
The Use of Proof Plans to Sum Series �Toby Walsh Alex Nunes Alan BundyDepartment of AI, Edinburgh UniversityAbstractWe describe a program for �nding closed form solutions to �nite sums. Theprogram was built to test the applicability of the proof planning search controltechnique in a domain of mathematics outwith induction. This experiment wassuccessful. The series summing program extends previous work in this areaand was built in a short time just by providing new series summing methodsto our existing inductive theorem proving system CLAM.One surprising discovery was the usefulness of the ripple tactic in summingseries. Rippling is the key tactic for controlling inductive proofs, and waspreviously thought to be specialised to such proofs. However, it turns out tobe the key sub-tactic used by all the main tactics for summing series. The onlychange required was that it had to be supplemented by a di�erence matchingalgorithm to set up some initial meta-level annotations to guide the ripplingprocess. In inductive proofs these annotations are provided by the applicationof mathematical induction. This evidence suggests that rippling, supplementedby di�erence matching, will �nd wide application in controlling mathematicalproofs.1 IntroductionIn [2] we introduced proof planning, a new technique for controlling the search for aproof by using the common structure of a family of similar proofs as a guide. Theapplication of proof planning to the control of inductive proofs is described in [3]whilst rippling, a key tactic in inductive proofs, is described in [4]. Proof planninghas been implemented in the Oyster/CLAM system [3].This paper explores the usefulness of proof planning, in general, and rippling,in particular, in a non-inductive domain: the discovery of closed form solutions to�nite series. We describe several methods for summing series and show how theycan be represented in the proof plans formalism. They have all been implementedin the Oyster/CLAM system and tested on a wide range of series problems. Mostof these methods make use of rippling as a key submethod. In order to use ripplingin non-inductive domains it is necessary to supplement it with a special matchingalgorithm called di�erence matching (see [5] in this volume for details).The mathematical problem we address is to derive closed form solutions for �nite�The research reported in this paper was supported by SERC grant GR/F/71799, a SERCPostDoctoral Fellowship to the �rst author and a SERC Senior Fellowship to the third author. Wewould like to thank the other members of the mathematical reasoning group for their feedback onthis project. 1

series like: nXi=0 s(i):aiwhere a is a constant and s is the successor function, i.e. s(i) = i + 1. By `derivea closed form solution' we mean �nd an expression, equal to the �nite sum, thatis free of the summation operator. In this example, for a 6= 1, such a closed formsolution would be: s(n):as(n)a� 1 � as(n) � 1(a� 1)2There has been limited research into this domain. Some researchers have tackledthe topic as a veri�cation problem, [9, 7]; both these teams use mathematical in-duction to prove that a series is equal to a user supplied closed form. In the workreported below, the closed form solution to a series is simultaneously synthesisedand veri�ed. None of our solution methods uses induction for either the synthesisor the veri�cation task.Another approach is to use a decision procedure, like Gosper's algorithm, [8],to compute closed form solutions. Such decision procedures have the drawback ofbeing \black-boxes" of only being applicable to a narrow class of series. The workreported here is applicable to a much wider class of series and the solutions producedcan be understood by mathematicians. Indeed our solution methods are modelledon those used by mathematicians.2 Proof PlanningA brief description of the ideas and concepts involved in proof planning follows inorder to set the background for what is to come. A more detailed account is givenin [2, 3].The notion of explicit proof plans as a technique for guiding an automatic the-orem prover in its search for a proof by mathematical induction originated in aproject to develop automated search in the Oyster program synthesis system, a re-implementation in Prolog of the Cornell Nuprl system, [6]. Oyster is an interactiveproof editor for a logic based on Martin-L�of's Intuitionistic Type Theory. FollowingLCF, the search for a proof in Oyster can be guided by programs called tactics.Oyster's tactics for inductive proofs are written in Prolog; they are based on andextend ideas in the Boyer-Moore theorem prover, Nqthm, [1].To control the application of tactics, the CLAM plan formation program analysesthe current theorem and constructs a special-purpose super-tactic to prove it. Toenable CLAM to do this, every tactic is (partially) speci�ed by giving preconditionsfor its attempted application and some of the e�ects of its successful application.This partial speci�cation is called a method. Methods are described in a meta-logic, whose domain of discourse is mathematical expressions and which describessyntactic properties of these expressions, e.g. the number and location of particularsubexpressions.3 The Ripple TacticSince the ripple tactic plays a key role both in inductive proofs and in summing series,we will illustrate the proof planning technique by describing it. This description willbe necessarily brief and super�cial. For more details see [4].2

