
AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 23

PART II

AI*IA 2003

Fusion of Multiple Pattern ClassifiersFusion of Multiple Pattern Classifiers

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 24

Methods for Constructing MCS
• The effectiveness of MCS relies on combining

diverse/complementary classifiers

�Injecting randomness

Several approaches have been proposed to construct ensembles
made up of complementary classifiers. Among the others:

�Varying the classifier type, architecture, or parameters
�Manipulating training data
�Manipulating input features
�Manipulating output features

�Using problem and designer knowledge

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 25

Using problem and designer knowledge
• When problem or designer knowledge is available,

“complementary” classification algorithms can be designed

•In applications with multiple sensors
•In applications where complementary representations of patterns
are possible (e.g., statistical and structural representations)

These are heuristic approaches, perform as well as the
problem/designer knowledge allows to design complementary
classifiers

•When designer knowledge allows varying the classifier type,
architecture, or parameters to create complementary classifiers

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 26

Injecting randomness
• Simple design methods are based on injecting randomness in

the classification/training algorithm
–Neural Networks: the back-propagation algorithm is often run
several times using different (random) starting points (initial
weights)
–Decision Trees: the test at each internal node can be chosen
randomly between the top n best tests

These are basically heuristic approaches. We can only hope that
they produce complementary classifiers

–Random Forests (Leo Breiman, 2001)

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 27

Methods based on training data manipulation
• These methods are based on training N classifiers with N

different training sets
Data splitting

–Training data are randomly subdivided into N disjoint subsets
–Each classifier is trained on a different subset (infeasible for
small training sets)

Cross-validated committees
–Training data are randomly subdivided into N disjoint subsets
–N overlapping training sets are constructed by dropping out a
different one of the N subsets

�Bagging
�Boosting

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 28

Bagging
• Method proposed by L. Breiman (1996) for constructing

multiple classifiers by training data manipulation

•Bagging is based on obtaining different training sets of equal
size as the original one, by using a statistical technique named
bootstrap

•The resulting training sets Li, i=1,…,N, contain usually small
changes with respect to L

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 29

Bootstrap
• The bootstrap technique is based on the concepts of

bootstrap sample and bootstrap replication

•Bootstrap replication
–a classifier trained with a bootstrap sample

•Bootstrap sample
–x* = (x*1,…,x*n): random sample of size n drawn with replacement from
the original sample x = (x1,…,xn)
–each sample in x can appear in x* zero times, once, twice, etc.

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 30

Bagging (Bootstrap AGGregatING)

•Rationale behind:
instances of an unstable classifier constructed on different bootstrap
samples can exhibit significant differences

L = (x1,…,xn)

L1* = (x*1,…,x*n) LN* = (x*1,…,x*n)
…

…
bootstrap samples

individual classifiers

original training set

c1 cN

combining rule

final decision

Bootstrap replications

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 31

Combining rules for Bagging
• Bagging is a method for constructing multiple classifiers,

not a fusion rule

• In principle, any combining technique can be applied

•Usually, simple combining rules are used
–simple averaging
–majority vote

•Experimental results show that bagging is effective when
used with simple combining rules. However, the use of
complex rules should be investigated further.

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 32

Examples of bagging (Breiman, 1996)
S ing le and Bagg ed Dec is ion Trees (50 Boots trap Replicates)

Tes t S et Average Mis c las s ification Rates o ver 100 Runs

0%
5%

10%
15%
20%
25%
30%
35%

wa ve form bre a s t ca nce r ionos phe re dia be te s gla s s s oybe a n

M
isc

la
ss

ific
at

io
n

Ra
te

s

S ingle Tre e
Ba gge d Tre e s

Single and Bagged k-NN (100 Bootstrap Replicates)
Test Set Average Misclassification Rates over 100 Runs

0%
5%

10%
15%
20%
25%
30%
35%
40%

waveform breast cancer ionosphere diabetes glass

Single k-NN
Bagged k-NN

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 33

Number of bootstrap samples
• How many bootstrap samples are enough?

– Experimental results show that 50 bootstrap samples are often
sufficient for classification problems

– Example for the soybean data set (Breiman, 1996):

19%

20%

20%

21%

21%

22%

22%

0 25 50 75 100 125
No. Bootstrap Replicates

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 34

AdaBoost
• AdaBoost algorithm (Freund and Schapire, 1995) is aimed at

producing highly accurate (“strong”) classifiers by combining
“weak” instances of a given base classifier

•AdaBoost iteratively constructs an ensemble of N
complementary classifiers
•Additional weak classifiers are introduced iteratively if
necessary, and they are trained on samples that previous
classifiers have misclassified
•The resulting classifiers are combined by weighted voting
�AdaBoost is an ensemble learning method, not a general
purpose method for constructing multiple classifiers like
Bagging

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 35

Basic Scheme of AdaBoost

For t=1,…,N:

Given a set L = (x1,…,xn) of n training patterns
Initialize D1(i) = 1/n, i=1,…,n; L1 = L

–Dt(i) denotes the weight of pattern xi on round t

–Train the base classifier ct on Lt
–Compute the error rate εt of ct on the original training set L

–Update () ()
1

if is correctly classified
if is misclassified

t
it

t tt i

e xD iD i Z e x
α

α

−

+

= ×

11 ln2
t

t
t

εα ε
− = –Set

Combine the N classifiers by weighted majority voting, using the
weights αt

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 36

Methods based on Input Feature Manipulation
• Manual or automatic feature selection/extraction can be

used for generating diverse classifiers using different feature
sets

•For example, subsets related to different sensors, or subsets of
features computed with different algorithms
•Different feature sets can be generated using different feature
extraction algorithms applied to the original set

•The “hope” is that classifiers using different features are
complementary

•Manual or automatic selection can work with set of
redundant/irrelevant features

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 37

The Random Subspace Method

Let be a n-dimensional feature space.nX ⊆ ℜ
1 2 3 2 1[, , , ..., , ..., , ,]i n n nx x x x x x x x− −=

We can project this vector into a m-dimensional subspace, by
selecting m random components.

