
the IVT is given in Section 2.3.4.

2.2.5 Integration of OpenGL via Qt

OpenGL4 is a specification of a platform-independent programming interface
for the development of 3D computer graphics. An implementation of this
3 http://sourceforge.net/projects/opencvlibrary.
4 Open Graphics Library.
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interface runs on all common operating systems, thus also under Windows,
Mac OS and Linux.

For some 3D image processing applications it can be useful to also visu-
alize the result in 3D. For this purpose, the IVT encapsulates the 3D-
primitives sphere and cylinder with the class COpenGLVisualizer, offering
the methods DrawSphere and DrawCylinder. Before these methods can be
used, the method Init must be called, which expects the width and the
height of the graphic area as input parameters. Alternatively the method
InitByCalibration initializes the OpenGL camera model by a given camera
calibration stored in an object of the type CCalibration. This way, OpenGL
can emulate a camera that has been previously calibrated, which is crucial
for augmented reality applications. If contents of the graphic area are to be
deleted, then the method Clear must be called. Below is a description of how
the graphic area can be visualized in a window. As an alternative, it is also
possible to write the graphic area directly into an RGB 24 color image of the
type CByteImage. For this, an image of the appropriate size – as indicated
before in the method Init (resp. InitByCalibration) – must be created and
passed as argument to the method GetImage. Please note that OpenGL writes
a vertically flipped image to memory, which can be flipped back by using the
function ImageProcessorCV::FlipY.

Using the class CQTGLWindow, it is possible to visualize the OpenGL graphic
area in a window. In the constructor, the size of the window must be indicated.
This should correspond to the parameters indicated in the method Init (resp.
InitByCalibration) from COpenGLVisualizer, since otherwise either the
area to be visualized is cut off or only part of the window is filled out. In order
to update the contents of the window, the method Update must be called. An
example of the use of OpenGL within the IVT is given in Section 2.3.5.

2.3 Example Applications

In this section, examples of the described interfaces and related libraries are
given. Each example consists of a short description and an implementation
in C++, which can be found at the end of this chapter. The source code
can be downloaded from the download section on the web page of the book
[Azad et al., 2008].

2.3.1 Use of Basic Functionality

This application is to serve as the simplest example of the use of the
IVT. An image is opened, converted using the function ConvertImage from
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ImageProcessor into a grayscale image, and afterwards a gradient filter is ap-
plied with CalculateGradientImageSobel, also from ImageProcessor. The
result is written into a bitmap file.

No further libraries are necessary for compiling and running this application.
The name of this application is simpleapp.

2.3.2 Use of a Graphical User Interface

This application shows the use of the interface CGUIInterface. First an image
is opened. If successful, a Qt window is created and displayed afterwards, in
order to then draw the loaded image in a loop. For the compilation and running
of this application, the library Qt3 is necessary. Detailed instructions for the
installation of Qt3 are given in Chapter 3. The name of this application is
guiapp.

2.3.3 Use of a Camera Module

In this application the use of the interface for image sources, as described in
Section 2.2.3, is shown. In order to allow readers who do not possess a camera
to compile and run this application as well, the class CBitmapCapture is used
as a camera module. This module is able to read an image from an indicated
path, and to simulate a camera with a static image. First this module is loaded
and initialized. If successful, an image of appropriate size and type is created.
Subsequently, in each run of the main loop, the image is captured by the
camera module and then displayed in a window.

If another camera module is to be used, for example in order to connect a
real camera, then only the line of code for the creation of the instance of the
camera module must be modified at the beginning of the main routine.

2.3.4 Use of OpenCV

This application shows the use of the OpenCV within the IVT via the offered
encapsulations. In this example, as an alternative to loading an image us-
ing the method LoadFromFile from the class CByteImage, the function with
the same name from ImageAccessCV is used. This encapsulates a call to the
function cvLoadImage from the OpenCV, which is also able to load different
image formats like JPG, PPM, TIFF and PNG. In order to be able to use
this function, the library highgui from the OpenCV is necessary.

