
Centre for Vision Speech & Signal Processing
University of Surrey, Guildford GU2 7XH.

HMM part 1
Dr Philip Jackson

• Pattern matching of sequences
• Probability fundamentals
• Markov models
• Hidden Markov models

- Likelihood calculation

2

31

http://www.ee.surrey.ac.uk/Personal/P.Jackson/ISSPR/

Approaches to recognizing sequences

• Rule-based heuristics

• Pattern matching

1. dynamic time warping (deterministic)

2. Hidden Markov models (stochastic)

• Classification

1. artificial neural networks (discriminative)

• Applications: automatic speech recognition, charac-

ter recognition, protein and DNA sequencing, speech

synthesis, noise-robust data transmission, crytoanal-

sis, machine translation, image classification, etc.

Distance-from-template pattern matching

• Template

– the features of a typical example of the sequence

to be recognized

– e.g., filterbank, linear prediction/PLP, cepstrum/MFCC

• Distance

– a measure of how well the features of a new test

sequence match those of the reference template

– e.g., Euclidean distance, Mahalanobis distance,

Itakura distance

Utterance features

Template and test word features: “match”, “match” & “dummy”.

Inter-utterance distances

Computed Euclidean feature distances for template and test words.

Dynamic time warping

DTW is a method of pattern matching that allows for

timescale variations in sequences of the same class.

t

i

frames in
test utterance

te
m

pl
at

e
fr

am
es

 in

Time alignment of two instances of the same word

(Holmes & Holmes 2001, p.116). Open circles mark

permitted predecessors to the closed circle at (t, i).

Dynamic programming for time alignment

Cummulative distance along the best path upto frame i

in template and tth test frame is:

D(t, i) =
t,i∑

u,v=1,1

∣∣∣∣∣∣
along best path

d(u, v), (1)

where d(u, v) is distance between features from uth frame

of test utterance and those from vth frame of template.

If we only allow transitions from current and previous

frames, we have

D(t, i) = min [D(t, i− 1), D(t− 1, i− 1), D(t− 1, i)]

+d(t, i). (2)

DTW algorithm

1. Initialise,

D(1, i) =
{
d(1, i) for i = 1
d(1, i) +D(1, i− 1) for i = 2, . . . , N

(3)

2. Recur for t = 2, . . . , T ,

D(t, i) =


d(t, i) +D(t− 1, i) for i = 1
d(t, i) + min [D(t, i− 1),

D(t− 1, i− 1),
D(t− 1, i)] for i = 2, . . . , N

(4)

3. Finalise,
∆ = D(T,N).

Thus, every possible path’s cost is evaluated recursively.

Examples of DTW with distortion penalty

Path with various distortion penalties (clockwise
from top left): none, standard, low and high.

Summary of Dynamic Time Warping

• Problems:

1. How many templates should we register?

2. How do we select the best ones?

3. How do we determine a fair distance metric?

4. How should we set the distortion penalties?

• Solution:

– Develop an inference framework to build templates

based on the statistics of our data.

Probability fundamentals

Normalisation

Discrete: probability of all possibilities sums to one:∑
allX

P (X) = 1. (5)

Continuous: integral over entire probabilty density func-
tion (pdf) comes to one:∫ ∞

−∞
p(x) dx = 1. (6)

Joint probability

The joint probability that two independent events occur
is the product of their individual probabilities:

P (A,B) = P (A)P (B). (7)

Conditional probability

If two events are dependent, we need to determine their
conditional probabilities. The joint probability is now

P (A,B) = P (A)P (B|A), (8)

where P (B|A) is the probability of event B given that A
occurred; conversely, taking the events the other way

P (A,B) = P (A|B)P (B). (9)

A Ā
B 0.1 0.3 0.4
B̄ 0.4 0.2 0.6

0.5 0.5 1.0

These expressions can be rearranged to yield the condi-
tional probabilities. Also, we can combine them to obtain
the theorem proposed by Rev. Thomas Bayes (C.18th).

