The Monogenic Framework:

A Systematic Approach to Image Processing and Computer Vision

Michael Felsberg

Computer Vision Laboratory
Linköping University
Sept. 2, 2003

Coherent Framework

- Phase based image processing
- In scale-space
- Allows to derive applications in a systematic way

Phase Based Processing in nD

- Generalized quadrature filter?
- Generalized Hilbert transform?
- Generalized phase definition?
Scale-Space

- Scale relative image processing
- Efficiency
- Correctness

Systematic Derivations

- Complex IP & CV systems typically contain heuristic and systematic approaches
- Reduce the amount of heuristics
 - improve accuracy
 - reduce computational complexity
 - stability and robustness
 - correctness

Monogenic Framework

- New quadrature filter combine properties of
 - Gaussian derivatives (n-jets) and
 - Gabor filters
- The 2D phase approach allows to compute phase congruency which is
 - isotropic (no sampled orientation)
 - differential (no sampled scales)
- Relation of amplitude and phase
 - reconstruction from phase and amplitude
 - comparison of phase congruency and amplitude maxima

Monogenic Scale Space
Motivation Scale Space

Gnomonic Projection

Poisson Scale Space

2D Riesz Transform
nD Riesz Transform

- Generalizes the 1D analytic signal to nD
- Consists of n components
- Kernel:
 \[h(x) = \frac{x}{\omega_n |x|^n} \]
- Frequency response:
 \[H(u) = -\frac{u}{|u|} \]
- Solution by eigensystem

\[m(x,s) = \begin{bmatrix} q(x,s) \\ p(x,s) \end{bmatrix} \]
\[q(x,s) = (p|,s) * h(x) \]

PDE Formulation

1D: \(m \) corresponds to an analytic function
\[= 2D \text{ harmonic field} \]
\[\nabla_x \times m(x,s) = 0 \quad \text{zero curl} \]
\[\nabla_x \cdot m(x,s) = 0 \quad \text{zero divergence} \]
if \(s > 0 \)
\[p(x,0) = b(x) \quad \text{boundary condition} \]

Finite Domain Solution

- no intensity should enter or leave the image (zero Neumann boundary condition)
- effective filter kernel: reflection at the boundary
- alternative: extend the image

Eigensystem

- solution by eigensystem
- eigenfunctions:
 \[I_m(x, y) = 2 \cos(\pi x m) \cos(\pi y n) \]
- eigenvalues of the generator:
 \[\lambda = \pi \sqrt{m^2 + n^2} \]
- ‘frequency response’
 \[\exp(-\pi \sqrt{m^2 + n^2} s) \]
Discrete Implementation

\[
C_{mn} = \alpha_m \sum_{x=0}^{X-1} \sum_{y=0}^{Y-1} b_{xy} \cos\left(\pi \left(x + \frac{1}{2}\right) \frac{m}{X}\right) \cos\left(\pi \left(y + \frac{1}{2}\right) \frac{n}{Y}\right)
\]

Finite Domain Implementation II

- DCT coefficients of potential

 \[
 C_{m,s} = \frac{C_m^p}{\exp(-\pi|m|s)}
 \]

- Gradient of potential

 \[
 q_{x,s} = -\nabla \psi_{x,s} = \sum_{m=0}^{X-1} \sum_{n=0}^{Y-1} C_{m,s} \begin{bmatrix}
 m \sin\left(\pi \left(x + \frac{1}{2}\right) \frac{m}{X}\right) \cos\left(\pi \left(y + \frac{1}{2}\right) \frac{n}{Y}\right) \\
 n \cos\left(\pi \left(x + \frac{1}{2}\right) \frac{m}{X}\right) \sin\left(\pi \left(y + \frac{1}{2}\right) \frac{n}{Y}\right)
 \end{bmatrix}
 \]

Algorithm Monogenic Scale Space

Spherical Quadrature Filter

- Combine radial bandpass with its Riesz transform
- Orthogonal like Gaussian derivatives / n-jets
- In quadrature like Gabor filters
Truncated DOP Filter

➲ truncate DOP filter at a certain energy of l_1

\[
l_p(x) = \frac{s_1}{2\pi ||x||^2 + \sigma_1^2}
\]

➲ ensure zero DC

\[
b_p(x) = \frac{l_1(x)}{\sum_x l_1(x) + \sum_x l_2(x)}
\]

➲ ensure same energy of components

\[
b_p(x) \Rightarrow \sqrt{\sum_x c_{bp}(x) / \sum_x b_p(x)^2 b_p(x)}
\]