Rippling is used during the step case of an inductive proof. Its job is to rewritethe induction conclusion into a form in which it contains one or more subexpressionswhich match the induction hypothesis. This enables the next tactic, fertilize, to usethe induction hypothesis to prove the induction conclusion.To visualise how rippling works consider the following analogy. Some mountainsare reected in a loch1 in the valley below them. Someone throws a stone intothe loch, disturbing the reection. The waves from the impact ripple outwards tothe shore of the loch leaving the reection undisturbed again. The mountains arethe induction hypothesis, the reection is the induction conclusion and the wave-fronts are those parts of the induction conclusion which di�er from the inductionhypothesis. The rippling is the selective application of rewrite rules of a suitableform to move the wave-fronts out of the way.Induction conclusions are necessarily similar to their induction hypotheses exceptfor the addition of some subexpressions, called wave-fronts, which are provided bythe form of induction rule used. For instance, in the standard inductive proof of theassociativity of +, the induction hypothesis is:x+ (y + z) = (x+ y) + zand the induction conclusion is:s(x) + (y + z) = (s(x) + y) + z (1)The wave-fronts are those subexpressions enclosed in boxes less the subexpressionsthat are underlined. In general, wave-fronts are terms with one or more wave-holesin them. The part of the induction conclusion that is similar to the inductionhypothesis is called the skeleton.To move these wave fronts outwards the ripple tactic applies wave-rules. Theseare rewrite rules with the property that the left and right hand sides are identicalexcept for the addition of di�erent wave fronts on each side. Furthermore, moreof the skeleton is in the wave-hole(s) on the right hand side than it is on the lefthand side. The wave-front on the right hand side can be empty. For instance, therecursive de�nition of + and the substitution law for s provide two wave-rules.s(U) + V) s(U + V) (2)s(U) = s(V)) U = V (3)Wave-rule (2) can be applied to each side of the induction conclusion (1). Thiscauses both the wave-fronts to ripple outwards.s(x + (y + z)) = s((x + y)) + z;Wave-rule (2) can be applied again to the right hand side of the equality to produce:s(x + (y + z)) = s((x + y) + z) :At this point, the two wave-fronts can be eliminated by applying wave-rule (3) togive: x+ (y + z) = (x+ y) + z1The Scottish word for lake. 3

which is identical to the induction hypothesis. The fertilize tactic is then used toprove (trivially) the induction conclusion from the induction hypothesis. The proofof the step case is then complete.The reasons for the success of rippling are:� It involves little or no search since the wave-fronts in the goal must correspondto wave-fronts in the wave-rule. The consequence of this is a very controlledapplication of rewrite rules which in practice means very low branching rates,typically one choice or none at all.� It terminates. Rippling always makes progress moving wave-fronts in somedirection; hence termination is guaranteed, even when applying rewrite rulesthat would normally, without wave-front annotation, lead to loops.� It applies only \good" rewrites. As wave-rules are skeleton preserving, if rip-pling terminates successfully, the hypothesis can be used to prove or simplifythe conclusion.4 Di�erence MatchingA precondition of rippling is that wave-front annotations have been placed in theformula to be rippled. In inductive proofs these are provided by the induction rulein a natural way. In this paper we observe that rippling can be used by a widevariety of theorem proving tactics provided wave-front annotations can be provided.In particular, rippling is useful for rewriting a goal formula so that it contains asubexpression that matches a hypothesis formula. Many proofs have hypothesesand goals with shared structure. We conjecture that rippling will prove useful forputting these goals into a form in which the hypotheses can be used to prove them.This paper provides supportive evidence for our conjecture.To annotate the goal formula with wave-fronts we use a di�erence matcher. Thedi�erence matcher takes the goal, G, and hypothesis, H, as inputs. It returns G0, acopy of G annotated with wave fronts, and substitutions, �, such that the skeletonof G0 equals H under substitution �. Although di�erence matching generalises �rst-order matching, it is not just matching. It is an attempt to make two expressionsidentical by both variable instantiation and structure hiding; the hidden structure isthe wave-front. Further details of an algorithm for di�erence matching can be foundin this volume [5].5 Methods for Summing SeriesWe now explain our methods for summing series. They are called: standard form,perturbate, conjugate, telescope and closed form. The �rst four are substantive meth-ods whilst the last is just a simpli�er and a checker that the solution is in closedform. Each of the �rst four method makes signi�cant use of rippling augmentedwith di�erence matching.In the rest of the paper, we will adopt the following conventions: The letters i,j and k will be used for indices of summation, i.e. bound variables of type naturalnumber. The letters l, m and n will stand for constants of type natural number,i.e. they will not depend on any indices of summation. These will typically be usedfor the bounds of summation. The letters a, b, c and d will stand for constants andvariables of type real, i.e. they will not depend on any indices of summation. Theletters u, v, w, x, y and z will stand for terms of type real, i.e. they may depend4

