
Chamfer-Based Shape Matching

Robert B. Fisher School of Informatics University of Edinburgh

Slides credit: Bob Fisher & Vittorio Ferrari & Bas Boom

Location and Matching Task

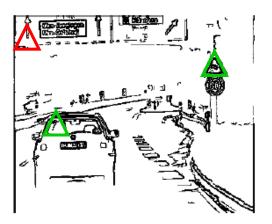
Slide: Ferrari et al. ECCV 2006

Chamfer matching

Gavrila and Philomin ICCV 1999

• Chamfer distance = average distance to nearest edgel

$$D_{chamfer}(T,I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$$


- $T = \text{template shape} \rightarrow a \text{ set of points}$
- $I = \text{image to search} \rightarrow a \text{ set of points}$
- $d_I(t)$ = min distance for template point *t* to any point in *I*

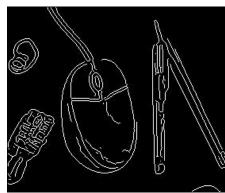
Chamfer matching

Chamfer distance = average distance to nearest edgel

$$D_{chamfer}(T,I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$$

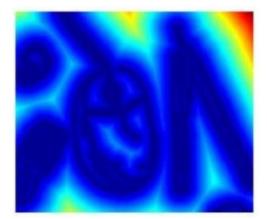
Edge image

Key idea: response much smoother than filtering with a mask having the shape points !


Match = local maxima of sliding-window output function

A naïve implementation is very expensive

Slide extended from K. Grauman


Distance transform

original

distance transform Value at (x,y) tells distance to nearest edgel (or other binary image structure)

Very efficient algorithms to compute the distance transform are available (linear in the number of image pixels)

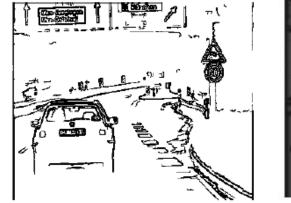
 $D_{chamfer}(T,I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$

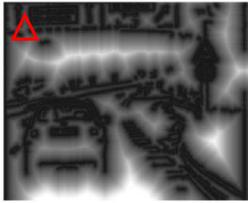
Find nearest edgel every time

If we have the distance transform of the image

 \rightarrow use $d_{I}(t)$ as a lookup table, no need to

>> help bwdist

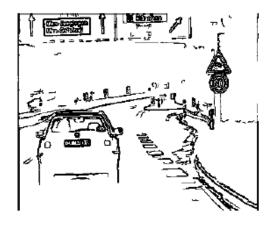

Slide extended from K. Grauman

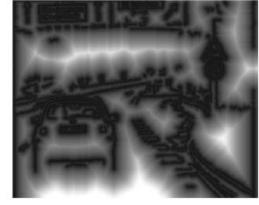

Chamfer matching

• Chamfer distance = average distance to nearest edgel

$$D_{chamfer}(T,I) \equiv \frac{1}{|T|} \sum_{t \in T} d_I(t)$$

Edge image


Distance transform image


Slide extended from K. Grauman

Sign recognition

Edge image

Distance transform image

Slide extended from K. Grauman

Fig from D. Gavrila, DAGM 1999

Chamfer matching discussion

Cope with challenges

- + clutter
- + scale changes
- + fragmented edges
- only small shape deformations

Advantages

- + simple to implement
- + quite fast

a perfect circle ?

Disadvantages

- many false-positives in cluttered regions (due to weak notion of shape)
- need many training templates to handle shape variations.

Lecture Overview

- + Method for complex shape matching
- + Doesn't need segmentation
- + Gives matched shape location
- Computationally expensive