Bayes’ theorem

Equating the RHS of eqs. 8 and 9 gives

P (B|A) =
P (A|B)P (B)

P (A)
. (10)

For example, in a word recognition application we have

P (w|O) =
p(O|w)P (w)

p(O)
, (11)

which can be interpreted as

posterior =
likelihood× prior

evidence
. (12)

The posterior probability is used to make Bayesian in-
ferences; the conditional likelihood describes how likely
the data were for a given class; the prior allows us to
incorporate other forms of knowledge into our decision
(like a language model); the evidence acts as a normal-
isation factor and is often discarded in practice (as it is
the same for all classes).

Marginalisation

Discrete: probability of event B, which depends on A,

is the sum over A of all joint probabilities:

P (B) =
∑
allA

P (A,B) =
∑
allA

P (B|A)P (A). (13)

Continuous: similarly, the nuisance factor x can be elim-

inated from its joint pdf with y:

p(y) =
∫ ∞
−∞

p(x, y) dx =
∫ ∞
−∞

p(y|x)p(x) dx (14)

Introduction to Markov models

State topology of an ergodic Markov model:

1 3

2

The initial-state probabilities for each state i are defined

πi = P (x1 = i), 1 ≤ i ≤ N. (15)

with the properties

πi ≥ 0, and
N∑
i=1

πi = 1, ∀i.

Modeling stochastic sequences

State topology of a left-right Markov model:

21 3

For 1st-order Markov chains, probability of state occupa-
tion depends only on the previous step (Rabiner, 1989):

P (xt = j|xt−1 = i, xt−2 = h, . . .) ≈ P (xt = j|xt−1 = i).
(16)

So, if we assume the RHS of eq. 16 is independent of
time, we can write the state-transition probabilities as

aij = P (xt = j|xt−1 = i), 1 ≤ i, j ≤ N, (17)

with the properties

aij ≥ 0, and
N∑
j=1

aij = 1, ∀i, j.

Weather predictor example

Let us represent the state of the weather by a 1st-order,
ergodic Markov model, M:

State 1: rain
State 2: cloud
State 3: sun

2

31

0.60.4

0.8

0.3
0.1 0.20.1

0.3

0.2

with state-transition probabilities,

A =
{
aij
}

=

 0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8

 . (18)

Weather predictor probability calculation

Given today is sunny (i.e., x1 = 3), what is the probabil-
ity with model M of directly observing the sequence of
weather states “sun-sun-rain-cloud-cloud-sun”?

P (X|M) = P (X = {3,3,1,2,2,3}|M)

= P (x1 = 3)P (x2 = 3|x1 = 3)

P (x3 = 1|x2 = 3)P (x4 = 2|x3 = 1)

P (x5 = 2|x4 = 2)P (x6 = 3|x5 = 2)

= π3 a33 a31 a12 a22 a23

= 1 × (0.8)(0.1)(0.3)(0.6)(0.2)

= 0.00288

≈ 0.3%

Summary of Markov models

State topology:

1 2 3 4

Initial-state probabilities: π = {πi} =
[

1 0 0 0
]
,

and state-transition probabilities:

A =
{
aij
}

=


0.6 0.4 0 0

0 0.9 0.1 0
0 0 0.2 0.8
0 0 0 0.5

.

Probability of a given state sequence X:

P (X|M) = πx1 ax1x2 ax2x3 ax3x4 . . .

= πx1

T∏
t=2

axt−1xt. (19)

Introduction to hidden Markov models

21

3

b1 b2

b3

Probability of state i generating a discrete observation ot,
which has one of a finite set of values, is

bi(ot) = P (ot|xt = i). (20)

Probability distribution of a continuous observation ot,
which can have one of an infinite set of values, is

bi(ot) = p(ot|xt = i). (21)

We begin by considering only discrete observations.

Elements of a discrete HMM, λ

1. Number of different states N , x ∈ {1, . . . , N};

2. Number of different events K, k ∈ {1, . . . ,K};

3. Initial-state probabilities,

π = {πi} = {P (x1 = i)} for 1 ≤ i ≤ N ;

4. State-transition probabilities,

A = {aij} = {P (xt = j|xt−1 = i)} for 1 ≤ i, j ≤ N ;

5. Discrete output probabilities,
B = {bi(k)} = {P (ot = k|xt = i)} for 1 ≤ i ≤ N

and 1 ≤ k ≤ K.