on indices of summation. In Pni=0 a:x, for instance, x may depend on i, but a andn do not.5.1 Standard FormThe standard form method is the backbone of our methods. It does not �nd closedform solutions from �rst principles but tries to reduce the current problem to onewhich has already been solved. We illustrate this with an example.Consider the �nite sum Pni=0 b:i+ c. We can use the standard form method tobreak this into two sub-problems which match previously solved ones, namely thefollowing standard forms: nXi=0 i = n:(n� 1)2 (4)nXi=0 a = s(n):a (5)This will be done by using di�erence matching to annotate the sum with wave-frontsand then rippling to reduce it to the sub-problems. For the rippling, standard formwill use the following wave-rules:nXi=m x+ y) Pni=m x+Pni=m y (6)nXi=m a:x) a:Pni=m x (7)Note that wave-rule (6) contains two wave-holes, one on the x and one on the y.CLAM automatically creates the two weakened versions of this wave-rule which justcontain one wave-hole, eg :nXi=m x+ y) Pni=m x+Pni=m y (8)Note that wave-rule (7) requires a meta-level condition that a does not contain i.Such meta-level conditions are readily handled by the proof planning mechanism.First Pni=0 b:i+ c is annotated with wave-fronts by di�erence matching it withthe standard form (4). This gives the annotated sum:nXi=0 b:i+ cRippling with wave-rule (8) gives:Pni=0 b:i +Pni=0 cand then with wave-rule (7) gives:b:Pni=0 i +Pni=0 c5

This is then be fertilized with standard form (4), to give:b:n:(n� 1)2 + nXi=0 cSince a summation sign is still present, the current problem is di�erence matchedwith standard form (5) to give the new annotated sum:b:n:(n�1)2 +Pni=0 cSince this is already fully rippled it is immediately fertilized with (5) to give:b:n:(n� 1)2 + s(n):cwhich is in closed form, as required.The standard form method can be summarised as follows:� Find a standard form which di�erence matches with the current problem andadd this as a hypothesis.� Use di�erence matching to annotate the current problem with wave-fronts.� Ripple these wave-fronts outwards.� Fertilize with the hypothesis.5.2 PerturbateThe perturbate method's proof strategy has many similarities to induction. Fromthe usual recursive de�nition of a sum we have the following equation:s(n)Xi=mui = nXi=m ui + us(n)Alternatively, we can strip o� terms from the other end to derive the followingequation: s(n)Xi=m ui = um + nXi=mus(i)Combining these two equations gives:nXi=mui + us(n) = um + nXi=m us(i) (9)The idea of perturbate is to rewrite Pni=m us(i) into a function of Pni=m ui, sayf(Pni=m ui) using rippling. Therefore all occurrences of s(i) inPni=m us(i) are annot-ated with wave-fronts which are then rippled outwards, i.e. equation (9) is annotatedto: nXi=m ui + us(n) = um + nXi=mu s(i) (10)6