At the beginning of the application, an image is loaded and in the case of
success converted into a grayscale image. Subsequently, the result is converted



20 2 Integrating Vision Toolkit (IVT)

using the function Resize from ImageProcessorCV into an image half the
width and height. A gradient filter is applied to the result, and the final
result is stored as a bitmap file, as already shown in the application from
Section 2.3.1. As can be seen, encapsulated calls to the OpenCV and pure
IVT calls can be mixed with one another at will.

2.3.5 Use of the OpenGL Interface

In this application, the rotation of a simple 3D object, consisting of two spheres
and a cylinder, is animated. For this, firstly Qt is initialized and a window of
the type CQTGLWindow is created. Subsequently, an instance of the OpenGL
encapsulation module is created and initialized. Using a 2D rotation, the end
points point1 and point2 are rotated in the plane y = 0 in each iteration of
the main loop by the current angle angle.

In order to achieve the same frame rate on different computers, 30 Hz
is specified using a timer. For this, the function get_timer_value
from IVT/src/Helpers/helpers.h returns an integer value of the type
unsigned int, which holds a relative time value in microseconds. If the pa-
rameter true is passed as argument to the function get_timer_value, then
the timer is reset to zero.

2.4 Overview of further IVT Functionality

In the previous sections, fundamental classes and interfaces of the IVT were
introduced, for the representation and the visualization of images, as well as
for the connection of useful libraries. In this section, a short overview of the
most important classes and routines provided by the IVT is given.

The directories are to be understood in each case to be a subdirectory of
IVT/src. If it concerns classes, then these carry the additional letter “C”
compared as the first letter of the file name. With namespaces the names are
identical.

Camera Calibration (directory Calibration)

CCalibration: Camera image functions for an individual camera

CRectification(CV): Performing a rectification

CStereoCalibration: Calculations for a stereo camera system

StereoCalibrationCV: Computation of the rectification parameters for a
given instance of CStereoCalibration

CUndistortionCV: Performing an undistortion
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Operations on Images and Representations (directory Image)

CByteImage: Data structure for the representation of 8 bit
grayscale images and RGB 24 color images

CShortImage: Data structure for the representation of 16 bit
grayscale images

CIntImage: Data structure for the representation of 32 bit
grayscale images

ImageAccessCV: Loading and saving of images with the OpenCV

ImageProcessor(CV): Point operators, filters, morphological operators,
conversion routines etc.

IplImageAdaptor: Conversion between CByteImage (IVT) and
IplImage (OpenCV)

PrimitivesDrawer(CV): Draws 2D primitives such as circles, ellipses, rectan-
gles, lines etc.

CStereoVision(SVS): Calculation of depth maps

CStereoMatcher: Stereo triangulation on the basis of stereo corre-
spondences computed with subpixel-accuracy using
a ZNCC.

Mathematic Routines (directory Math)

CFloatMatrix: Data structure for the representation of a matrix
of values of the data type float (compatible with
CByteImage and CShortImage)

CDoubleMatrix: Data structure for the representation of a matrix
of values of the data type double (compatible with
CFloatMatrix)

CMatd: Data structure and operations for convenient calcu-
lating with matrices of arbitrary dimension

CVecd: Data structure and operations for convenient calcu-
lating with vectors of arbitrary dimension

Math2d: Data structure and operations for efficiently calcu-
lating with vectors and matrices in 2D

Math3d: Data structure and operations for efficiently calcu-
lating with vectors and matrices in 3D

LinearAlgebra(CV): Functions for PCA, SVD, and standard vec-
tor/matrix operations, operating on CFloatMatrix
and/or CDoubleMatrix
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Others

Directory Color: Classes for color segmentation

Directory DataStructures: Dynamic array and kd-tree for efficient nearest
neighbor search

Directory gui: Implementation of CGUIInterface for Qt (and
additionally highgui from OpenCV) for the vi-
sualization of images and 3D rendering

Directory Helper: Useful helper functions such as sleep and
time measurements with microsecond resolu-
tion, etc.