Illustration of HMM as observation generator

π1

a11 a22 a33 a44

a34a23a12

o1 o2 o3 o4 o5 o6

b (o)11

b (o)21

b (o)32

b (o)43

b (o)53

b (o)64

1 2 43

The state sequence X = {1,1,2,3,3,4} produces the set
of observations O = {o1, o2, . . . , o6}:

P (X|λ) = π1 a11 a12 a23 a33 a34

P (O|X,λ) = b1(o1) b1(o2) b2(o3) b3(o4) b3(o5) b4(o6)

P (O, X|λ) = P (O|X,λ)P (X|λ)
= π1b1(o1) a11b1(o2) a12b2(o3) . . . (22)

Example of the Markov Model, M

(a) Initial-state probabilities,
π = {πi} = {P (x1 = i)} for 1 ≤ i ≤ N ;

(b) State-transition probabilities,
A = {aij} = {P (xt = j|xt−1 = i)} for 1 ≤ i, j ≤ N ;

π1

a11 a22 a33 a44

a34a23a12
2 3 4

1 1 2 3 3 4
1x 2x 3x 4x 5x 6x

1

producing a sequence

X = {1,1,2,3,3,4 }.

Probability of MM state sequence

1.0
1 2

0.8

0.2

0.6

Transition probabilities:

π = {πi} =
[

1 0
]
, and

A =
{
aij
}

=

[
0.8 0.2
0 0.6

]
.

Probability of a certain state sequence, X = {1,2,2}:

P (X|M) = π1 a12 a22

= 1×
=

(23)

Example of the Hidden Markov Model, λ

(a) Initial-state probabilities,
π = {πi} = {P (x1 = i)} for 1 ≤ i ≤ N ;

(b) State-transition probabilities,
A = {aij} = {P (xt = j|xt−1 = i)} for 1 ≤ i, j ≤ N ;

(c) Discrete output probabilities,
B = {bi(k)} = {P (ot = k|xt = i)} for 1 ≤ i ≤ N

and 1 ≤ k ≤ K.

π1

a11 a22 a33 a44

a34a23a12

o1 o2 o3 o4 o5 o6

b (o)11

b (o)21

b (o)32

b (o)43

b (o)53

b (o)64

1 2 43

producing observations

O = {o1, o2, . . . , o6}
from a state sequence

X = {1,1,2,3,3,4 }.

Probability of HMM state sequence

1o o2 o3

1.0
1 2

0.8

0.2

0.6

Output probabilities: B =

[
b1(k)
b2(k)

]
=

[
0.5 0.2 0.3
0 0.9 0.1

]
.

Probability with a certain state sequence, X = {1,2,2}:

P (O, X|λ) = P (O|X,λ)P (X|λ)
= π1b1(o1) a12b2(o2) a22b2(o3)

= 1×
=

≈
(24)

Three tasks within HMM framework

1. Compute likelihood of a set of observations with a

given model, P (O|λ)

2. Decode a test sequence by calculating the most likely

path, X∗

3. Optimise the template patterns by training the pa-

rameters in the models, Λ = {λ}.

Task 1: Computing P (O|λ)

So far, we calculated the joint probability of observations
and state sequence, for a given model λ:

P (O, X|λ) = P (O|X,λ)P (X|λ).

For the total probability of the observations, we marginalise
the state sequence by summing over all possible X:

P (O|λ) =
∑
allX

P (O, X|λ) =
∑

allxT1

P (xT1 ,o
T
1 |λ). (25)

Now, we define forward likelihood for state j as

αt(j) = P (xt1,o
t
1|λ). (26)

and apply the HMM’s simplifying assumptions to yield

αt(j) =
N∑
i=1

αt−1(i)P (xt = j|xt−1 = i, λ)P (ot|xt = j, λ),

(27)
where the probability of current state xt depends only on
the previous state xt−1, and the current observation ot
depends only on current state (Gold & Morgan, 2000).

Forward procedure

To calculate forward likelihood, αt(i) = P (xt = i,ot1|λ):

1. Initialise,

α1(i) = πi bi(o1), for 1 ≤ i ≤ N ;

2. Recur for t = 2,3, . . . , T ,

αt(j) =
[∑N

i=1αt−1(i) aij
]
bj(ot), for 1 ≤ j ≤ N ;

(28)

3. Finalise,

P (O|λ) =
∑N
i=1αT (i).

