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Abstract. The effectiveness of Query By Example largely depends on the strat-
egy adopted to analyze the image content. In this paper we show how, by embed-
ding within image inspection algorithms active mechanisms of biological vision
such as saccadic eye movements and fixations, a more effective processing can
be achieved. In particular, we discuss the way to generate two fixation sequences
from a query imageIq and a test imageIt, respectively, and how to compare
the two sequences in order to compute a similarity measure of the two images.
Meanwhile, we show how the approach can be used to discover and represent
the hidden semantic associations among images, in terms of categories, which
in turn drives the query process. Also, such associations allow an automatic pre-
classification, which makes query processing more efficient and effective.

1 Introduction

In the framework of content based retrieval, Query By Example (QBE) is considered a
promising approach, because the user handles an intuitive query representation: “given
a target imageIq and a test imageIt, is there an instance of the target in the test im-
age?”. It is likely that the user has some semantic specification in mind (“I want to
see a sunset”) and he provides the query engine with an example of a particular sunset
that should best represent the semantics. However, traditional image databases are not
able to express either such rich semantics or similarity rules consistent with semantics.
This problem is known as “semantic gap” [4]. As pointed out by Santiniet al. [9] the
only meaning that can be attached to an image is its similarity with the query image,
namely the meaning of the image is determined by the interaction between the user and
the database. The main problem here is that perception indeed is a relation between
the perceiver and its environment, which is determined and mediated by the goals it
serves (i.e., context) [5]. Thus, considering for instance Leonardo’s Mona Lisa (Fig.
1): should it be classified as a portrait or a landscape? Clearly, the answer depends on
the context at hand. In this perspective, it is useful to distinguish between the “What”
and “Where” aspects of the sensory input and to let the latter serve as a scaffolding
holding the would-be objects in place [5]. Such distinction offers a solution to the basic
problem of scene representation - what is where - by using the visual space as its own
representation and avoids the problematic early commitment to a rigid designation of an



object and to its crisp segmentation from the background (on demand problem, binding
problem) [5]. Consider again Fig. 1 and let Leonardo’s Mona Lisa represent the target
imageIq. An ideal unconstrained observer would scan along free viewing the picture
by noting regions of interest of either the landscape and the portrait, mainly relying on
physical relevance (color contrast,etc). However this is never the case in real observa-
tions, since the context (goals) heavily influence the observation itself. For example, in
a face detection context, the goal is accomplished when “those” eye features are en-
countered “here” above “these” mouse features. On the other hand, when a landscape
context is taken into account, the tree features “there” near river features “aside” may
better characterize the Mona Lisa image. Clearly, in the absence of this active binding,
the Mona Lisa picture can either be considered a portrait or a landscape;per se, it has
no meaning at all.

Fig. 1.The “What-Where” similarity space: the “Where” dimension (corresponding to the image
location) and the two “What” dimensions (similarity to a face image and to a landscape image)
are shown. Switching to one “What” dimension or to the other one, depends on the context/goal
provided, represented in the image by a face example and a landscape example

What we propose in this work is a representation scheme in which the “What” entities
are coded by their similarities to an ensemble of reference features, and, at the same
time the “Where” aspects of the scene structure are represented by their spatial dis-
tribution with respect to the image support domain. Thus, the similarity of an image
Iq with respect to another (test) imageIt can be assessed within the “What+Where”
(WW) space. In our system we functionally distinguish these basic components: 1) a
component which performs a “free-viewing” analysis of the images, corresponding to
“bottom-up” analysis mainly relying on physical features (color, texture, shape); 2) a
WW space in which different WW maps may be organized according to some selected
categories; any image is to be considered the support domain upon which different maps
can be generated, according to viewing purposes; 3) a query module (high level com-
ponent) which acts upon the WW space by exploiting “top-down” information (context



represented through categories). A functional overview of the proposed system is out-
lined in Fig. 2.