The Random Subspace Method (RSM) consists in random
selection of a certain number of subspaces from the original
feature space, and train a classifier on each subspace (T.K. Ho,
1998).

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 38

RSM: multiple subspace generation
We can generate multiple “projected” data sets, by varying the
vector v.

1

2

3
...

n

x
x
xx

x

=

(1)
1

(1)
2

(1)
(1)
3

(1)

. . .

v

v

v

v m

x
x

x x

x

 =

(2)
1

(2)
2

(2)
(2)
3

(2)

. . .

v

v

v

v m

x
x

x x

x

 =

()
1

()
2

()
()
3

()

. . .

iv

iv
i

iv

iv m

x
x

x x

x

 =

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 39

Decision fusion with RSM
The next step is to combine the information extracted by each
classifier trained on the feature subspace

Projected Data Set based on v(1)

Projected Data Set based on v(2)
………
……….
……….

Projected Data Set based on v(i)

Classifier 1

Classifier 2
………
……….
……….

Classifier i

FUSER

Experiments showed that simple combiners (e.g., average of
classifiers outputs) work well with RSM generated classifiers.

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 40

RSM: Application to Decision Forests

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 41

In some sense, this approach does not suffer from the “curse” of
dimensionality.

Some Remarks on RSM

See L.I. Kuncheva, F. Roli, G.L. Marcialis and C.A. Shipp,
"Complexity of Data Subsets Generated by the Random
Subspace Method: an Experimental Investigation“, 2002

RSM works well for large feature sets with redundant features

Key issue: the number of ramdom features to generate

Random Subspace Method exploits concepts of the Theory of
Stochastic Discrimination by E. Kleinberg.

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 42

The concept of “weak” classifier
•Some methods (Bagging, Boosting, RSM) use “weak” classifiers

•Because designing a strong classifier by fusion of multiple weak
classifiers can be simpler (“curse” of designer)

•Why should we use “weak” classifiers if we can design strong ones ?

•Because weak classifiers, with low “variance”, can suffer less
small sample size issues

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 43

Noise Injection
Injecting noise into the input features can be used to
manipulate the training data, so creating different training
sets.
For example, we can add a zero mean and small covariance
noise vector n to each training vector X:

Xnew = X + n

It is possible to generate m artificial vectors for each training
pattern.

Raviv and Intrator (1996) combined bootstrap sampling of the
training data with injecting noise. The x value of each training
example was perturbed by adding Gaussian noise
Other possibility: data splitting + adding noise

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 44

The K-NN Direct Noise Injection
In order to take in account the intrinsic dimensionality of the
data, we can add noise along the direction of the K nearest
neighbors of each pattern.

M.Skurichina
et al., 2000
F.Roli,
S.Raudys, G.
Marcialis,
2002

Artificial patterns generated by
K-NN Direct Noise Injection

Nearest Neighbors to
the training pattern

Training Pattern
Artificial patterns generated
by standard Gaussian noise

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 45

Manipulating the Output Features
Another interesting idea is building complementary classifiers by
partitioning the set of classes in different ways
Each component classifier is trained to solve a subset of the N class
problem. For instance, each classifier could solve a two class
problem (e.g., One vs. All strategy).
A suitable combination method able to “recover” the original N
class problem is necessary.
To this end, Dietterich and Bakiri described a technique called
Error-Correcting Output Coding (ECOC)
ECOC works well for a large number of classes. But it could be
applied to subclasses within a smaller number of classes

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 46

ECOC: Basic Idea
Let be a n-dimensional input space.
Let {c1,…,ck} be a set of classes.
Let {f0,…,fm-1} be a set of m functions, with

For each class cj, let b(j)={b0,…,bm-1} be the associated
“codeword”, with

We construct a decoding matrix whose rows are the classes cj and
columns are the bit bi of the codeword associated to each class.

nX ⊆ ℜ

: { 0 ,1}if X →

{ }0 , 1i if b= ∈

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 47

ECOC: An example of Decoding Matrix

A 15-bit ECOC for a ten-class problem:

AI*IA 2003 – Tutorial on Fusion of Multiple Pattern Classifiers by F. Roli 48

ECOC classification
In the previous example, a separate boolean function fi is learned
(e.g. trough a MLP or a DT) for each bit position of the error-
correcting code.
To classify a new example , each of the learned
functions f(x) = {f0(x),…,f14(x)} is evaluated to produce a 15-bit
string.

This is then mapped to the nearest of the ten codewords,
according to a “distance measure” (e.g., the Hamming distance):

x X∈

()arg m in (, ())k
k

class d b f x=