Directory ObjectFinder: Color blob tracking, encapsulation of the Vi-
ola/Jones Haar classifier implemented by the
OpenCV

Directory ParticleFilter: General particle filtering framework

Directory Threading: Abstraction of threads, implementing POSIX
and Windows threads, and synchronization ob-
jects

Directory Tracking: Pose estimation on the basis of point corre-
spondences (2D-3D, 3D-3D), RAPiD tracker
[Harris and Stennett, 1990]

Directory VideoCapture: Various camera modules implementing
CVideoCaptureInterface

Directory Visualizer: Classes for 3D visualization using OpenGL
or Open Inventor. COpenGLVisualizer can
simulate a real camera given an instance of
CCalibration.
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3

Installation of IVT, OpenCV and Qt under
Windows and Linux

Author: Lars Pätzold

This tutorial describes the setup of a ready-to-use environment for program-
ming with the IVT library [Azad, 2008a] under Windows and Linux. This
includes the setup of the libraries supported by the IVT, namely OpenCV
and Qt, as well as a driver for Firewire cameras.

In many parts, the given instructions are very detailed, in order to make the
introduction to the use of the IVT easier. A lot of steps are actually necessary
to set up the development environment, until one can finally start program-
ming. Despite the additional effort, the installation of all listed libraries is
recommended. If the use of a camera is not intended, the steps in which
“1394” occurs can be skipped.

The tutorial is divided into two main sections: Windows and Linux. These
two sections are to be regarded as independent from each other. The section
for Windows ends with a summary, which can more or less serve as a quick
guide for the installation on Windows systems. For the first time, however,
the detailed step by step version is recommended, since it contains important
information regarding the installation.

It is to be noted that the software introduced here may only be used for private
and/or scientific purposes in accordance with its license, and not for commer-
cial use. For more exact information concerning the license regulations, refer
to the indicated internet sites.



28 3 Installation of IVT, OpenCV and Qt under Windows and Linux

3.1 Windows

3.1.1 OpenCV

1. Downloading OpenCV

On the internet at http://sourceforge.net/projects/opencvlibrary/
download the file OpenCV_1.0.exe from the download area. This file is found
as part of the package opencv-win and by following the continuative release
link 1.0. There, the download OpenCV_1.0.exe is found. This version is
recommended, since the compatibility of the IVT with this version has been
ensured by numerous tests.

2. Installation

With the downloaded file, the OpenCV can be installed. The target
directory can be set during the setup (e.g. C:\Program Files\OpenCV).

3. Settings in the development environment

In the development environment of choice (e.g. Microsoft Visual C++), the
directory paths to the include and library files must be set.

For the include files, the following paths are to be set:
C:\Program Files\OpenCV\cv\include
C:\Program Files\OpenCV\cxcore\include
C:\Program Files\OpenCV\otherlibs\highgui
C:\Program Files\OpenCV\cvaux\include
C:\Program Files\OpenCV\otherlibs\cvcam\include

The path for the library files reads:
C:\Program Files\OpenCV\lib

If in the previous step, the default target directory
C:\Program Files\OpenCV was not selected, then the directory paths
have to be adapted accordingly.

In Microsoft Visual C++ 6.0, the directory paths can be modified in the
general options as follows: In the menu Tools, under Options..., the tab Di-
rectories can be found. In order to set the directories for the include files, the
drop-down menu Include files must be selected, and for the directory of the
library files accordingly the drop-down menu Library files (see Fig. 3.1). The
directory paths can then be added in the list below.



3.1 Windows 29

Fig. 3.1. Dialog window for the options.

4. Checking the system variable PATH

Via Start, Settings, Control Panel, System the dialog window System
Properties is opened (alternatively use the hot-key Windows key + Break
key). There, the appropriate dialog window can be opened via the button
Environment Variables on the tab Advanced (see Fig. 3.2). The PATH
variable should contain C:\Program Files\OpenCV\bin (the path must be
set according to the target directory during setup). If this is not yet the case,
the PATH variable must be changed accordingly. It is important to note that
multiple paths in the PATH variable must be separated by a semicolon.
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Fig. 3.2. Dialog window for the system properties (left) and the environment vari-
ables (right).