Fig. 2. A functional view of the proposed system at a glance

2 Mapping an image into the WW space

By means of attentive visual inspection, we view scenes in the real world by moving
our eyes (saccade) three to four times each second, and integrating information across
subsequent fixations (foveation points). Each fixation defines a focus of attention (FOA)
and the FOA sequence is denoted scanpath [8]; according to scanpath theory, patterns
that are visually similar, give rise to similar scanpaths when inspected by the same
observer under the same viewing conditions (task, context). The computational coun-
terpart of such behavior is denoted, after Ballard’s seminal paper [2],Animate Vision;
basically, it can be modelled as follows.
In the preattentive stage(see Fig. 2), features are extracted from brightness(I), color
channels tuned to red (R), green (G), blue (B) and yellow (Y) hues, orientation(O) via
Gaussian and oriented pyramids. From color pyramids, red/green (RG) and blue/yellow
(BY) pyramids are derived by subtraction. Then, from each pyramid a contrast pyramid
is computed encoding differences between a fine and a coarse scale for a given feature.
As a result, one contrast pyramid encodes for image intensity contrast, four encode
for local orientation contrast, and two encode for red/green(RG)and blue/yellow(BY)
contrast (see [7], for details). The pre-attentive representation, undergoes specialized
processing through the “Where” system devoted to localizing regions of interest, and
the “What” system tailored for analyzing them. In our system, the “Where” pathway
combines the pre-attentive contrast maps into a master or saliency map (see, [7]), which
is then used to direct attention to the spatial location with the highest saliency through a
winner take-all (WTA) network (attention shiftingstage). The region surrounding such
location represents the current FOA, sayFs. By traversing spatial locations of decreas-
ing saliency, a motor trace is generated representing the stream of foveation points for



an imageIi, namely(F i
s(ps; τs))s=1,2,...,Nf

whereps = (xs, ys) is the center of FOA
s, and the delay parameterτs is the observation time spent on the FOA before a saccade
shifts toFs+1 provided by the WTA net. An inhibition mechanism avoids that a winner
point is thoroughly reconsidered in the next steps. This process of attentive selection,
in which the image saliency points are extracted, is followed by the definition of the
FOAs, namely the regions which surround these points. Moreover, in this way, each
FOA is only visited once. In figure 3 an example of a scanpath is shown.

Fig. 3. A scanpath example where the labellings = 1, · · · , 10 represents the sequence of the
observer’s fixation points

Note that from the “Where” pathway two features are derived: the spatial positionps of
each FOA and the the fixation timeτs. In the “What” pathway, from each FOA informa-
tion is extracted based on the classic physical features, namely color, texture and shape.
More precisely, for each FOAF i

s , the “What” pathway extracts in our case two specific
features, the color histogramhb(F i

s) and the edge covariance signatureΞF i
s
. Eventu-

ally, for each considered imageIi the “flow” of such features, namely theInformation
PathIPi is generated,IPi = (IPi

s)s=1,...,Nf
whereIPi

s = (F i
s , hb(F i

s), ΞF i
s
).

An IP is thus a map, a visuomotor trace, of the image in the WW space. In simple
terms, it represents the observed image in terms ofthe temporal sequence according
to ”what” features have been observed and ”where” these have been observed. An
example is provided in figure 3. Note that the process described above obtains anIP
as generated under free-viewing conditions (i.e., in the absence of an observation task),
which is the most general scanpath that can be recorded. Clearly, according to differ-
ent viewing conditions (task, context) an image may be represented by different maps
in such space; such ”biased” maps can be conceived as weightedIPs, or sub-paths
embedded in the context-free one [11].

3 Endowing the WW Space with context: Category Representation

An image category, sayCn can be seen as a group of images from which, under the
same viewing conditions (context), similarIPs are generated. Our system requires an
initial training step during which the system learns category features. In this phase a



set of images, subdivided into specific categories, must be inserted into the database.
In particular, we have adopted the same database and the related image categorization
used by Wang et al. in [10].
For the automatic category detection problem, what we need in particular is a proce-
dure capable to assign, for each given categoryCn, n = 1, · · · , N , and any test image
It, the probabilityP (IPi|Cn). An efficient solution is to subdivide/cluster the images
belonging to a given categoryCn into particular subgroups calledcategory clusters, Cl

