Bayesian Techniques in Vision and Perception

Dr. Olivier Aycard
E-Motion Research Group
GRAVIR-IMAG \& INRIA RA

Grenoble, FRANCE

Dr. Luis Enrique Sucar
Computer Science Dept. INAOE
Puebla, MEXICO
http://ccc.inaoep.mx/~esucar/

Content

- Fundamentals of Bayesian Techniques (E. Sucar)
- Bayesian Filters (O. Aycard)
- Research activities in Vision (E. Sucar)
- Research activities in Perception (O. Aycard)

Content

- Fundamentals of Bayesian Techniques (E. Sucar)
- Introduction
- Fundamentals
- Bayesian Classifiers
- Bayesian Networks
- Bayesian Filters (O. Aycard)
- Research activities in Vision (E. Sucar)
- Research activities in Perception (O. Aycard)

What do you see?

What we see depends on our previous knowledge (model) of the world

1 UNVERSTIE JOSEPH FOURIER mane

Contents

- Fundamentals of Bayesian Techniques
- Introduction
- Fundamentals
- Bayesian Classifiers
- Bayesian Networks

Bayesian visual perception

- The perception problem is characterized by two main aspects:
- The properties of the world that is observed (prior knowledge)
- The image data used by the observer (data)
- The Bayesian approach combines these two aspects which are characterized as probability distributions

Representation

- Scene properties - S
- Model of the world - prior probability distribution - P(S)
- Model of the image - probability distribution of the image given de scene (likelihood) - $P(I \mid S)$

Recognition

- The scene (object) is characterized by the posterior probability distribution - P(S|I)
- By Bayes theorem:

$$
P(S \mid I)=P(S) P(I \mid S) / P(I)
$$

- The denominator can be consider as a normalizing constant:

$$
P(S \mid I)=k P(S) P(I \mid S)
$$

Example

Example

- Prior distribution of objects - $\mathrm{P}(\mathrm{O})$
- Cube
0.2
- Cylinder 0.3
- Sphere 0.1
- Prism 0.4

Example

- Likelihood function P(Silhouette|Object) - P(S|O)

	Cube	Cylinder	Sphere	Prism
Square	1.0	0.6	0.0	0.4
Circle	0.0	0.4	1.0	0.0
Trapezoid	0.0	0.0	0.0	0.6

Example

- Posterior distribution $\mathrm{P}($ Object \mid Silhouette $) ~-~ P(O \mid S)$
- Bayes rule:

$$
\mathrm{P}(\mathrm{O} \mid \mathrm{S})=\mathrm{k} \mathrm{P}(\mathrm{O}) \mathrm{P}(\mathrm{~S} \mid \mathrm{O})
$$

- For example, given $\mathrm{S}=$ square

$$
\begin{aligned}
& \mathrm{P}(\text { Cube } \mid \text { square })=\mathrm{k} 0.2 * 1=\mathrm{k} 0.2=0.37 \\
& \mathrm{P}(\text { Cylinder | square })=\mathrm{k} 0.3 * 0.6=\mathrm{k} 0.18=0.33 \\
& \mathrm{P}(\text { Sphere } \mid \text { square })=\mathrm{k} 0.1 * 0=0 \\
& \mathrm{P}(\text { Prism | square })=\mathrm{k} 0.4 * 0.4=\mathrm{k} 0.16=0.30
\end{aligned}
$$

Graphical Model

- We can represent the dependence relation in this simple example graphically, with 2 variables and an arc

Graphical Models

- This graphical representation of probabilistic models can be extended to more complex ones.
- There are several types of probabilistic graphical models (PGMs) that can be applied to different problems in vision
- We first review PGMs and then introduce some models and their application in vision

Contents

- Fundamentals of Bayesian Techniques
- Introduction
- Fundamentals
- Bayesian Classifiers
- Bayesian Networks

Probabilistic Graphical Models

- Given a set of (discrete) random variables,

$$
\boldsymbol{X}=X_{1}, X_{2}, \ldots, X_{N}
$$

- The joint probability distribution,

$$
P\left(X_{1}, X_{2}, \ldots, X_{N}\right)
$$

- specifies the probability for each combination of values (the joint space). From it, we can obtain the probability of a variable(s) (marginal), and of a variable(s) given the other variables (conditional)

Probabilistic Graphical Models

- A Probabilistic Graphical Model is a compact representation of a joint probability distribution, from which we can obtain marginal and conditional probabilities
- It has several advantages over a "flat" representation:
- It is generally much more compact (space)
- It is generally much more efficient (time)
- It is easier to understand and communicate
- It is easier to build (from experts) or learn (from data)

