Segmentation by Mean-Shift Clustering

Robert B. Fisher
School of Informatics
University of Edinburgh

Mean-Shift Segmentation

 An advanced and versatile technique for clusteringbased segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, <u>Mean Shift: A Robust Approach toward Feature Space Analysis</u>, PAMI 2002.

Slide credit: Svetlana Lazebnik

Finding Modes in a Histogram

- How many modes are there?
 - Mode = local maximum of a given distribution
 - > Easy to see, hard to compute

Mean-Shift Algorithm

Iterative Mode Search

- Initialize random seed center and window W
- Calculate center of gravity (the "mean") of W: $x \in W$
- Shift the search window to the mean
- Repeat steps 2+3 until convergence

Mean-Shift Example 4 Region of interest **Center of** mass

Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode
- Start mean-shift at every data point

Mean-Shift Clustering/Segmentation

- Choose features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Start mean-shift from each window until convergence

Merge windows that end up near the same "peak" or

mode

Segmenting Pixels in Same Colour Clusters

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Slide credit: Svetlana Lazebnik

More Examples

Slide credit: Svetlana Lazebnik

Mean-Shift Lecture Overview

Pros

- General, application-independent tool
- Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data clusters
- Just a single parameter (window size h)
 - h has a physical meaning (unlike k-means) == scale of clustering
- Finds variable number of modes given the same h
- Robust to outliers

Cons

- Output depends on window size h
- Window size (bandwidth) selection is not trivial
- Computationally rather expensive
- Does not scale well with dimension of feature space