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What do you see?

What we see depends on our previous knowledge 
(model) of the world
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Bayesian visual perception

• The perception problem is characterized by two 
main aspects:
• The properties of the world that is observed (prior 

knowledge)
• The image data used by the observer (data)

• The Bayesian approach combines these two 
aspects which are characterized as probability 
distributions
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Representation

• Scene properties – S
• Model of the world – prior probability distribution 

– P(S)
• Model of the image – probability distribution of 

the image given de scene (likelihood) – P(I|S)
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Recognition

• The scene (object) is characterized by the posterior 
probability distribution – P(S|I)

• By Bayes theorem:
P(S|I) = P(S) P(I|S) / P(I)

• The denominator can be consider as a normalizing 
constant:

P(S|I) = k P(S) P(I|S) 
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Example
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Example

• Prior distribution of objects – P(O)
• Cube 0.2
• Cylinder 0.3
• Sphere 0.1
• Prism 0.4
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Example

• Likelihood function P(Silhouette|Object) – P(S|O)
Cube Cylinder Sphere Prism

Square 1.0 0.6 0.0 0.4
Circle 0.0 0.4 1.0 0.0
Trapezoid 0.0 0.0 0.0 0.6
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Example

• Posterior distribution P(Object|Silhouette) – P(O|S)
• Bayes rule:

P(O|S) = k P(O) P(S|O)
• For example, given S=square

P(Cube | square)= k 0.2 * 1 = k 0.2 = 0.37
P(Cylinder | square)= k 0.3 * 0.6 = k 0.18 = 0.33
P(Sphere | square)= k 0.1 * 0 = 0
P(Prism | square)= k 0.4 * 0.4 = k 0.16 = 0.30
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Graphical Model
• We can represent the dependence relation in this 

simple example graphically, with 2 variables and 
an arc

O

S

P(O)

P(S|O)
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Graphical Models

• This graphical representation of probabilistic 
models can be extended to more complex ones.

• There are several types of probabilistic graphical 
models (PGMs) that can be applied to different 
problems in vision

• We first review PGMs and then introduce some 
models and their application in vision
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Probabilistic Graphical Models

• Given a set of (discrete) random variables,
X = X1, X2, …, XN

• The joint probability distribution,
P(X1, X2, …, XN)

• specifies the probability for each combination of 
values (the joint space). From it, we can obtain the 
probability of a variable(s) (marginal), and of a 
variable(s) given the other variables (conditional)
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Probabilistic Graphical Models

• A Probabilistic Graphical Model is a compact 
representation of a joint probability distribution, from 
which we can obtain marginal and conditional probabilities

• It has several advantages over a “flat” representation:
• It is generally much more compact (space)
• It is generally much more efficient (time)
• It is easier to understand and communicate
• It is easier to build (from experts) or learn (from data)
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Probabilistic Graphical Models

• A graphical model is specified by two aspects:
• A Graph, G(V,E), that defines the structure of the model
• A set of  local functions, f(Yi), that defines the parameters 

(probabilities), where Yi is a subset of X

• The joint probability is defined by the product of the local 
functions:

 )f(Y )X , ,X ,P(X
n
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Probabilistic Graphical Models

• This representation in terms of a graph and a set of local 
functions (called potentials) is the basis for inference and 
learning in PGMs
• Inference: obtain the marginal or conditional probabilities of 

any subset of variables Z given any other subset Y
• Learning: given a set of data values for X (that can be 

incomplete) estimate the structure (graph) and parameters (local
function) of the model
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Probabilistic Graphical Models

• We can classify graphical models according to 3 
dimensions:

• Directed vs. Undirected
• Static vs. Dynamic
• Generative vs. Conditional
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Probabilistic Graphical Models

• Directed • Undirected

1

32

4 5

1

32

4 5
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Probabilistic Graphical Models

• Static • Dynamic

C

St St+1 St+2 St+3

E E E E

H

E
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Probabilistic Graphical Models

• Generative • Conditional

St St+1 St+2

E E E

St St+1 St+2

E E E
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Types of PGMs

• We will consider the following models and their 
applications in vision and robotics:
• Bayesian classifiers
• Bayesian networks
• Hidden Markov models
• Dynamic Bayesian networks
• Kalman filters
• Particle filters
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Bayesian Classifier

• A Bayesian classifier is used to obtain the 
probability of certain variable (the class or 
hypothesis, H) given a set of variables known as the 
attributes or evidence (E = E1, …, EN)

• It is usually assumed that the attributes are 
independent given the class – Naive Bayesian 
Classifier – so its PGM is represented as a “star” 
with the class as the root and the attributes as the 
leafs
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Naive Bayesian Classifier

C

A2A1 An…
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Bayesian Classifier

• The posterior probability of each hypothesis (H) 
based on the Evidence (E) is:

P(H | EE) = P(H) P(EE | H) / P(EE)

• Usually the exact value of P(H|E) is not required, 
just the most probable value of H
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Naive Bayesian classifier 
Inference