n

having “similar properties”.
Note that anIP can be thought as a feature vector and the problem of calculating a
clusterIP is reduced to the problem of searching, in a high dimensional space, the co-
ordinates of the minimum-distance point from the other space-points, which could be
accomplished with classical clustering algorithms [6]. TheIP as providedtout court
by the “What and Where” streams gives rise to a high dimensional feature space, since
composed by: a2-D subspace representing the set of FOA spatial coordinates; a768-D
(256 for component) space which represents the set of FOAHSV color histograms; a
1-D subspace which represents the set of FOA WTA fire-times; a18-D subspace which
represents the set of FOA covariance signatures of the wavelet transform.
Thus, the first step of category detection process is to cluster each category in order
to determine the subgroups of similar images, that is to assign a labell to the dif-
ferentIP (images), wherel ∈ [1, . . . , Ln] defines a particular category clusterCl

n.
Thus, each labell is a different cluster that can be selected with a certain probability
P (l). Each image pathIPi can be conceived as drawn from a mixture density, so that,
p(IPi|θl) =

∑L
l=1 p(IPi|l, θl)P (l), θl being the distribution parameters, and the like-

lihood of the data isL = p(IP|θl) =
∏N

i=1 p(IPi|θl). Since, in terms of the mixture
model we are dealing with an incomplete data problem (i.e., we must simultaneously
determine the labellingp(l|IP) given distribution parametersθl and viceversa), a suit-
able choice for the maximization of the likelihood is the Expectation Maximization
algorithm (EM) [3]. This algorithm maximizes thelogL function, by iteratively com-
putingp(l|IP), p(IP|l), P (l). The probabilistic model is assumed to be a mixture of

gaussiansp(IPi|l,ml,Σl) = exp(− 1
2 (IPi−ml)

T Σ−1
l (IPi−ml))

(2π)(d/2)|Σl|1/2 , ml,Σl, d, being the
unknown means and deviation vectors and the dimension of features space, respec-
tively, weighted by mixing proportionsαl = P (l). Denoteht

il = p(l|IPi,mt
l ,Σ

t
l).

The algorithm is articulated in the following steps.
For a suitable number of iterations do:E-step) obtain the labelling probabilities at each

IP i asht
il = αt

lp(IPi|l,mt
i,Σ

t
i)P

l αt
lp(IPi|l,mt

l ,Σ
t
l)

; M-step) obtain the parameters that maximize the

log-likelihoodαt+1
l = 1

N

∑
i ht

il,m
t+1
l =

P
i ht

ilIPiP
i ht

il
,Σt+1

l =
P

i ht
il[IPi−mt

l ][IPi−mt
l ]

TP
i ht

il
.

After this preliminary stage, by applying the EM algorithm we have obtained for each
categoryCn the related clusters:Cn = {C1

n, C2
n, . . . , CLn

n }. At this point to perform the
category assignment process, we can obtain the probability that a test imageIt belongs
to a categoryCn asP (Cn|IPt) ' p(IPt|Cn)P (Cn). Due to independency of clusters,
guaranteed by the EM algorithm:

P (Cn|IPt) ' P (Cn)
∏

l∈Lp

p(IPt|Cl
n) (1)



Summing up, the category discovery process is carried out by comparing the image
mapIP with the category clusters in the WW space and by choosing the best cate-
gories on the base of belonging probabilities of test image to the database categories
obtained by equation 1. Eventually, each imageIt, is associated to probabilities of be-
ing within given categories as〈It = P (C1|IPt), · · · , P (CN |IPt)〉. Note that the most
likely category for the imageIt can be determined by applying a simple MAP rule:
It ∈ Cn : Cn = arg maxn∈N P (Cn|IPt).

4 Retrieval via Animate Image Matching

Given a query imageIq, most similar images are retrieved according to the following
steps: 1) Map the image in the WW space by computing the image path under free
viewing conditions,Iq 7→ IPq; 2) Discover the bestK < N categories that may de-
scribe the image by using the same Eq. 1, but substitutingIq for It; 3) Given a category
Cn, retrieve theNI target imagesIt within the category that are most similar to the
query image,{It, t = 1, · · · , NI |A(IPt, IPq) < Ts}, whereA(IPt, IPq) ∈ R+ is a
similarity measure on the image paths, andTs an experimentally determined threshold.
For performing Step 3, we rely upon our original assumption,theIP generation pro-
cess performed on a pair of similar images under the same viewing conditions will
generate similarIPs, a property that we denoteattention consistency. Hence, the
image-matching problem can be reduced to anIP matching: two images are similar
if homologous FOAs have similar color, texture and shape features, are in the same
spatial regions of the image,and are detected with similar times. The procedure, is a
sort of inexact matching, which we denoteanimate matchingand is summarized in Fig.
4.