3.1.2 Qt

1. Downloading Qt

At this point, a freely available implementation of Qt3 is recommended,
which is easy to download and install. It should be noted that this imple-
mentation is independent from the official Qt version by Trolltech. For more
exact information, refer directly to the following internet address. The free
Qt3 version can be found at http://sourceforge.net/projects/qtwin/.
In the download area under the package Unofficial Qtwin, the con-
tinuative link View older releases of the Unofficial Qtwin package
points to the download of the version qt-win-3.3.4-3. For Microsoft Vi-
sual C++ 6.0, the file setup-qt-win-free-msvc-3.3.4-3.exe is to
be downloaded and for Microsoft Visual Studio .NET 2003, the file
setup-qt-win-free-msvc.net2003-3.3.4-3.exe.

2. Installation

With the downloaded file, a setup procedure can be started, which al-
lows to select the target directory.
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3. Settings in the development environment

In the development environment, the following directory paths must be
set:

Path for the include files:
C:\Program Files\qt-win-free-msvc-3.3.4\include

Path for the library files:
C:\Program Files\qt-win-free-msvc-3.3.4\lib

A guide for changing the paths in Microsoft Visual C++ 6.0 can be found in
Step 3 of the previous section dealing with the installation of the OpenCV.

The paths have to be changed accordingly, if the default target directory was
not selected.

4. Checking the system variable PATH

The PATH variable should contain:
C:\Program Files\qt-win-free-msvc-3.3.4\bin (must be changed ac-
cording to the provided target directory during the setup, if necessary).
How the system variable can be checked and changed is described in Step 4
of the OpenCV installation. Here, the location of the dynamic link library
qt-mt3.dll is of interest.

3.1.3 CMU1394

1. Download

The setup version of the CMU1394 driver is found in the download
area at http://www.cs.cmu.edu/~iwan/1394/. We recommend the version
6.3, since compatibility of this version with the IVT has been ensured by
various tests.

2. Installation

Executing the downloaded file starts a setup procedure. During the
setup, the components to be installed, as well as the target directory of the
installation can be selected. Here, make particularly sure that the component
Development Files is installed (see Fig. 3.3). The default directory for the
installation is C:\Program Files\CMU\1394Camera.
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Fig. 3.3. Setup of the CMU1394 driver.

3. Settings in the development environment

The directory paths for the development environment are as follows:

Path for the include files:
C:\Program Files\CMU\1394Camera\include

Path for the library files:
C:\Program Files\CMU\1394Camera\lib

A guide for setting the paths in Microsoft Visual C++ 6.0 is shown in Step 3
of the section dealing with the installation of the OpenCV.

Again the paths have to be set accordingly, if the default target directory was
not selected.

3.1.4 IVT

1. Downloading the IVT

On the internet at http://sourceforge.net/projects/IVT/ download the
zip file (e.g. ivt-1.1.3.zip) from the download area.
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2. Unpacking

The downloaded zip file can be unpacked into any directory. It is rec-
ommended that the file is unpacked to the same location as OpenCV and Qt.
According to the standard configuration of the OpenCV and Qt installations,
this location is the directory C:\Program Files. After extraction, the
subdirectories doc, examples, files, lib, src and win32 can be found in
C:\Program Files\IVT.

3. Settings in the development environment

The directory paths for the include and library files must be set in the
development environment. The include files are located in the subdirectory
src of the IVT directory (i.e. C:\Program Files\IVT\src). The library
files are located in the subdirectory lib\win32 of the IVT directory (e.g.
C:\Program Files\IVT\lib\win32).

A guide to modifying the paths in Microsoft Visual C++ 6.0 is shown in Step
3 of the section dealing with the installation of the OpenCV. Again the paths
have to be set accordingly, if the default target directory was not selected.

4. Building the libraries

The workspace file IVT.dsw for Microsoft Visual C++ 6.0 is located in
the directory win32\IVTLib. If this file is opened in a newer version of
Microsoft Visual C++, then an automatic conversion into a new file format
takes place and the workspace can be used likewise. Once opened, the version
of the library that is to be built can be selected in the menu Build using the
menu option Set Active Configuration... (see Fig. 3.4).