Thus, we can solve Task 1 efficiently by recursion.

Worked example of the forward procedure

2
1

1 2 3

State

Time (frame)

Backward procedure

We define backward likelihood, βt(i) = P (oTt+1|xt = i, λ),
and calculate:

1. Initialise,

βT (i) = 1, for 1 ≤ i ≤ N ;

2. Recur for t = T − 1, T − 2, . . . ,1,

βt(i) =
∑N
j=1 aij bj(ot+1)βt+1(j), for 1 ≤ i ≤ N ;

(29)

3. Finalise,

P (O|λ) =
∑N
i=1 πi bi(o1)β1(i).

This is an equivalent way of computing P (O|λ) efficiently
by recursion.

Part 1 summary

• Distance-from-template pattern matching by DTW:

– Problems: templates, distance metric, penalties
– Solution: probabilistic approach

• Probability fundamentals:

– Normalisation and marginalisation
– Joint and conditional probabilities, Bayes theorem

• Markov models:

– sequence of directly observable states

• Hidden Markov models (HMMs):

– hidden state sequence
– generation of observations

• Computing αt, βt and P (O|λ):
– by forward procedure
– by backward procedure

Centre for Vision Speech & Signal Processing
University of Surrey, Guildford GU2 7XH.

HMM part 2
Dr Philip Jackson

• Task 2:
how to find the best path:
- Viterbi algorithm

• Task 3:
how to train the models:
- Viterbi training
- Expectation maximisation
- Baum-Welch formulae

2
1

2 31

State

Time

http://www.ee.surrey.ac.uk/Personal/P.Jackson/ISSPR/

Task 2: finding the best path

Given observations O = {o1, . . . , oT}, find the HMM state

sequence X = {x1, . . . , xT} that has greatest likelihood

X∗ = argmax
X

P (O, X|λ), (30)

where

P (O, X|λ) = P (O|X,λ)P (X|λ)

= πx1 bx1(o1).
T∏
t=2

axt−1xt bxt(ot). (31)

The Viterbi algorithm is an inductive method for finding

the optimal state sequence X∗ efficiently.

Task 2: Viterbi algorithm

1. Initialise,
δ1(i) = πibi(o1)
ψ1(i) = 0 for 1 ≤ i ≤ N ;

2. Recur for t = 2, . . . , T ,
δt(j) = maxi

[
δt−1(i)aij

]
bj(ot)

ψt(j) = argmaxi
[
δt−1(i)aij

]
for 1 ≤ j ≤ N ;

3. Finalise,
P (O, X∗|λ) = maxi [δT (i)]
x∗T = argmaxi [δT (i)]

4. Trace back, for t = T − 1, T − 2, . . . ,1,

x∗t = ψt+1

(
x∗t+1

)
, and X∗ = {x∗1, x

∗
2, . . . , x

∗
T}.

(32)

Illustration of the Viterbi algorithm

1. Initialise,
δ1(i) = πibi(o1)
ψ1(i) = 0

2
1

2 31 Time

State

2. Recur for t = 2,

δ2(j) = maxi
[
δ1(i)aij

]
bj(o2)

ψ2(j) = argmaxi
[
δ1(i)aij

] 2
1

2 31 Time

State

Recur for t = 3,

δ3(j) = maxi
[
δ2(i)aij

]
bj(o3)

ψ3(j) = argmaxi
[
δ2(i)aij

] 2
1

2 31 Time

State

3. Finalise,
P (O, X∗|λ) = maxi [δ3(i)]
x∗3 = argmaxi [δ3(i)]

2
1

2 31 Time

State

4. Trace back for t=2..1,
x∗2=ψ3

(
x∗3
)

x∗1=ψ2

(
x∗2
)

X∗={x∗1, x
∗
2, x

∗
3}.

2
1

2 31

State

Time

Worked example of Viterbi algorithm

2
1

1 2 3

State

Time (frame)

Task 3: training the models

Motivation for the most likely model parameters

Given two different probability distribution functions (pdfs),

1

2

o

p(o)

consider how data in regions 1 and 2 would be treated

by a least-squares approach, and compare this to their

relative likelihoods.

