Thresholding Based Segmentation

Robert B. Fisher
School of Informatics
University of Edinburgh

Isolating flat parts

Isolate parts, then characterise later

Assume
- Dark part
- Light background
- Reasonably uniform illumination \rightarrow distinguishable parts

Motivating Example

Given this image, how might we label pixels as object and background?

Thresholding Introduction

Key technique: thresholding
Assume pixel values are separable

Part and typical distribution

Spread: not quite uniform illumination + part color variations + sensor noise
Thresholding Algorithm

Thresholding: central technique

for row = 1 : height
 for col = 1 : width
 if value(row,col) < ThreshHigh % inside high bnd % & value(row,col) > ThreshLow % optional low bnd
 output(row,col) = 1;
 else
 output(row,col) = 0;
 end
end

Threshold Selection 1

Exploit bimodal distribution

But:

- Distributions broad and some overlap – > misclassified pixels
- Shadows dark so might be classified with object
- Distribution has more than 2 peaks
So: smooth histogram to improve shape for selection

Convolution

General purpose image (and signal) processing function

Computed by a weighted sum of image data and a fixed mask

Linear operator: conv(a*B,C) = a*conv(B,C)

Used in different processes: noise removal, smoothing, feature detection, differentiation, ...
Convolution in 1D

\[\text{Output}(x) = \sum_{i=-N}^{N} \text{weight}(i) \ast \text{input}(x - i) \]

Input:

Gaussian Mask and Output:

Derivative of Gaussian Mask and Output:

Histogram Smoothing for Threshold Selection

Histogram Smoothing (in `findthresh.m`)
Convolve with a Gaussian smoothing window

```matlab
filterlen = 50; % filter length
thefilter = gausswin(filterlen,sizeparam); % size=4
thefilter = thefilter/sum(thefilter); % unit norm
tmp2=conv(thefilter,thelist); % makes longer output
% select corresponding portion
offset = floor((filterlen+1)/2);
tmp1=tmp2(offset:len+offset-1);
```

Threshold Selection 2

Assume 2 big peaks, brighter background is higher:

1. Find biggest peak (background)
2. Find next biggest peak in darker direction
3. Find lowest point in trough between peaks

Peak Pick Code

Omit special cases for ends of array and closing ‘end’s.

\[
\text{peak} = \text{find}(\text{tmp1} == \text{max}(\text{tmp1})); \quad % \text{find largest peak}
\]

% find highest peak to left
\[
\text{xmaxl} = -1;
\]
for \(i = 2 : \text{peak}-1 \)
\[
\text{if} \ \text{tmp1}(i-1) < \text{tmp1}(i) \ & \ \text{tmp1}(i) \geq \text{tmp1}(i+1) \ & \ \text{tmp1}(i) > \text{xmaxl}
\]
\[
\text{xmaxl} = \text{tmp1}(i);
\]
\[
\text{pkl} = i;
\]
% find deepest valley between peaks

\[
\text{xminl} = \text{max}(\text{tmp1})+1;
\]
for \(i = \text{pkl}+1 : \text{peak}-1 \)
\[
\text{if} \ \text{tmp1}(i-1) > \text{tmp1}(i) \ & \ \text{tmp1}(i) \leq \text{tmp1}(i+1) \ & \ \text{tmp1}(i) \leq \text{xminl}
\]
\[
\text{xminl} = \text{tmp1}(i);
\]
\[
\text{thresh} = i;
\]

Lecture Overview

1. Thresholding to differentiate object from a constant and simple background (not just white backgrounds: see also bluescreening or chroma keying)
2. 1D Convolution
3. Histogram smoothing & threshold selection