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prob(~x|c)? Gaussian Distribution

Data is feature vector ~x = (f1, f2, . . . , fn)′.

Expect variation in property values over the class,

perhaps not independent between variables.

Commonly ? probability distribution of ~x

is Multivariate Gaussian Distribution

For 2 properties, ~x = (f1, f2)
′ we have:
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2D Gaussian Distribution

Characterised by mean (m1,m2)
T and covariance matrix
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σi - standard ? of ith property

ρij - cross-correlation coefficient between i and j
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Multivariate Gaussian

Distribution

For each class c we need:

• Mean vector ~mc of dimension n - the ?

value of the n properties for class c

• Covariance matrix Ac - the n × n matrix of joint

variation between each pair of properties.

Then, the probability of observing feature vector ~x given

class c is:

p(~x|c) =
1

(2π)
n

2

1

|Ac|
1

2

e−
1

2
[(~x−~mc)TA

−1

c (~x−~mc)]
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Estimating the Distribution

Parameters: the Class Model

Given k > n training instances {~xi} of class c

Estimated Mean vector:

~mc =
1

k

k
∑

i=1

~xi

Estimated ? matrix:

Ac =
1

k − 1

k
∑

i=1

(~xi − ~mc)(~xi − ~mc)
T

Estimate p(c) from class distribution of training samples
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Probability Example

Two classes. A priori probabilities p(1) = 0.6, p(2) = 0.4

Cls 1: ~m1 =
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 A1 =
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1 = 1
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Cls 2: ~m2 =







4

13





 A2 =







3 1

1 2





 A−1
2 = 1
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2 −1
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|A1| = |A2| = 5

Test data ~x =







area

perimeter





 =







3

10







Which is the most probable ? ?
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Example continued

Class 1 if p(1|~x) > p(2|~x)

? rule:

p(1|~x) =
p(~x|1)p(1)

p(~x)
>

p(~x|2)p(2)

p(~x)
= p(2|~x)

0.6 · p(~x|1) > 0.4 · p(~x|2)

p(~x|1) =
1

2π

1

|A1|
1

2

e−
1

2
[(~x−~m1)

TA−1

1
(~x−~m1)]
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p(~x|1) =
1

2π

1√
5
e−

27

10 = 4.78 · 10−3
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Similarly,

p(~x|2) =
1

2π

1√
5
e−

23

10 = 7.15 · 10−3

So, class 1 if

0.6p(~x|1) > 0.4p(~x|2)

2.87 · 10−3 > 2.85 · 10−3

Thus most ? (barely) to be class
1.
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Lecture Overview

1. Multivariate Gaussian distribution

2. Estimating distribution parameters:

mean and ?
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