Maximum likelihood training

In general, we want to find the value of some model

parameter κ that is most likely to give our set of training

data Otrain.

This maximum likelihood (ML) estimate κ̂ is obtained

by setting the derivative of P (Otrain|κ) wrt. κ equal to

zero, which is equivalent to:

∂ lnP (Otrain|κ)
∂κ

= 0, (33)

This likelihood equation enables us to optimise the model

parameters in training.

Re-estimating the model parameters λ

As a preliminary approach, let us use the optimal path

X∗ computed by the Viterbi algorithm with some initial

model parameters λ = {π,A,B}. In so doing, we approx-

imate the total likelihood of the observations:

P (O, X|λ) =
∑

all X

P (O, X|λ) ≈ P (O, X∗|λ). (34)

Using X∗, we can make a hard binary decision about

the occupation of state i, qt(i) ∈ {0,1}, and train the

parameters of our model accordingly.

Viterbi training (hard state assignment)

Model parameters can be re-estimated using the Viterbi
state alignment (aka. segmental k-means training):

(a) Initial-state probabilities,

π̂i = q1(i) for 1 ≤ i ≤ N ;

where state indicator qt(i) =

{
1
0

for i = xt;
otherwise.

(b) State-transition probabilities,

âij =
∑T
t=2 qt−1(i)qt(j)∑T
t=2 qt−1(i)

for 1 ≤ i, j ≤ N ;

(c) Discrete output probabilities,

b̂j(k) =
∑T
t=1 ωt(k)qt(j)∑T

t=1 qt(j)
for 1 ≤ j ≤ N ;

and 1 ≤ k ≤ K.

where event indicator ωt(k) =

{
1
0

for k = ot;
otherwise.

Maximum likelihood training by EM

Baum-Welch re-estimation (occupation)

However, the hidden state occupation is not know with

absolute certainty. So, the method of expectation max-

imisation (EM) is used to optimise the model parameters

based on the occupation likelihood,

γt(i) = P (xt = i|O, λ) , (35)

which we can rearrange using Bayes theorem:

γt(i) =
P (xt = i,O|λ)

P (O|λ)

=
αt(i)βt(i)

P (O|λ)
, (36)

where αt and βt are computed by the forward and back-

ward procedures, which yield P (O|λ).

Baum-Welch re-estimation (transition)

We also define a transition likelihood,

ξt(i, j) = P
(
xt−1 = i, xt = j|O, λ

)
=

P
(
xt−1 = i, xt = j,O|λ

)
P (O|λ)

=
αt−1(i) aij bj(ot) βt(j)

P (O|λ)
. (37)

t i()γ

β t i()α t i()

. .
 .

. .
 .

. .
 .

. .
 .

ija
bj ot()

ξ i, jt()

i() ()j

. .
 .

. .
 . . .
 .

. .
 .

α t−1 tβ

Trellis fragments depicting (left) occupation and (right) transition
likelihood calculation.

Baum-Welch training (soft state assignment)

(a) Initial-state probabilities,

π̂i = γ1(i) for 1 ≤ i ≤ N ;

(b) State-transition probabilities,

âij =
∑T
t=2 ξt(i,j)∑T
t=2 γt−1(i)

for 1 ≤ i, j ≤ N ;

(c) Discrete output probabilities,

b̂j(k) =

∑T
t=1

∣∣∣
ot=k

γt(j)∑T
t=1 γt(j)

for 1 ≤ j ≤ N ;

and 1 ≤ k ≤ K.

It can be shown that re-estimation increases the likeli-

hood of the training data for the new model λ̂,

P (Otrain|λ̂) ≥ P (Otrain|λ),

although it does not guarantee a global maximum.

Overview of the training procedure

Forward/Backward
Algorithm

Update HMM Parameters

Converged?
No

Yes

Estimated HMM

Initial HMM

Parameter re-estimation based on a single training example
(Young et al., 2002).

Use of HMMs with training and test data

P(P(P(

(a) Training

one two three

Training Examples

M1 M 2 M3

Estimate
Models

1.

2.

3.

