Image Geometry

Bob Fisher School of Informatics University of Edinburgh

Let's design a camera

Idea 1: put a piece of film in front of an object Do we get a reasonable image?

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening is known as the aperture

Pinhole camera model

Pinhole model:

- Captures pencil of rays - all rays through a single point
- The point is called Center of Projection (focal point)
- The image is formed on the Image Plane

Dimensionality reduction: from 3D to 2D

3D world

Point of observation
What is preserved?

- Straight lines, incidence

What have we lost?

- Angles, lengths

2D image

Projection properties

- Many-to-one: any points along same visual ray map to same point in image
- Points \rightarrow points
- But projection of points on focal plane is undefined
- Lines \rightarrow lines (collinearity is preserved)
- But lines through focal point (visual rays) project to a point
- Planes \rightarrow planes (or half-planes)
- But planes through focal point project to lines

Vanishing points

- Each direction in space has its own vanishing point
- All lines going in that direction converge at that point
- Exception: directions parallel to the image plane

Modeling projection

The coordinate system

- The optical center (\mathbf{O}) is at the origin
- The image plane is parallel to xy-plane (perpendicular to z axis)

Modeling projection

Projection equations

- Compute intersection with image plane of ray from $\boldsymbol{P}=(x, y, z)$ to \boldsymbol{O}
- Derived using similar triangles

$$
(x, y, z) \rightarrow\left(f \frac{x}{z}, f \frac{y}{z}, f\right)
$$

- We get the projection by throwing out the last coordinate:

$$
(x, y, z) \rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)
$$

Homogeneous coordinates

$$
(x, y, z) \rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)
$$

Is this a linear transformation?

- no-division by z is nonlinear

Trick: add one more coordinate:

$$
\begin{array}{cc}
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] & (x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \\
\text { homogeneous image } & \text { homogeneous scene } \\
\text { coordinates } & \text { coordinates }
\end{array}
$$

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

$$
\Rightarrow(x / w, y / w, z / w)
$$

Perspective Projection Matrix

Projection is a matrix multiplication using homogeneous coordinates

Perspective Projection Matrix

Projection is a matrix multiplication using homogeneous coordinates

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z / f
\end{array}\right] \Rightarrow \begin{gathered}
\left(f \frac{x}{z}, f \frac{y}{z}\right) \\
\begin{array}{c}
\text { divide by the third } \\
\text { coordinate }
\end{array}
\end{gathered}
$$

Perspective Projection Matrix

Projection is a matrix multiplication using homogeneous coordinates

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z / f
\end{array}\right] \Rightarrow \begin{gathered}
\left(f \frac{x}{z}, f \frac{y}{z}\right) \\
\begin{array}{c}
\text { divide by the third } \\
\text { coordinate }
\end{array}
\end{gathered}
$$

In practice: lots of coordinate transformations...

What have we learned?

- Pinhole camera model concept
- Geometry of projection
- Mathematics of projection
- Elementary homogeneous coordinates

