Shape Signatures

Robert B. Fisher School of Informatics University of Edinburgh

Slides credit: Bob Fisher & Vittorio Ferrari

Shape signatures

Idea

represent shape by a 1D function derived from boundary points

Area, cumulative angles, ...

Similarity between two shapes: difference integrated over *t*

Images: A. Zweng; Zhang and Lu

Shape signatures

Cope with challenges

- + invariance to translation
- + invariance to scale (if normalize shape beforehand)
- + invariance to rotation (for tangent angle need orientation normalization)
- + point correspondences (if solve for alignment)
- * handles shape deformations to some degree

Advantages

- + quite informative
- + deformations affect signature locally

Disadvantages

- where to start ? \rightarrow high matching cost (e.g. DTW)
- sensitive to noise (especially when derivatives involved)

Images: S. Manay

Shape Contexts

Belongie et al. PAMI 2002

What points on these two sampled contours are most similar? How do you know?

Slide: K. Grauman

Shape context descriptor

Count the number of points inside each bin, e.g.:

Slide: Grauman / Belongie

Shape context descriptor

Slide: Grauman / Belongie

Comparing shape contexts

 $\sum_{i=1}^{K} \frac{[h_i(k) - h_j(k)]^2}{h_i(k) + h_j(k)}$

Recover correspondences by solving for least cost assignment, using costs C_{ij} (e.g. by the Hungarian algorithm)

Slide edited from: Grauman / Belongie

Shape Signature Discussion

Shape Signatures cope with challenges

- + invariance to translation
- + invariance to scale (if normalize shape beforehand)
- no invariance to rotation (but could be added)
- + some point correspondences
- + handles some shape deformations

Advantages

- + informative: describe points in the context of overall shape
- + deformations handled well: descriptor more sensitive near a point than far from it

Disadvantages

- many parameters (# and size of bins, # iterations, etc.)
- computationally expensive (especially with iterations)

Lecture Overview

- + Method for describing and matching complex shapes
- + Doesn't need segmentation
- + Based on local point distributions
- Computationally expensive

Further readings

Rothwell et al. ECCV 1992, Canonical frames (+ historical relevance)

Manay and Soatto ECCV 2004, Integral Signatures (+ avoid derivative noise)

Ling and Jacobs PAMI 2007, Inner distance (+ articulations)

Felzenszwalb and Schwartz CVPR 2007, Hierarchical shape models (+ excellent on the MPEG-7)