Fig. 3.4. Dialog window for the configuration of the active project.
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The following versions are available:

IVTLib – Win32 Release
This is the standard version of the IVT library. Debug information is not
included. The file name of the library file is ivt.lib.

IVTLib – Win32 Debug
The debug version permits step-by-step execution of the functions within the
IVT library during debugging. Usually applications that are compiled with
the debug version are noticeably slower throughout execution. The library to
be generated has the file name ivtd.lib.

IVTQTGUILib – Win32 Release
With this selection, a further library is built. This is merely an extension to
the standard version of the IVT library, which contains simplified support for
graphical user interface with Qt. The file name of the library is ivtguiqt.lib.

IVTQTGUILib – Win32 Debug
The debug version of the extension library again permits the debugging within
the IVT source code. The file name of the debug version is ivtguiqtd.lib.

The respective library file can be built afterwards via the menu Build and
the appropriate menu option (i.e. Build ivt.lib). After the build process is
finished, the generated library file (e.g. ivt.lib) is located in the subdirectory
IVT\lib\win32. In order to be able to later faultlessly compile all applications
with the IVT, all four library files of the IVT should be built.

5. Example application

For checking the installation, and as an introduction to programming
with the IVT, a suitable example application is SimpleApp. This is the
simplest of the numerous example applications contained in the IVT.

The workspace file SimpleApp.dsw is located in the IVT subdirectory
win32\SimpleApp. After having opened it in Microsoft Visual C++, the ap-
plication should be compiled without any errors via the menu item Build Sim-
pleApp.exe from the menu Build. If a problem occurs, first it should verified
which version has been selected in the menu Build under the menu item Set
Active Configuration..., and whether the according IVT library file was built
in the previous step. The example applications are configured for the debug
version of the IVT library, i.e. for ivtd.lib and if necessary for ivtguiqtd.lib.
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Before the application is executed, an image file should be set as program
argument. The program arguments can be added in Project settings (see Fig.
3.5). To get there, go to menu Project and choose the menu item Settings.... On
the tab Debug, ..\..\files\dish_scene_left.bmp can be set as program
argument, for example. This path points to an image file, which is contained
in the subdirectory files of the IVT.

Fig. 3.5. Dialog window for the project settings.

If the application is now executed from the menu Build and the menu item
Execute SimpleApp.exe, the result output written to file ’output.bmp’ is printed
in the console window. Subsequently, the file output.bmp is located in the
same directory as the workspace file SimpleApp.dsw i.e. in win32\SimpleApp
in the IVT directory.

In order to verify whether OpenCV and Qt are correctly installed as well,
the example applications SimpleAppCV and ShowImageQT can be run. Both
applications can be handled in the same way as the application SimpleApp.

If up to here all steps have been accomplished, and the example applications
could be compiled and executed, then a ready-to-use environment for pro-
gramming with the IVT has been set up.
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3.1.5 Summary

If after following all installation steps, any problems occur during compila-
tion, the following overview serves for verification of all important directory
paths. The overview summarizes all directory paths that should be set in the
development environment (i.e. Microsoft Visual C++) and in the system vari-
able PATH. Additionally, the internet addresses mentioned in the installation
steps are listed.

Internet addresses:
http://sourceforge.net/projects/opencvlibrary/
http://sourceforge.net/projects/qtwin/
http://www.cs.cmu.edu/~iwan/1394/
http://sourceforge.net/projects/IVT/

Paths for the include files:
C:\Program Files\OpenCV\cv\include
C:\Program Files\OpenCV\cxcore\include
C:\Program Files\OpenCV\otherlibs\highgui
C:\Program Files\OpenCV\cvaux\include
C:\Program Files\OpenCV\otherlibs\cvcam\include
C:\Program Files\qt-win-free-msvc-3.3.4\include
C:\Program Files\CMU\1394Camera\include
C:\Program Files\IVT\src

Paths for the library files:
C:\Program Files\OpenCV\lib
C:\Program Files\qt-win-free-msvc-3.3.4\lib
C:\Program Files\CMU\1394Camera\lib
C:\Program Files\IVT\lib\win32

The system variable PATH should contain the following paths:
C:\Program Files\OpenCV\bin;
C:\Program Files\qt-win-free-msvc-3.3.4\bin;
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3.2 Linux

3.2.1 OpenCV

1. Downloading OpenCV

At http://sourceforge.net/projects/opencvlibrary in the down-
load area under the package opencv-linux, follow the link 1.0. There the file
opencv-1.0.0.tar.gz can be downloaded.