We will call this equation the perturbation equation. The wave-fronts in the perturb-ation equation are rippled outwards until it is in the form:nXi=m ui + us(n) = um + f(Pni=m ui)This equation is then solved for Pni=m ui using the equation solving tactics ofPRESS, [10]. There is a possibility of failure since the unknown,Pni=m ui, sometimescancels out.To illustrate perturbate consider the example sum:nXi=0 i:aiNow, by the perturbation equation, (10), we have:nXi=0 i:ai + s(n):as(n) = 0:a0 + nXi=0 s(i) :a s(i)To ripple this we need the wave-rules (8), (7) and:s(x) :y) x:y + y (11)x s(y)) x:xy (12)Rippling �rst with wave-rule (11) gives:nXi=0 i:ai + s(n):as(n) = 0:a0 + nXi=0 i:a s(i) + as(i)then with wave-rule (8) gives:nXi=0 i:ai + s(n):as(n) = 0:a0 + Pni=0 i:a s(i) +Pni=0 as(i)then with wave-rule (12) gives:nXi=0 i:ai + s(n):as(n) = 0:a0 + Pni=0 i: a:ai +Pni=0 as(i)and �nally with wave-rule (7) gives:nXi=0 i:ai + s(n):as(n) = 0:a0 + a:Pni=0 i:ai +Pni=0 as(i)7

This equation can be solved forPni=0 i:ai using PRESS's methods (provided a 6= 1)giving an equation for Pni=0 i:ai in terms ofPni=0 ai+1. The standard from methodis then called to replace Pni=0 ai+1 by a closed form expression. This gives:nXi=0 i:ai = as(n) � a:as(n)�1a�1a� 1The perturbate method can be summarised as follows:� Instantiate the perturbation equation to the current series.� Ripple the wave fronts on the right hand side of the equation outwards.� Solve the resulting equation, using PRESS tactics, treating the current seriesas the unknown.The perturbate method can be generalised so that it uses more complex formsof perturbation equation based on more complex forms of the recursive de�nition ofsummation. For instance, it could use the following two step perturbation equation:nXi=m ui + us(n) + us(s(n)) = um + us(m) + nXi=m us(s(i))This is useful for series like: nXi=0 (� 1)i: 12iAnalogously to mutual recursion, we can also perform mutual perturbations. This isuseful for series likePni=0 sin(i:�). These generalisations have yet to be implemented.However, we do not envisage any signi�cant di�culties in extending perturbate inthese ways.5.3 ConjugateThe conjugate method transforms the �nite sum of a term into the �nite sum of itsconjugate, in the hope that it will be easier to �nd a closed form solution to theconjugate sum than to the original sum. The conjugate can be one of several secondorder operations, e.g. the di�erential or integral of the original term, or the mappingof a trigonometric series onto the real or imaginary part of a complex series. Thusthe conjugate method is a generic one covering a wide range of transformations.The general idea can be understood as follows. Suppose we want to �nd a closedform forPu. Let F be a second-order function with an inverse, F�1. That is, thereis an equation of the form: F (F�1(v)) = v (13)Let us also assume that there exists a wave-rule which will ripple the function Fthrough the summation operator.X F (v)) F (P v) (14)8

Thus, combining these two equations we haveXu = X F (F�1(u))= F (PF�1(u))This new expression looks syntactically more complicated than the original but oftenF�1(u) simpli�es to some expression u0, whereby Pu0 is easier to sum than Pu.In order to prevent conjugate being universally applicable or looping, it is ne-cessary to impose a constraint on it. We have adopted the constraint of a heuristicpostcondition that u0 must have a lower complexity than u. Complexity is measuredusing a simple Knuth-Bendix term order.For example, consider the sum mentioned in the introduction,nXi=0 s(i):aiwhere a 6= 1. Let F be the di�erentiation operator and F�1 be integration. Nowdi�erentiation ripples through summation:X dudx) dPudx (15)And integrating s(i):ai with respect to the free variable a gives as(i). Constants ofintegration can be safely ignored since they will disappear on di�erentiation. Sinceas(i) is simpler than s(i):ai in our Knuth-Bendix order, conjugate can proceed. Itrewrites the sum to: nXi=0 das(i)daWavefront annotations are added by di�erence matching against the standard resultfor the sum of a geometric series, nXj=0 bjThis gives: nXi=0 da s(i)daRippling �rst with wave-rule (15) gives:ddaPni=0 a s(i)And then with wave-rule (12) gives:ddaPni=0 a:ai9

