Homography I

Projection: A non-singular (ie. invertible) ? transformation **P** that maps points from one plane to another $P^{\text{lane } \pi_1}$ $P^{\text{lane } \pi_2}$ C_{amera} OriginPlane π_2 shapes observed in a 3D position project onto image plane π_1 (2D \rightarrow 2D) **P**: $\pi_2 \rightarrow \pi_1$

Slide 1/13

Slide credit: Bob Fisher & Vittorio Ferrari

Slide 2/13

Slide credit: Bob Fisher & Vittorio Ferrari

Homography II

Homography and Transfer

Robert B. Fisher

School of Informatics

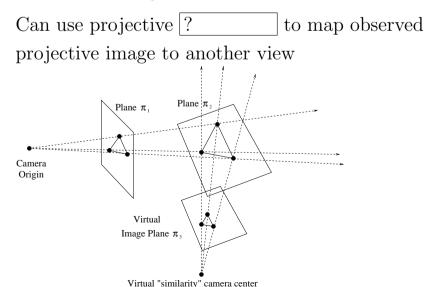
University of Edinburgh

Accounts for 8 degrees of freedom (2 more than affine transformations), including rotation, translation, scale, shear.

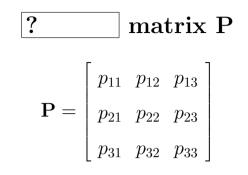
To do properly, use ? coordinates Augment point positions (x, y)' to (x, y, 1)'

$$\left(\begin{array}{c} x\\ y\end{array}\right) \rightarrow \left(\begin{array}{c} x\\ y\\ 1\end{array}\right)$$

Projective Transfer



Use homogeneous coordinates $\mathbf{P}_{21}: \pi_2 \to \pi_1$ (ie. copy scene plane into image plane) $\mathbf{P}_{23}: \pi_2 \to \pi_3$ (ie. copy scene plane into new plane) Therefore $\mathbf{P}_{13} = \mathbf{P}_{23} \ (\mathbf{P}_{21})^{-1}: \pi_1 \to \pi_3$



Slide 5/13

Slide credit: Bob Fisher & Vittorio Ferrari

Slide 6/13

Slide credit: Bob Fisher & Vittorio Ferrari

Estimating
$$\mathbf{P:}(u,v) \to (x,y)$$

Direct Linear Transform Method

Given: $N \ge 4$? points: $\{((x_i, y_i), (u_i, v_i))\}_{i=1}^N$

Least square estimate of \mathbf{P}

Let
$$\vec{p}' = (p_{11}, p_{12}, p_{13}, p_{21}, p_{22}, p_{23}, p_{31}, p_{32}, p_{33})'$$

Let $\mathbf{A}_i =$

Estimating P cont.

Construct $\mathbf{A} = \begin{bmatrix} A_1 \\ A_2 \\ \dots \\ A_N \end{bmatrix}$

Compute SVD(\mathbf{A}) = $\mathbf{UDV'}$ \vec{p} is last column of \mathbf{V} (eigenvector of ? eigenvalue of \mathbf{A}) Repack \vec{p} back into matrix \mathbf{P}

See esthomog.m and Sec. 4.1 of Harley & Zisserman

Slide 9/13

Slide credit: Bob Fisher & Vittorio Ferrari

Transfer/Remapping Algorithm

Input image I(x, y)? image R(u, v)

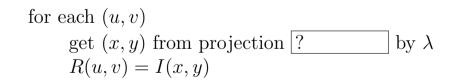
If homography **P** between planes known, then can map (u, v) onto (x, y) using:

 $\begin{pmatrix} \lambda x \\ \lambda y \\ \lambda \end{pmatrix} = \mathbf{P} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$

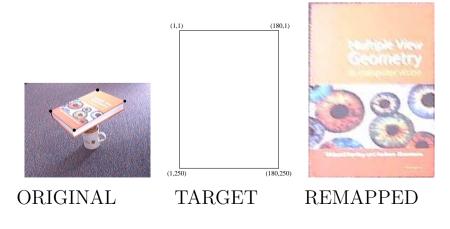
Slide 10/13

Slide credit: Bob Fisher & Vittorio Ferrari

Projective Transfer Example



See remap.m



Lecture Overview

- Homography for mapping between planes
- How to estimate a homography
- Using a homography for ?

Slide 13/13

Slide credit: Bob Fisher & Vittorio Ferrari