Probabilistic Object Recognition

Robert B. Fisher School of Informatics University of Edinburgh

Object recognition key points

- Classification by comparing the relative probability of a shape belonging to different classes
- Properties in a feature vector
- Use Bayes rule to calculate the class probabilities
- Class model is multivariate Gaussian distribution
- Estimate the distribution parameters from the data

Slide 1/6

Slide based on: Bob Fisher

Slide 2/6

Slide based on: Bob Fisher

The story so far ...

Pre-processing:

- 1. Capture image
- 2. Threshold to isolate object
- 3. Measure properties: $\vec{x} = (f_1, f_2, \dots, f_n)'$

Probabilistic Object Recognition

 $p(c|\vec{x})$ is the probability that c was the class given that we observed evidence \vec{x}

We select most probable class c (*i.e.* $p(c|\vec{x})$ is the highest) or perhaps none if the probability for all classes is too low.

Computing $prob(c|\vec{x})$? Bayes Classifier

p(c) is the $a\ priori$ (before any observations) probability of observing class c

 $p(\vec{x}|c)$ is the probability that evidence \vec{x} would have been observed if c was the class

Bayes rule:

$$p(c|\vec{x}) = \frac{p(\vec{x}|c)p(c)}{p(\vec{x})} = \frac{p(\vec{x}|c)p(c)}{\sum_{k} p(\vec{x}|k)p(k)}$$

Advantage: we learn p(c) and $p(\vec{x}|c)$ from examples

Slide 5/6

Slide based on: Bob Fisher

Slide 6/6

Lecture Overview

- 1. Probabilistic model based on estimating the class probabilities
- 2. Use Bayes Rule to estimate probability

Slide based on: Bob Fisher