2. Unpacking

In a console window, change to the directory of the downloaded archive and
then run the command tar xfvz opencv-1.0.0.tar.gz.

3. Compile the OpenCV libraries

After changing to the unpacked directory opencv-1.0.0 run the fol-
lowing instructions consecutively:

./configure
make
make install
ldconfig

Note: For the instructions make install and ldconfig, root privileges are
necessary.

Subsequently, the include files of the OpenCV should be located in the direc-
tory /usr/local/include/opencv.

3.2.2 Qt

For the installation, a so-called package tool is recommended. It is important
to make sure that a developer package of Qt version 3 is installed. This is done
under Debian Linux, for example, with: apt-get install qt3-dev-tools.

The directory /usr/include/qt3 should exist afterwards, containing the in-
clude files of Qt.
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3.2.3 Firewire and libdc1394/libraw1394

1. Installation from libdc1394/libraw1394

The two libraries libdc1394 and libraw1394 can also be installed with a pack-
age tool; under Debian Linux, for example with apt-get install libdc1394
as well as apt-get install libraw1394.

2. Installing a firewire camera (optional)

In order to use the camera under Linux, the four kernel modules
named raw1394, video1394, ohci1394 and ieee1394 must be loaded.
This is accomplished under Debian Linux using the command modprobe.
modprobe raw1394 and modprobe video1394 are sufficient to activate all
four modules. With the command lsmod | grep 1394, it can be checked
whether the four modules have been successfully loaded. This command
should list the above mentioned four modules. If this should not be the case,
try to add each module individually with the command modprobe.

In order to allow a user or an application to access the interface to the camera,
the user has to be registered in the appropriate groups (usually video) of
the devices /dev/raw1394 and /dev/video1394, or the user privileges of the
devices must be set appropriately. For this, root privileges are necessary.

3.2.4 IVT

1. Downloading the IVT

Download ivt-1.1.3.tar.gz at http://sourceforge.net/projects/IVT/
in the download area.

2. Unpacking

In a console window, change to the directory of the downloaded archive and
then run the command tar xfvz ivt-1.1.3.tar.gz. After unpacking, the
directory IVT should exist in the current directory.
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3. Configuration

The IVT offers the possibility of configuring the library before building
it. This configuration takes place in the file IVT/src/Makefile.base.
Makefile.base must be opened and edited with a text editor (e.g. vim).
In the following, the most important configuration options are listed. These
options are configuration variables, which can be set either to 1 or 0. In
order to integrate or exclude certain parts of the IVT library, the appropriate
configuration variable must be set to 1 for integration and to 0 for exclusion.

USE QT = 1
The IVT library is extended by classes that allow the easy creation of
graphical user interfaces with Qt. The associated source files with the file
names QT* are located in IVT/src/gui.

USE OPENCV = 1
Part of the IVT-library accesses the OpenCV library. The file names of
the source files belonging to this part have the endings CV.h and CV.cpp,
respectively.

USE OPENGL = 1
OpenGL and GLU are used by the class COpenGLVisualizer, which allows
the visualization of spheres and cylinders. The source files of this class are
located in IVT/src/Visualizer.

USE HIGHGUI = 1
HighGUI is part of the OpenCV library. As an alternative to Qt, windows
and images can be graphically displayed with it. The respective source files
OpenCV*, which use HighGUI, are located in IVT/src/gui.

USE LIBDC1394 = 1
An interface to the library libdc1394 enables the control of IEEE1394
cameras (firewire cameras). The source files of this moduel are called
Linux1394Capture.* and are located in IVT/src/VideoCapture.