And �nally with wave-rule (7) gives:dda (a:Pni=0 ai)This is then fertilized with the standard form for a geometric series, to give:dda (a:as(n) � 1a� 1)The closed formmethod (described in x5.5) then di�erentiates this expression givingthe �nal answer: nXi=0 s(i):ai = s(n):as(n)a� 1 � as(n) � 1(a� 1)2The conjugate method can be summarised as follows:� Find a second order operator, F , that ripples through summation.� Apply F�1 to the series term, u, and simplify the result to u0.� If u0 is simpler in the Knuth-Bendix ordering than u then sum the series Pu0giving an answer v0.� Simplify F (v0) and return this as the �nal result.A major use of the conjugate method is for summing trigonometric series bytransforming them into the real or imaginary parts of exponential series. Consider,for example: nXi=0 sin(i:�)This is solved by conjugate by rewriting it into:nXi=0 Im(ep�1:i:�)This series can then be summed by di�erence matching against the standard formfor a geometric series and rippling. Other series which can be solved in a similarway include P cos(i:�), P sin(i:�): cos(i:�), P sin2(i:�) and P cos2(i:�)5.4 TelescopeThe telescope method is based on the idea that if one part of the term in the seriescan be cancelled against part of the next term then the sum can be collapsed likea folding \telescope" into a hopefully simpler problem. The version of telescopedescribed here concentrates on a restriction of this strategy in which consecutiveterms of the series cancel each other out totally.To give a more rigorous description of this technique we introduce the upperdi�erence operator: 4 ui = ui+1 � ui10

This operator has the useful property for summing series that:nXi=m4 ui = (us(n) � un) + (un � un�1) + : : :: : :+ (um+2 � us(m)) + (us(m) � um)= us(n) � um (16)We call this the telescope equation. It can be used by telescope provided that theterms, vi, of the series being summed, P vi, can be rewritten into the form of anupper di�erence, 4 ui. The telescope equation, (16), can then be used to reducethe series to us(n)�um. At the moment, upper di�erences are supplied by the user.Recently, however, we have proposed a higher order procedure for discovering upperdi�erences automatically.To illustrate the telescope method consider:nXi=0 � im�Where: � nm� = n!m!(n �m)!Using the identity: � s(n)s(m)� = � nm�+ � ns(m)�We get: � im� = � i + 1s(m)�� � is(m)�= 4 � is(m)�The series is therefore rewritten by telescope into the sum of an upper di�erence:nXi=04 � is(m)�Using (16) as a standard form this is rewritten by the standard form method into:� s(n)s(m)��� 0s(m)�The telescope method can be summarised as follows:� Express the series term as an upper di�erence.� Instantiate the telescope equation with this upper di�erence version of theseries.The telescope method can sum a wide variety of series including any series likeP i3 which is polynomial in the index of summation.11