Fig. 4. Animate matching of two images in WW space



Given a fixation pointF t
r (pr; τr) in the test imageIt belonging to categoryCn, the

procedure selects the homologous pointF q
s (ps; τs) in the query imageIq among those

belonging to a local temporal window, that isτs ∈ [s − H, s + H]. The choice is
performed by computing for the pairF t

r andF q
s :

Ar,s = αAr,s
spatial + βAr,s

temporal + γAr,s
visual, (2)

whereα, β, γ ∈ [0, 1], and by choosing the FOAs ass = arg max{Ar,s}. In other
terms,the choice of the new scanpath is top-down driven by category semantics, so as
to maximize the similarity of the query image with the category itself; the analyzing
scanpath results to be a sub-path of the original free-viewed one. Such ”best fit” is
retained and eventually used to compute the consistencyA(IPt, IPq) as the average
consistency of the firstNF consistencies:

A =
1

N ′
f

N ′
f∑

f=1

Ar,s
f , (3)

whereN ′
f <= Nf . It is worth noting that this “best fit” category-driven strategy, be-

yond taking into account context for performing the match, also reduces the sensitivity
of the algorithm both to the starting FOA point and to the fact that, in similar images,
some FOAs could be missing due to lighting changes and noise. Right-hand terms of
Eq. 2 account for local measurements of spatial temporal and visual consistency, re-
spectively, and are computed as:Ar,s

spatial = 1 − d̂(pr, ps), where d̂(pr, ps), is the
normalized distance between FOA centers;Ar,s

temporal = 1− d(τr, τs), whered(τr, τs)
is the normalized distance between fixation times;Ar,s

visual = 1
2 (Ar,s

col + Ar,s
tex), where

Ar,s
col is similarly computed through color histogram difference andAr,s

tex via edge co-
variance distance.
For what concerns the setting of equation parameters, considering again Eq. 2, we sim-
ply useα = β = γ = 1/3, granting equal informational value to the three kinds of
consistencies. Note that in [1] we proposed a matching algorithm, but in that case no
context was taken into account to condition theIP matching stage.
Some final remarks on the visual representation assumed by our approach are worthed.
On the one hand the underlying hypothesis is that when image content is transformed,
the Information Path changes. On the other hand, clearly, some transformations should
not be taken into account as significative. For instance consider a simple image of an
horse, depicted at the center of an image. If the object (horse) translates, the seman-
tic content of the image should be comparable, and actually the Information path will
provide a similar “shape”. A different effect should play scale variations: if the same
horse is reduced to a small patch at the bottom right of the picture, is the image still an
horse image? It is likely that if a large region of grass is represented, it would be better
classified as a landscape. This is easy to verify, by performing eye-tracking experiments
with human observers. Thus scale invariance in many case could be a wrong issue to
address. The same holds for occlusions: assume that an elephant is half-occluding the
horse. In this case the Information Path and related matching will dramatically change
(as well as for human observers) providing a different classification.



5 Experimental Results

The experiments have been performed using the Corel sub-database used by Wang et
al. [10] (http://www-db.stanford.edu/IMAGE/). It contains 1000 images, stored into a
commercial object relational DBMS in JPEG format (with size 384 x 256 or 256 x
384), that are organized in a set of 10 images categories, each containing 100 pictures,
namely:Africa , Beaches, Buildings, Buses, Dinosaurs, Elephants, Flowers, Horses,
Mountains, Food.