(b) Recognition

Unknown O =

O|M1) O|M2) O|M3)

Choose Max

Training and isolated-word recognition (Young et al., 2002).

Part 2 summary

• Viterbi algorithm to find the best state sequence X∗

• Re-estimation of model parameters, λ = {π,A,B}:

– Viterbi training

– Occupation and transition likelihoods

– Baum-Welch training

Homework

• Perform Viterbi training on worked example

• Calculate γt and ξt likelihoods

• Perform Baum-Welch training, and compare

Centre for Vision Speech & Signal Processing
University of Surrey, Guildford GU2 7XH.

HMM part 3
Dr Philip Jackson

• Discrete & continuous HMMs
• Gaussian output pdfs

- Univariate Gaussian
- Multivariate Gaussian
- Mixtures of Gaussians

• Practical issues
• Summary

http://www.ee.surrey.ac.uk/Personal/P.Jackson/ISSPR/

Discrete HMM, λ

(a) Initial-state probabilities,
π = {πi} = {P (x1 = i)} for 1 ≤ i ≤ N ;

(b) State-transition probabilities,
A = {aij} = {P (xt = j|xt−1 = i)} for 1 ≤ i, j ≤ N ;

(c) Discrete output probabilities,
B = {bi(k)} = {P (ot = k|xt = i)} for 1 ≤ i ≤ N

and 1 ≤ k ≤ K.

π1

a11 a22 a33 a44

a34a23a12

o1 o2 o3 o4 o5 o6

b (o)11

b (o)21

b (o)32

b (o)43

b (o)53

b (o)64

1 2 43

producing

discrete observations

O = {o1, o2, . . . , o6}
with state sequence

X = {1,1,2,3,3,4 }.

Observations in discretised feature space

2c

c1

k =3

k =1 =2k

Discrete output probability histogram

P(o)

1 2 3 K
k

. . .

Continuous HMM, λ

(a) Initial-state probabilities,
π = {πi} = {P (x1 = i)} for 1 ≤ i ≤ N ;

(b) State-transition probabilities,
A = {aij} = {P (xt = j|xt−1 = i)} for 1 ≤ i, j ≤ N ;

(c) Continuous output probability densities,
B = {bi(ot)} = {p(ot|xt = i)} for 1 ≤ i ≤ N ,

where the output pdf for each state i can be Gaussian,

bi(ot) = N (ot;µi,Σi)

=
1

√
2πΣi

exp

(
−

(o− µi)
2

2Σi

)
, (38)

and N (·) is a normal distribution with mean µi and vari-

ance Σi, evaluated at ot.

Univariate Gaussian (scalar observations)

For a given state i,

bi(ot) =
1

√
2πΣi

exp

[
−

(ot − µi)
2

2Σi

]
.

b (o)
1

b (o)
2

o

p(o)

Multivariate Gaussian (vector observations)

bi(ot) =
1√

(2π)K |Σi|
exp

[
−

1

2
(ot − µi)Σ

−1
i (ot − µi)

′
]
,

where the dimensionality of

the observation space is K.

Baum-Welch training of Gaussian state parameters

For observations produced by an HMM with a continuous
multivariate Gaussian distribution, i.e.:

bi (ot) = N (ot;µi,Σi) , (39)

we can again make a soft (i.e., probabilitistic) allocation
of the observations to the states. Thus, if γt(i) denotes
the likelihood of occupying state i at time t then the ML
estimates of the Gaussian output pdf parameters become
weighted averages,

µ̂i =

∑T
t=1 γt(i)ot∑T
t=1 γt(i)

(40)

and

Σ̂i =

∑T
t=1 γt(i)(ot − µi)(ot − µi)

′∑T
t=1 γt(i)

, (41)

normalised by a denominator which is the total likelihood
of all paths passing through state i.

Gaussian mixture pdfs

Univariate Gaussian mixture

bi(ot) =
M∑

m=1

cimN (ot;µim,Σim)

=
M∑

m=1

cim√
2πΣim

exp

[
−

(ot − µim)2

2Σim

]
, (42)

where M is the number of mixture components (M-mix),

and the mixture weights sum to one:
∑M
m=1 cim = 1.