Apart from these variables, the directory paths to include and library files as
well as the file names of the libraries can be changed in the lower part of the
file. The pre-configured paths usually correspond to the default installation
paths. However, these paths can differ, depending on the Linux distribution
used. Modifying the paths is only recommended if other than the default paths
were used throughout installation, or if problems arise.
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For the adjustment, a short explanation of the appropriate variables is given
in the following:

INCPATHS BASE
Contains all directory paths to included files. Adding a path takes place by
using the operator += and adding the path with the leading parameter -I.
For example INCPATHS BASE += -I/usr/include/qt3

LIBPATHS BASE
Contains all directory paths to library files. Adding a path takes place by
using the operator += and adding the path with the leading parameter -L.
For example LIBPATHS BASE += -L/usr/lib/qt3/lib

LIBS BASE
Contains all file names of the libraries. Adding a file name takes place by using
the operator += and adding the file name with the leading parameter -l. For
example LIBS BASE += -lqt-mt -livtgui

4. Building the IVT libraries

The libraries are built by running the command make in the directory
IVT/src. If after having built the IVT library once, modifications are made
to the IVT files located in IVT/src, it is recommended to run the command
make clean before running the command make, in order to enforce a complete
new build process.

5. Example application

For checking the installation, and as an introduction to programming
with the IVT, a suitable example application is SimpleApp. It is found
in IVT/examples/SimpleApp in the IVT directory. After changing to
the directory SimpleApp, an executable file with the name simpleapp
is created by running the command make. If the application is started
with ./simpleapp ../../files/dish_scene_left.bmp, then, provided all
libraries have been correctly installed, a file called output.bmp is produced
in the same directory.

Now, the setup, and therefore the tutorial is finished. There are numerous
further example applications in the directory IVT/examples, with which the
features of the IVT can be tested and learned.
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In this section, useful mathematic relationships and formulas, mainly in the
context of linear least squares are given. Since the definitions operating on
complex numbers are not of interest, only real-valued matrices and vectors
will be assumed. A more detailed introductions including derivations of the
formulas can be found in [Wikipedia, 2008].

A.1 Singular Value Decomposition

The singular value decomposition (SVD) of a matrix A ∈ Rm,n is defined as
the product

A = U Σ V T (A.1)

with U ∈ Rm,m, Σ ∈ Rm,n, V ∈ Rn,n. The matrices U and V are orthogonal
matrices. The matrix Σ contains non-zero values – the singular values – on
the diagonal and zeroes off the diagonal. An algorithm for computing the sin-
gular value decomposition of a matrix A is described in [Press et al., 2007].
In the IVT (see Chapters 2 and 3), the implementation of the OpenCV
[OpenCV, 2008] is encapsulated by the function LinearAlgebraCV::SVD.

A.2 Pseudoinverse

The pseudoinverse A+ ∈ Rn,m of a matrix A ∈ Rm,n is the generaliza-
tion of the inverse matrix. The mathematic definition of the pseudoinverse,
which is also often called the Moore-Penrose pseudoinverse, can be found in
[Wikipedia, 2008]. There are several ways for computing the pseudoinverse,
from which two commonly used methods are presented in the following.
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A.2.1 Using the Regular Inverse

If the matrix A has full rank, then the pseudoinverse can be computed by
using the regular inverse. If m > n, then it applies:

A+ = (AT A)−1AT (A.2)

otherwise for m < n:
A+ = AT (A AT )−1 (A.3)

As can be easily shown, for the special case m = n, the regular inverse A−1

is computed.

A.2.2 Using the Singular Value Decomposition

A numerically more stable method for computing the pseudoinverse, which
also succeeds when the matrix A does not have full rank, is based on the singu-
lar value decomposition. Given the singular value decomposition A = U Σ V T

(see Section A.1), the pseudoinverse is calculated by:

A+ = V Σ+ UT (A.4)

where the matrix Σ+ ∈ Rm,n is derived from the matrix Σ by inverting all
non-zero values on the diagonal, and leaving all zeroes in place. In practice,
the condition that a value is not zero is verified by comparing the absolute
value to a predefined epsilon.

A.3 Linear Least Squares

Given the over-determined system of linear equations

A x = b (A.5)

with A ∈ Rm,n, b ∈ Rm, and m > n, the task is to find an optimal solution
x∗ ∈ Rn, so that the sum of squared differences ‖A x∗−b‖22 becomes minimal.
In the following, the three commonly used approaches for solving this problem
are presented.