The first step, in our query process, is the detection of the best categories. For what
concerns the the EM algorithm, a number of clustersL = 5 was used for each cat-
egory. A generic category is chosen via the belonging probabilityP (Cn|IPt) if the
target image, with respect to a given category, has a belonging probability greater than
a thresholdTC . Such threshold has been determined, in the testing phase of the system,
by means of an apposite software module that measures the precision of the category
detection algorithm for the images in the database (for these images the belonging cat-
egory is known). We have usedTC = 0.55 corresponding to a precision value of 89%
(maximum number of returned categories by detection algorithm has been fixed to 3).

In the second step of the query, the most similar images to the target image inside the
selected categories are retrieved. For computational simplicity we used 10 FOAs for
each image, since this number is enough to have a complete characterization of the
image and for the bottom-up importance of earliest FOAs. In Fig. 5, we present the
results of some query cases in terms of query image and retrieved images (only the
first top 12 results are reported). Note that in the case of images not present in the
database, which do not strictly belong to one of the given categories, the system is
however capable to propose a classification that has semantic consistency (see Fig 5.b).

Our retrieval system can be more systematically evaluated by considering retrieval ef-
fectiveness, measured by recall and precision metrics [4], namelyR = |rl ∩ rs|/|rl|
andP = |rl ∩ rs|/|rs|, rl being the set of relevant query results andrs the set of total
results. Clearly, within our testing database a retrieved image can be considered a posi-
tive match with respect to the query image if and only if it is in the same category as the
query (note that in each query case, for recall evaluation, the number of total relevant
results|rl| = 100 ).

Since, once a category has been detected, theNI target images within the category that
are most similar to the query image are retrieved according toA(IPt, IPq) < Ts,
thresholdTs has been experimentally determined by plotting precision as a function of
the recall, for varyingTs in the [0, 1] range, and choosing theTs value providing the
best trade-off betweenR andP. In table 1 we summarize for each category the average
precision and recall obtained over 1000 inside queries, considering every image of se-
lected category as query image. The proposed method also exhibits good performance
in terms of computational requirements. For our database a single match (excluding the
input features loading step) is achieved in about 2-3 sec. using a PENTIUM IV 1,8 GHz
(256 Mb RAM) system.



a. Query Results for inside images. b. Query Results for outside images.

Fig. 5. Query Examples: (a) the category belonging score computed from maximum probabil-
ity P (Cn|IPt) resulted to be69.47% corresponding toCn=“Dinosaurs” for the top image and
92.63% corresponding toCn=“Africa” for the bottom image; (b) the maximum category belong-
ing score resulted to be62.67% corresponding toCn=“Horses” followed by61.45% score corre-
sponding toCn=“Elephants” for the top image, and56.83% corresponding toCn=“Mountains”
followed by a56.33% score corresponding toCn=“Beaches” for the bottom image.

6 Final remarks

In this paper a novel approach to query by example in an image database has been
presented. We have shown how, by embedding within image inspection algorithms ac-
tive mechanisms of biological vision such as saccadic eye movements and fixations, a
more effective processing can be achieved. Meanwhile, the same mechanisms can be
exploited to discover and represent the hidden semantic associations among images,
in terms of categories, which in turn drives the query process along an animate image
matching. Also, such associations allow an automatic pre-classification, which makes
query processing more efficient and effective in terms of both time and precision re-
sults. It is worth remarking that, as regards the query step, it can in principle work on
the given WW space learned along the training stage or by further biasing such space by
exploiting user interaction in the same vein of [9]. A feasible way could be that of using
an interactive interface where the actions of the user (pointing, grouping, etc.) provide a
feedback that can be exploited to tune on the fly parameters of the system, e.g. the cat-
egory prior probabilityP (Cn) (ref. Eq. 1) or, at a lower level, the mixing coefficients



Table 1.Recall and Precision

Category Precision Recall
Africa 70% 63%

Beaches 61% 62%
Buildings 77% 62%

Buses 75% 66%
Dinosaurs 80% 71%
Elephants 60% 59%
Flowers 72% 65%
Horses 62% 60%

Mountains 64% 66%
Food 73% 63%

in Eq. 2 to grant more information to color as opposed to texture, for instance. Current
research is devoted to such improvements as well as to adopt efficient access methods
in the category spaces, while extending our experiments to very large image databases.
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