5.5 Closed FormThe closed formmethod terminates all our proof plans by checking that any solutionsderived are in closed form. It uses the following de�nition of closed formedness:De�nition 1 (Closed formedness) : An expression, exp is a closedform i� it is of the general form:exp := constant j var j s(exp) j exp+ exp j exp� exp j � exp jexp:exp j expexp j expexp j ln(exp)j logexp(exp) jsin(exp) j cos(exp) j if(test; exp; exp)constant := 0 j evar := universally quantified variablestest := exp > exp j exp < exp j exp = exp j exp � exp j exp � expThis de�nition could be easily extended to include a larger set of constants, func-tions and tests (one obvious extension would be the factorial if one were to reasonwith products). Its most signi�cant feature is what it leaves out, i.e. summationoperators, but also the di�erential, integral, real and imaginary operators.Before checking that solutions are in closed form, closed form simpli�es the solu-tion. This has the e�ect of eliminating any functions that lie outside the closed formgrammar and which can be simply eliminated by evaluation. Note that the checkfor closed formedness is essentially a meta-level operation, i.e. it is couched in termsof the syntax of the expression rather than its semantics. This is easily handled bythe meta-logical language of the proof plan methods. It shows that some kind ofmeta-level reasoning is essential in this domain.6 Implementation and ResultsThe �ve series summing methods described above have been implemented as meth-ods in the CLAM system and tested successfully on a range of examples.The problem of summing a series is represented as a logical theorem, i.e. to �nda closed form for the seriesPni=m ui we get CLAM to plan the proof of the theorem:8m:nat : 8n:nat : 9S: S = nXi=mui (17)As yet, we have not written the tactics necessary to execute the plans in Oyster; thatis, we only build plans and not their corresponding object-level proofs. However,since the preconditions to our methods are complete speci�cations of the methods'applicability, the successful execution of any plan is guaranteed. Indeed, the mappingfrom plans to their corresponding proofs is purely mechanical.For reasons of simplicity, the summation operator is represented in the meta-level using a pseudo �rst order term, sum(i; 0; n; ui). All manipulations of suchterms are checked to see that they are valid (eg that a bound variable is not beinginstantiated in an unsound way). This guarantees soundness. We perform simple�rst order matching on this representation; this looses us completeness since we canonly perform imitation (and not arbitrary higher order uni�cation). So far, however,this incompleteness has not proved a signi�cant problem since our manipulationshave only required this very restricted form of matching; our methods have failed12

to �nd closed form solutions but not because of this incompleteness. We eventuallyintend to move to a full higher order representation.In planning a proof, CLAM uses the methods in the following order: closed formis considered �rst as it is the only terminating method; standard form is consideredsecond as it �nishes many of the proofs begun by the other methods; conjugate andtelescope are considered next, in that order; and perturbate is considered last as (likethe induction method in inductive proof planning) it is nearly always applicable andthus a strategy of last resort. Note that theorem (17) admits a trivial solution inwhich the witness to S is Pni=m ui. However, this trivial solution is not found byCLAM because its plans for summing series can only terminate with the closed formmethod, which insists that S is in closed form.These methods are successful at summing a large number of series with littlesearch. Rippling does need to perform more search than in inductive theorem prov-ing. This is mostly a consequence of the greater number of di�erence matchespossible compared with the (usually) sole induction hypothesis in inductive theoremproving. Rippling is still, however, very controlled as the absence of suitable wave-rules usually terminates unsuccessful branches of the search quickly. Additionally,we are currently developing heuristics for selecting between di�erence matches whichshould help to eliminate some of this search.Among the series that have been summed in this way are those shown in table 1.Problems 8 to 10 are of particular interest as they fall outside the range of Gosper'salgorithm, and have not, as far as we are aware, been automatically synthesisedbefore.No Problem Closed Form Main Method Used1 P i n:s(n)2 telescope2 P i2 2:n3+3:n2+n6 telescope3 P i+ i2 1)+2) standard form4 P ai as(n)�1a�1 perturbate5 P i:ai s(n):as(n)�a: as(n)�1a�1a�1 perturbate6 P(i+ 1):ai s(n):as(n)a�1 � as(n)�1(a�1)2 conjugate7 P 1i:(i+1) ns(n) telescope8 PFi Fn+2 � 1 telescope9 P sin(i:�) (cos ��1): sin(s(n):�)�sin �(cos(s(n):�)�1)(cos ��1)2+sin2 � conjugate10 P cos(i:�) (cos ��1):(cos(s(n):�)�1)+sin �: sin(s(n):�)(cos ��1)2+sin2 � conjugate11 P�m + ii � �m + s(n)n � telescope12 P� s(i)s(m)� � s(n)s(s(m))�+� s(n)s(m)� standard formAll sums are from 0 to n, a 6= 1, Fi is the ith Fibonacci number, andcos(�) 6= 1. As well as the main method listed, each problem required theuse of di�erence matching, followed by rippling and fertilization. Eachplan was terminated by the closed form method.Table 1: Some Series Summed by Our System13