• Consider each attribute independent given the hypothesis:
P(E1, E2, ...EN | H) = 

P(E1 | H) P(E2 | H) ... P(EN | H) 

• So the posterior probability is given by:
P(H | E1, E2, ...EN) = 

[P(H) P(E1 | H) P(E2 | H) ... P(EN | H)] / P(EE)
= k P(H) P(E1 | H) P(E2 | H) ... P(EN | H) 
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Naive Bayesian classifier 
Learning

• Structure: 
• the structure is given by the naive Bayes assumption

• Parameters: 
• we need to estimate the prior probability of each class

P(Ci)
• and the individual conditional probabilities of each attribute 

given the class
P(Ak | Ci)
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Bayesian classifier - Extensions
• TAN • BAN

C

A2

A1 An

…

C

A2A1 An
…
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Example

• Skin classification based on color
• Hypothesis: skin, no-skin
• Attributes: red, green, blue (256 values each)

• Probability function:
P(S|R,G,B) = k P(S) P(R| S) P(G| S) P(B| S)
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Naive Bayes

S

GR B
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Color based classification

“Skin” region in
RGB space
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Skin detection

Detection of skin
pixels based on
color information
and a Bayesian
classifier
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Attribute Selection

• When there are many attributes, it can become impractical 
to include all in the classifier

• Also, redundant attributes (highly dependent), may reduce 
the accuracy

• A simple way to select relevant attributes is to select only 
those that provide information on the class, by measuring 
their mutual information: I(C,Ax)

• The attributes with low I are eliminated
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Mutual information

• It is a measure of the dependency between a pair of 
variables given by:

• It can be extended to consider the mutual 
information of two variables given a third one –
conditional mutual information

( ) ( ) ( )
( ) ( )∑=
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Structural Improvement

• Start from a subjective structure and improve with 
data

• Verify conditional independencies:
• Node elimination
• Node combination
• Node insertion
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YX

Z Structural improvement

W

Z

YXXY

Z

X
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Learning an optimal naive Bayes classifier

1. Build an initial classifier with all the attributes
2. Repeat until the classifier can not be improved (based on 

the MDL principle):
a. Eliminate redundant attributes
b. Eliminate/Join dependant attributes
c. Improve discretization of continuous attributes

3. Test classifier on different data (cross validation) 
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Improving skin classification

• Nine attributes combining 3 color models: RGB, 
HSV, YIQ

S

GR B IY QSH V
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Structural Improvement

Eliminate B

S

GR IY QSH V
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Structural Improvement

Eliminate Q

S

GR IYSH V
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Structural Improvement

Eliminate H

S

GR IYS V
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Structural Improvement

Join RG

S

RG IYS V
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Structural Improvement

Eliminate V

S

RG IYS
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Structural Improvement

S

RG IY

Acurracy: initial 94%
final 98%

Eliminate S
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Representation

• Bayesian networks (BN) are a graphical 
representation of dependencies between a set of 
random variables. A Bayesian net is a Directed 
Acyclic Graph (DAG) in which:
• Node: Propositional variable. 
• Arcs: Probabilistic dependencies. 

• An arc between two variables represents a direct 
dependency, usually interpreted as a causal
relation.
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An example of a BN

Coin

Circle

Shape

Pen

Rect.
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Interpretation

• Represents (in a compact way) the joint    
probability distribution of all the variables

• In the previous example:
P(Co, P, Ci, R, S) =

P(Co) P(P) P(Ci|Co,P) P(R|P) P(S|Ci)
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Structure

• The topology of the network represents the 
dependencies (and independencies) between the 
variables

• Conditional  independence relations between 
variables or sets of variables are obtained by a 
criteria called D-separation
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Coin

Circle

Shape

Pen

Rect.

E.g.: {R} is d-separated from {Co, Ci, S} by {P} E.g.: {R} is d-separated from {Co, Ci, S} by {P} 
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Graphical separation – 3 basic cases

X Z Y• “Markov”

• “common cause” Z YX

X Z Y• “explaining away”
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Parameters

Conditional probabilities of each node given its 
parents.

• Root nodes: vector of prior probabilities

• Other nodes: matrix of conditional probabilities 
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Coin

Circle

Shape

Pen

Rect.

P(P)P(Co)

P(Ci|Co,P) P(R|P)

P(S|Ci)

P(Co, P, Ci, R, S) =
P(Co) P(P) P(Ci|Co,P) P(R|P) P(S|Ci) 
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Inference

C Causal:
C H

Evidential:
E H

Mixed:
C,E H

P(H|C)

H

E

P(E|H)
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Inference

There are several inference algorithms:
• One variable:

• Variable elimination

• All the variables:
• Polytrees:

• Message passing (Pearl’s algorithm)

• General structure:
• Junction Tree
• Stochastic simulation
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Types of structuresTypes of structures

• Polytrees• Trees

• Singli-
connected

• Multiconnected

• Singli-
connected

• Multiconnected
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