Finding Objects by Background Removal

Robert B. Fisher
School of Informatics
University of Edinburgh

Isolation in Complex Scenes

Threshold problems with image I :

- Many objects
- Space varying illumination

If have constant background image B (ie. before actions) Try: thres $(|I-B|)$ instead of thres(I)

Slide 2/13
Slide credit: Bob Fisher

Colour Differencing Example 2

Before

After

Subtract prestored background and threshold
Algo: change=open(2,coloror(thr(35,abs(Before-After)))) (Use HS of HSI instead of RGB if illumination changes?)

Colour Differencing Results 2

Red change

'OR'ed change

Slide 5/13
Slide credit: Bob Fisher

Normalised RGB Example

Original

Normalised

Reduces shadow effects, too.

Coping with Varying Lighting

Use normalised RGB:

$$
(r, g, b) \rightarrow\left(\frac{r}{r+g+b}, \frac{g}{r+g+b}, \frac{b}{r+g+b}\right)
$$

Double illumination still gives same normalised RGB:

$$
\begin{gathered}
\left(\frac{r}{r+g+b}, \frac{g}{r+g+b}, \frac{b}{r+g+b}\right) \\
=\left(\frac{2 r}{2 r+2 g+2 b}, \frac{2 g}{2 r+2 g+2 b}, \frac{2 b}{2 r+2 g+2 b}\right)
\end{gathered}
$$

Slide 6/13

Background Ratio Isolation

If known but spatially varying illumination

Reflectance: percentage of input illumination reflected. A function of the light source, viewer and surface colors and positions.

Recall:
background $(\mathrm{r}, \mathrm{c})=$ illumination(r,c)*bg_reflectance(r,c) object $(\mathrm{r}, \mathrm{c})=$ illumination $(\mathrm{r}, \mathrm{c})^{*}$ obj_reflectance (r, c)

Background Ratio Isolation 2

Divide to remove illumination:
unknown(r,c)/background(r,c) =
1 if unknown $=$ background
$\ll 1$ if unknown $=$ dark object
Pick threshold in $[0,1]$ e.g. 0.6

Background ratio results 2

Raw histogram

Ratio histogram

Note ragged raw and smoother ratio histograms

Lecture Overview

1. Background subtraction, including colour
2. Normalised RGB
3. Ratio with background for varying illumination

Slide credit: Bob Fisher