Probabilistic Graphical Models

- A graphical model is specified by two aspects:
- A Graph, $G(V, E)$, that defines the structure of the model
- A set of local functions, $f\left(\boldsymbol{Y}_{i}\right)$, that defines the parameters (probabilities), where $\boldsymbol{Y}_{\boldsymbol{i}}$ is a subset of \boldsymbol{X}
- The joint probability is defined by the product of the local functions:

$$
P\left(X_{1}, X_{2}, \ldots, X_{N}\right)=\prod_{i=1}^{n} f\left(Y_{i}\right)
$$

Probabilistic Graphical Models

- This representation in terms of a graph and a set of local functions (called potentials) is the basis for inference and learning in PGMs
- Inference: obtain the marginal or conditional probabilities of any subset of variables \boldsymbol{Z} given any other subset \boldsymbol{Y}
- Learning: given a set of data values for \boldsymbol{X} (that can be incomplete) estimate the structure (graph) and parameters (local function) of the model

Probabilistic Graphical Models

- We can classify graphical models according to 3 dimensions:
- Directed vs. Undirected
- Static vs. Dynamic
- Generative vs. Conditional

Probabilistic Graphical Models

- Directed

- Undirected

Probabilistic Graphical Models

- Static

- Dynamic

Probabilistic Graphical Models

- Generative

Types of PGMs

- We will consider the following models and their applications in vision and robotics:
- Bayesian classifiers
- Bayesian networks
- Hidden Markov models
- Dynamic Bayesian networks
- Kalman filters
- Particle filters

Contents

- Fundamentals of Bayesian Techniques
- Introduction
- Fundamentals
- Bayesian Classifiers
- Bayesian Networks

Bayesian Classifier

- A Bayesian classifier is used to obtain the probability of certain variable (the class or hypothesis, H) given a set of variables known as the attributes or evidence ($E=E_{1}, \ldots, E_{N}$)
- It is usually assumed that the attributes are independent given the class - Naive Bayesian Classifier - so its PGM is represented as a "star" with the class as the root and the attributes as the leafs

Naive Bayesian Classifier

Bayesian Classifier

- The posterior probability of each hypothesis (H) based on the Evidence (E) is:

$$
\mathrm{P}(\mathrm{H} \mid \mathbf{E})=\mathrm{P}(\mathrm{H}) \mathrm{P}(\mathbf{E} \mid \mathrm{H}) / \mathrm{P}(\mathbf{E})
$$

- Usually the exact value of $\mathrm{P}(\mathrm{H} \mid \mathrm{E})$ is not required, just the most probable value of H

Naive Bayesian classifier Inference

- Consider each attribute independent given the hypothesis:

$$
\begin{aligned}
& P\left(E_{1}, E_{2}, \ldots E_{N} \mid H\right)= \\
& P\left(E_{1} \mid H\right) P\left(E_{2} \mid H\right) \ldots P\left(E_{N} \mid H\right)
\end{aligned}
$$

- So the posterior probability is given by:
$P\left(H \mid E_{1}, E_{2}, \ldots E_{N}\right)=$

$$
\begin{aligned}
& {\left[P(H) P\left(E_{1} \mid H\right) P\left(E_{2} \mid H\right) \ldots P\left(E_{N} \mid H\right)\right] / P(\mathbf{E})} \\
& =k P(H) P\left(E_{1} \mid H\right) P\left(E_{2} \mid H\right) \ldots P\left(E_{N} \mid H\right)
\end{aligned}
$$

Naive Bayesian classifier Learning

- Structure:
- the structure is given by the naive Bayes assumption
- Parameters:
- we need to estimate the prior probability of each class

$$
P\left(C_{i}\right)
$$

- and the individual conditional probabilities of each attribute given the class

$$
P\left(A_{k} \mid C_{i}\right)
$$

Bayesian classifier - Extensions

- BAN

Example

- Skin classification based on color
- Hypothesis: skin, no-skin
- Attributes: red, green, blue (256 values each)
- Probability function:

$$
\mathrm{P}(\mathrm{~S} \mid \mathrm{R}, \mathrm{G}, \mathrm{~B})=\mathrm{k} \mathrm{P}(\mathrm{~S}) \mathrm{P}(\mathrm{R} \mid \mathrm{S}) \mathrm{P}(\mathrm{G} \mid \mathrm{S}) \mathrm{P}(\mathrm{~B} \mid \mathrm{S})
$$