Monogenic Phase

- attenuation: logarithm of Euclidean norm

\[
A = \log (\sqrt{q^2 + p^2}) = \frac{1}{2} \log (||q||^2 + p^2)
\]

\[
r = \frac{q}{p} \arctan \left(\frac{|q|}{p} \right)
\]
Applications of the Framework

➲ Flux gives an unbiased orientation estimate
 • regularized derivative operator ("derivator")
 • all frequency components are weighted the same
➲ Superior edge detection by phase congruency
 • differential phase congruency
 • no sampling of the orientation necessary (fast)
➲ Disparity estimation from local phase
 • no need for an a priori fixed orientation
 • optimal SNR
➲ Reconstruction from local amplitude and phase
 • extremely simple
 • fast and accurate

Orientation Estimation

➲ noisy image with different local frequencies

Edge & Line Detection by PC

Filter for PC Estimation

\[
\partial_s r = \partial_s \frac{\mathbf{q}}{||\mathbf{q}||} \arctan \left(\frac{||\mathbf{q}||}{p} \right) = \frac{\mathbf{q}}{||\mathbf{q}||} \frac{1}{1 + \frac{||\mathbf{q}||^2}{p^2}} - \frac{p \mathbf{q} - \mathbf{q} \mathbf{p}}{||\mathbf{q}||^2 + p^2} \]

\[
= \frac{bp \ast b \ast (\mathbf{c} \mathbf{b} \ast b) - (\mathbf{c} \mathbf{b} \ast b) \ast (bp \ast b)}{||\mathbf{c} \mathbf{b} \ast b||^2 + (bp \ast b)^2}
\]
Phase Congruency through Scale

Disparity Estimation

Disparity from Local Phase

- Faster than other appearance based approaches (e.g. correlation based)
- Feature / model based approaches produce more ambiguities
- Sub-pixel accuracy
Disparity Algorithm

- Compute scale pyramid
- For each scale (C2P)
 - estimate disparity
 - add to old estimate
 - upsample and CS
 - compensate disparity in next scale
- Add final estimate

Taylor Expansion of Phase

- Taylor series expansion for phase vector \((d|r)\)

 \[r(x + \frac{d}{2}) = r(x) + \frac{d}{2} \nabla r(x) + O(|d|^2) \]

- Solve for normal disparity

 \[d(x) \approx 2 \frac{r^T(x) - r^2(x)}{\nabla \cdot r(x) + \nabla \cdot r^2(x)} \]

- The local frequency (divergence of the phase vector) can be computed without using inverse trigonometric functions (see PC)

Advantages

- Disparity orientation \(e\) is a priori known:
 - Disparity is obtained by projection

 \[d(x) = \frac{|d(x)|}{e \cdot d(x)} \]
 - Correct confidence can be computed explicitly
- Disparity orientation is unknown:
 - Estimate \(e\) from the normal disparities
 - Continue as in the first case

Synthetic Experiment
Disparity from Phase

Attenuation-Phase Scale Space

Attenuation & Phase

- Known: complex derivative of complex logarithm of an analytic function is analytic

\[\partial_z \log(f(z)) = \frac{\partial_z f(z)}{f(z)} \]

- Generalizes to 2D:

\[
\begin{bmatrix}
 r \\
 A
\end{bmatrix} = \log
\begin{bmatrix}
 q \\
 p
\end{bmatrix}
\]

is a harmonic field

Zeros in Monogenic Scale-Space
Fundamental Relations

\[\frac{\partial}{\partial x} r_2 - \frac{\partial}{\partial y} r_1 = 0 \quad \nabla \cdot r + A_s = 0 \quad \frac{\partial}{\partial x} A - \frac{\partial}{\partial y} r_1 = 0 \quad \frac{\partial}{\partial y} A - \frac{\partial}{\partial x} r_2 = 0 \]

\(\omega = \nabla \cdot r - A_s \)

local maxima = PC

\(r \approx h \ast A \)

reconstruction from attenuation / phase

\(b \approx \exp(A) \cos(|r|) \)

PC & Local Amplitude Maxima

phase congruency = local maxima of amplitude

Global Reconstruction

original image

reconstruction from ...

local attenuation

abs. error
Conclusion

- The monogenic scale space approach can be implemented
 - globally by DCT and
 - locally by SQFs in the spatial domain.
- PC and local frequency can be computed from implicit derivatives.

- Future topics include
 - further applications (e.g. optical flow)
 - JAVA demo / implementation
 - extension to higher dimensions (straightforward).