Multivariate Gaussian mixture

bi(ot) =
M∑

m=1

cimN (ot;µim,Σim) , (43)

where N (·) is the multivariate normal distribution with

vector mean µim and covariance matrix Σim, evaluated

at ot.

Univariate mixture of Gaussians

0 2 4 6
0

0.005

0.01

0.015

0.02

0.025

Observation variable, o

P
ro

ba
bi

lit
y

de
ns

ity
, p

(o
)

Mixture of two univariate Gaussian components.

Multivariate mixtures of Gaussians

Examples of two multivariate Gaussian pdfs (upper), and two
Gaussian mixtures of them with different weights (lower).

Baum-Welch training with mixtures

We define the mixture-occupation likelihood:

γt(j,m) =
α−t (j) cjmN

(
ot;µjm,Σjm

)
βt(j)

P (O|λ)
, (44)

where γt(j) =
∑M
m=1 γt(j,m),

and α−t (j) =

{
πj for t=1,∑N
i=1αt−1(i)aij otherwise.

a ijcj1

a ijc j2

a ijcjM

...

Single
Gaussians

j
a ij

M-component
Gaussian
mixture

j
1

j
2

j
M

Representing occupation of a mixture (Young et al., 2002).

Baum-Welch re-estimation of mixture parameters

Using soft assignment of observations to mixture com-
ponents given by mixture-occupation likelihood γt(j,m),
we train our parameters with revised update equations.

Mean vector:

µ̂jm =

∑T
t=1 γt(j,m)ot∑T
t=1 γt(j,m)

, (45)

Covariance matrix:

Σ̂jm =

∑T
t=1 γt(j,m)(ot − µjm)(ot − µjm)′∑T

t=1 γt(j,m)
, (46)

Mixture weights:

ĉjm =

∑T
t=1 γt(j,m)∑T
t=1 γt(j)

. (47)

Practical issues

Model initialisation

1. Random

2. Flat start

3. Viterbi alignment

(supervised/

unsupervised)

Proto HMM
Definition

HCompV

ih eh b d etcIdentical

Sample of
Training
Speech

Flat start (Young et al., 2002).

Decoding

• Probabilities stored as log probs to avoid underflow

• Paths propagated through trellis by token passing

• Search space kept tractable by beam pruning

Re-estimation and embedded re-estimation

HCompV

HERest

HHEd

th ih s ih s p iy t sh

sh t iy s z ih s ih th

Labelled Utterances

HRest

HInit

Sub-Word
HMMs

Unlabelled Utterances

Transcriptions

th ih s ih s p iy t sh

sh t iy s z ih s ih th

HMM training with variously labelled data (Young et al., 2002).

Number of parameters & Regularisation

• Context sensitivity

• Parsimonious models

– Occam’s razor

• Size of database

• variance floor

• parameter tying

– agglomerative

clustering

– decision trees

Related topics that are not covered here

• Noise robustness

– factorial HMMs

• Adaptation

– MLLR & MAP

• Language modeling

• Markov random fields

• Monte Carlo Markov

chains

Part 3 summary

• Introduction to continuous HMMs

• Gaussian output pdfs

– Univariate & multivariate Gaussians

– Mixtures of Gaussians

• Baum-Welch training of continous HMMs

• Practical issues

References

B. Gold & N. Morgan, Speech and Audio Signal Processing, New
York: Wiley, pp.346–347, 2000 [0-471-35154-7].

J. N. Holmes & W. J. Holmes, Speech Synthesis and Recognition,
Taylor & Francis, 2001 [0-748-40857-6].

F. Jelinek, Statistical Methods for Speech Recognition, MIT Press,
1998 [0-262-10066-5].

D. Jurafsky & J. H. Martin, Speech and Language Processing: An
Introduction to Natural Language Processing, Computational
Linguistics and Speech Recognition, Prentice Hall, 2003 [0-
131-22798-X].

L. R. Rabiner. A tutorial on HMM and selected applications in
speech recognition. In Proc. IEEE, Vol. 77, No. 2, pp. 257–286,
1989.

S. J. Young, et al., The HTK Book, Cambridge Univ. Eng. Dept.
(v3.2), 2002 [http://htk.eng.cam.ac.uk/].