Naive Bayes

Color based classification

"Skin" region in RGB space

Olivier.Aycard@imag.fr esucar@inaoep.mx

(C. I. E. CHROMATICITY DIAGRAM)

Skin detection

Detection of skin pixels based on color information
 and a Bayesian classifier

Attribute Selection

- When there are many attributes, it can become impractical to include all in the classifier
- Also, redundant attributes (highly dependent), may reduce the accuracy
- A simple way to select relevant attributes is to select only those that provide information on the class, by measuring their mutual information: $I(C, A x)$
- The attributes with low I are eliminated

Mutual information

- It is a measure of the dependency between a pair of variables given by:

$$
I\left(X_{i}, X_{j}\right)=\sum_{x_{i}, x_{j}} P\left(X_{i}, X_{j}\right) \log \frac{P\left(X_{i}, X_{j}\right)}{P\left(X_{i}\right) P\left(X_{j}\right)}
$$

- It can be extended to consider the mutual information of two variables given a third one conditional mutual information

Structural Improvement

- Start from a subjective structure and improve with data
- Verify conditional independencies:
- Node elimination
- Node combination
- Node insertion

Learning an optimal naive Bayes classifier

1. Build an initial classifier with all the attributes
2. Repeat until the classifier can not be improved (based on the MDL principle):
a. Eliminate redundant attributes
b. Eliminate/Join dependant attributes
c. Improve discretization of continuous attributes
3. Test classifier on different data (cross validation)

Improving skin classification

- Nine attributes combining 3 color models: RGB, HSV, YIQ

Structural Improvement

Eliminate B

Structural Improvement

Eliminate Q

Structural Improvement

Eliminate H

Structural Improvement

Join RG

Structural Improvement

Eliminate V

Structural Improvement

Eliminate S
Acurracy: initial 94\% final 98\%

Contents

- Fundamentals of Bayesian Techniques
- Introduction
- Fundamentals
- Bayesian Classifiers
- Bayesian Networks

Representation

- Bayesian networks (BN) are a graphical representation of dependencies between a set of random variables. A Bayesian net is a Directed Acyclic Graph (DAG) in which:
- Node: Propositional variable.
- Arcs: Probabilistic dependencies.
- An arc between two variables represents a direct dependency, usually interpreted as a causal relation.

An example of a $\mathbf{B N}$

Interpretation

- Represents (in a compact way) the joint probability distribution of all the variables
- In the previous example:
$\mathbf{P}(\mathbf{C o}, \mathbf{P}, \mathbf{C i}, \mathbf{R}, \mathbf{S})=$ $\mathbf{P}(\mathrm{Co}) \mathbf{P}(\mathbf{P}) \mathbf{P}(\mathbf{C i} \mid \mathrm{Co}, \mathbf{P}) \mathbf{P}(\mathbf{R} \mid \mathbf{P}) \mathbf{P}(\mathbf{S} \mid \mathbf{C i})$

Structure

- The topology of the network represents the dependencies (and independencies) between the variables
- Conditional independence relations between variables or sets of variables are obtained by a criteria called D-separation

E.g.: $\{\mathrm{R}\}$ is d-separated from $\{\mathrm{Co}, \mathrm{Ci}, \mathrm{S}\}$ by $\{\mathrm{P}\}$

Graphical separation - 3 basic cases

- "Markov"

- "common cause"

- "explaining away"

Parameters

Conditional probabilities of each node given its parents.

- Root nodes: vector of prior probabilities
- Other nodes: matrix of conditional probabilities

$\mathbf{P}(\mathbf{C o}, \mathbf{P}, \mathbf{C i}, \mathrm{R}, \mathrm{S})=$ $\mathbf{P}(\mathbf{C o}) \mathbf{P}(\mathbf{P}) \mathbf{P}(\mathbf{C i} \mid \mathbf{C o}, \mathbf{P}) \mathbf{P}(\mathbf{R} \mid \mathbf{P}) \mathbf{P (S} \mid \mathbf{C i})$

Inference

Causal:

$$
\mathbf{C} \rightarrow \mathbf{H}
$$

Evidential: $\mathbf{E} \rightarrow \mathbf{H}$

Mixed:
$\mathbf{C , E} \rightarrow \mathbf{H}$

Inference

There are several inference algorithms:

- One variable:
- Variable elimination
- All the variables:
- Polytrees:
- Message passing (Pearl’s algorithm)
- General structure:
- Junction Tree
- Stochastic simulation

Types of structures

- Singliconnected
- Trees

- Polytrees

- Multiconnected

Olivier.Aycard@imag.fr esucar@inaoep.mx