A.3.1 Using the Normal Equation

The normal equation is acquired by left-sided multiplication of AT :
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AT A x = AT b (A.6)

If the matrix A has full rank, i.e. its rank is n, this system of linear equations
can be solved by using the regular inverse of AT A, which equals the compu-
tation of the pseudoinverse with the method presented in Section A.2.1. The
optimal solution x∗ is thus computed by:

x∗ = (AT A)−1AT b (A.7)

A.3.2 Using the QR Decomposition

A numerically more stable but also computationally more expensive method
is based on the QR decomposition of the matrix A:

A = QR (A.8)

where Q ∈ Rm,m is a orthogonal matrix, and R ∈ Rm,n is an upper triangular
matrix. The matrix Rn ∈ Rn,n is defined as the upper square part of the
matrix R, i.e. it is: (

Rn

O

)
(A.9)

where O is a (m−n)×n-matrix containing zeroes only. The optimal solution
x∗ can then be computed by solving the following system of linear equations:

Rn x∗ = (QT b)n (A.10)

where (QT b)n denotes the upper n values of the vector of QT b. This system
of linear equations can be efficiently solved by utilizing the fact that Rn is an
upper triangular matrix. An algorithm for computing the QR decomposition
of a matrix A is described in [Press et al., 2007].

A.3.3 Using the Singular Value Decomposition

The numerically most stable but also computationally most expensive method
is based on the singular value decomposition. For this purpose, the pseudoin-
verse A+ has to be computed by using the method presented in Section A.2.2,
yielding the optimal solution x∗ = A+x.

A.3.4 Homogeneous Systems

In the case of a homogeneous system of linear equations, i.e. b = 0, all pre-
viously presented methods fail, since multiplication with b results in the zero
vector. In this case, the singular value decomposition A = U Σ V T can be
used to directly compute the optimal solution x∗, which is given by the last
column of the matrix V .
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A.4 Functions for Rotations

In this section, some useful functions for calculating rotation matrices and
rotation angles based on a given rotation axis are presented. Given a rotation
axis a and a rotation angle α, the rotation matrix R performing this rotation
can be computed by Algorithm 4.

Algorithm 4 RotationMatrixAxisAngle(a, α) → R

1. (x, y, z) :=
a

|a|
2. s := sin α
3. c := cos α
4. t := 1− c

5. R :=

(
tx2 + c txy − sz txz + sy
txy + sz ty2 + c tyz − sx
txz − sy tyz + sx tz2 + c

)

The reverse direction, i.e. extracting the axis a and the rotation angle α for a
given rotation matrix R, is computed by Algorithm 5. Note that −a and −α
result in the same rotation; apart from this, the solution is unique.

Algorithm 5 ExtractAxisAngle(R) → a, α

1.

(
r1 r2 r3

r4 r5 r6

r7 r8 r9

)
:= R

2. x := r8 − r6

3. y := r3 − r7

4. z := r4 − r2

5. r :=
√

x2 + y2 + z2

6. t := r1 + r5 + r9

7. α := atan2(r, t− 1)
8. a := (x, y, z)T

Finally, a function is presented that calculates the rotation angle α that is
necessary for rotating a given vector x1 to another vector x2, with |x1| = |x2|,
around a given rotation axis a. To compute the rotation angle α, the vectors
x1 and x2 are parallel projected onto the rotation plane defined by the rotation
axis a. The sign of the rotation angle is determined by verifying the resulting
two alternatives.
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Algorithm 6 Angle(x1, x2, a) → α

1. n :=
a

|a|
2. u1 := x1 − (n u1) n

3. u1 :=
u1

|u1|
4. u2 := x2 − (n u2) n

5. u2 :=
u2

|u2|
6. α :=

u1 u2

|u1| |u2|
7. R ← RotationMatrixAxisAngle(n, α)
8. d1 := |R u1 − u2|
9. d2 := |RT u1 − u2|

10. If d2 < d1 then set α := −α.
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