Descriptions Using Moments

Robert B. Fisher School of Informatics University of Edinburgh

Slide 1/11

Slide credit: Bob Fisher

Moments II

Area $A = \sum_r \sum_c p_{rc}$

Center of mass

$$(\hat{r}, \hat{c}) = (\frac{1}{A} \sum_{r} \sum_{c} r p_{rc}, \frac{1}{A} \sum_{r} \sum_{c} c p_{rc})$$

A family of 'central' (? invariant) moments (for any u and v):

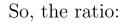
$$m_{uv} = \sum_{r} \sum_{c} (r - \hat{r})^u (c - \hat{c})^v p_{rc}$$

Subtracting center of mass makes it translation invariant

Moments

Family of stable binary (and grey level) shape descriptions

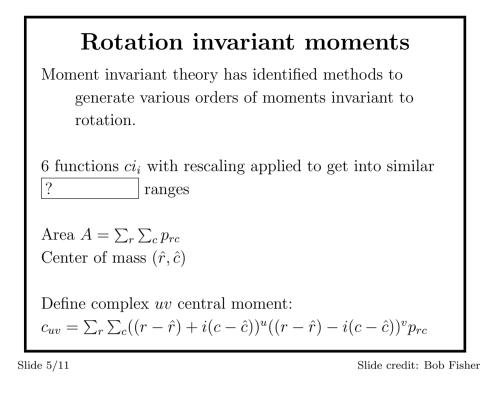
Can be made invariant to translation, rotation, ?

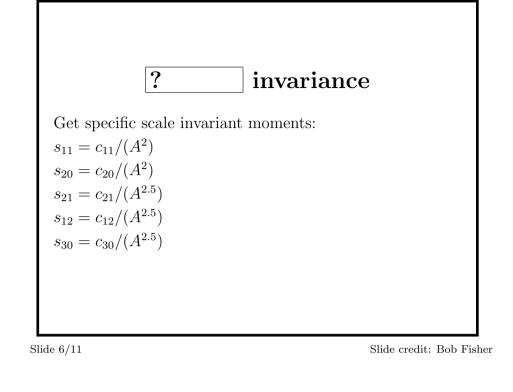

Let $\{p_{rc}\}$ be the binary (0,1) image pixels for row r and col c where 1 pixels are the object

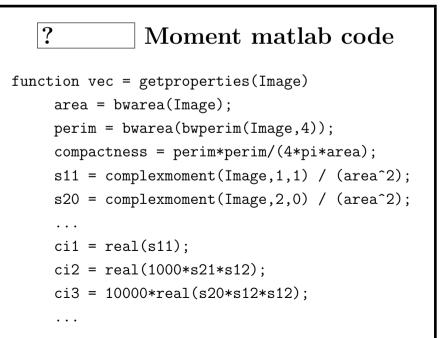
Slide 2/11

Slide credit: Bob Fisher

Scale invariant moments


If double in dimensions, then moment m_{uv} increases by $2^u 2^v$ for weightings and 4 for the number of pixels. Similarly, area A increases by 4, and thus $A^{(u+v)/2+1}$ increases by $4 \times 2^u 2^v$


 $\mu_{uv} = \frac{m_{uv}}{A^{(u+v)/2+1}}$


is invariant to ?

Slide 4/11

Rotation invariant moments II Rescaled (so values in similar range) rotation invariants: $ci_1 = real(s_{11})$ $ci_2 = real(1000 * s_{21} * s_{12})$ $ci_3 = 10000 * real(s_{20} * s_{12} * s_{12})$ $ci_4 = 10000 * imag(s_{20} * s_{12} * s_{12})$ $ci_5 = 1000000 * real(s_{30} * s_{12} * s_{12} * s_{12})$ $ci_6 = 1000000 * imag(s_{30} * s_{12} * s_{12} * s_{12})$

Slide credit: Bob Fisher

Example	?		property values
	>	~	F
compactness	1.93	1.81	1.90
ci_1	0.23	0.27	0.25
ci_2	0.18	0.37	0.45
ci_3	0.08	-0.50	0.11
ci_4	-0.00	0.37	-0.64
ci_5	0.23	-0.47	0.09
ci_6	-0.00	0.07	-0.63
lide 9/11			Slide credit: Bob

Slide 9/11

Slide credit: Bob Fisher

Feature VectorStandard description for many visual processes:
form a ?from set of descriptions: $\vec{x} = (compactness, ci_1, ci_2, ci_3, ci_4, ci_5, ci_6)'$ Multiple vectors if several structures or
locations to describeThese vectors are then used in next processes,
eg. recognition

Slide 10/11

Slide credit: Bob Fisher

Lecture Overview

- 1. Moments: an infinite family of shape descriptions
- 2. A way to make them ? _____ to rotation, translation, and scale

Slide credit: Bob Fisher