7 Related WorkPrevious work on summing series falls into two camps: veri�cation and decisionprocedures.Veri�cationSometimes we are given a closed form solution and a series, and we verify that theyare equal, usually by mathematical induction. This approach has been adoptedby Hutter, [9], and by Clarke and Zhao, [7]. Hutter has used the INKA inductivetheorem prover system to verify sums and to prove properties of them, e.g.nXi=1 i + nXi=1 i = n:s(n) nXi=1 i3 = nXi=1 i : nXi=1 iClarke and Zhao have used their Analytica theorem prover, built on top of Math-ematica, to prove2: nXi=0 2i1 + a2i = 1a� 1 + 2s(n)1� a2s(n)They also sum series using Gosper's algorithm and the built-in Mathematica sim-pli�er.In principle, it should be possible to adapt these veri�cation methods to thesynthesis of closed form solutions by proving theorems of the form (17). However,existing inductive theorem provers are weak at proving theorems containing exist-ential quanti�ers like (17). Moreover, like the methods described in this paper, themethods used by humans and reported in mathematics textbooks often do not useinduction.Decision ProceduresDecision procedures for summation are implemented in general-purpose computeralgebra systems like MACSYMA, MAPLE, Mathematica and REDUCE. Such de-cision procedures are restricted to certain narrow classes of series. For instance,Gosper's algorithm, probably the best decision procedure for summation [8], is re-stricted to series where the ratio of consecutive partial sums is a rational function.Our technique is not restricted in this way and several of the series listed in table 1fall outside this class. Another advantage is that these method can be extended toreturn answers which are not, strictly speaking, closed form (eg they can transformcertain sums into functions of the Harmonic numbers, Hn =Pni=1 1i). Additionally,theses methods could equally well be used to reason about in�nite absolutely con-vergent series. Although some such series can sometimes be summed by a decisionprocedure by considering the limit of a �nite series (eg limn!1Pni=0 1i2), manycannot as they have no �nite closed form (eg Pni=0 1i!).Another disadvantage of the decision procedure approach is that they are `black-boxes', providing no rational explanation of the answers they come up with. Ourtechnique produces proofs which are similar in structure to the methods used byhumans and reported in mathematics textbooks. They are, therefore, intelligible tomathematicians.2Note that this result is incorrect in the case a = 1. This error appears to be due to unsoundnessin the Mathematica simpli�er. 14

8 ConclusionsOur research in the domain of summing series has shown that the proof planningsearch control technique is applicable not just to inductive proofs but also to a non-inductive domain. Indeed, some of the tactics developed speci�cally for inductiveproofs are applicable to summing series. In particular, rippling, already shown to bethe key tactic for inductive proofs, turns out, remarkably, to be the key tactic in thisnew domain. It is used as the main sub-tactic by all the major series summing tactics.Outside inductive proofs, rippling must be supplemented by di�erence matching [5]to set up the initial wave-fronts. With this addition, we predict that rippling willbe widely applicable in automated theorem proving. There is room for furtherextensions to the tactics described to attack a greater class of series. New seriessumming tactics could be constructed in the same vein.The proof planning based technique we have described for summing series extendsprevious techniques in this area. It can be used to synthesise solutions rather thanjust verify them. It is not restricted to a small class of series. It was designed andbuilt within the space of a few months as an MSc project. It was a simple matterto adapt our existing programs for inductive proofs to this new domain. Most ofthe methods we have developed for summing series can be readily adapted to closelyrelated tasks e.g. �nding closed form solutions to products and integrals. The aboveobservations provide evidence for the general applicability of the proof planningformalism in controlling mathematical proofs.References[1] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979.[2] A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk andR. Overbeek, editors, 9th Conference on Automated Deduction, pages 111{120,Springer-Verlag, 1988.[3] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system.In M.E. Stickel, editor, 10th International Conference on Automated Deduction,pages 647{648, Springer-Verlag, 1990.[3] A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with proofplans for induction. Journal of Automated Reasoning, 7:303{324, 1991.[4] A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Extensions to therippling-out tactic for guiding inductive proofs. In M.E. Stickel, editor, 10thInternational Conference on Automated Deduction, pages 132{146, Springer-Verlag, 1990.[5] D. Basin and T. Walsh. Di�erence Matching. In D. Kapur, editor, 11th Inter-national Conference on Automated Deduction, Springer-Verlag, 1992.[6] R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Mathematicswith the Nuprl Proof Development System. Prentice Hall, 1986.[7] E. Clarke and X. Zhao. Analytica - A Theorem Prover for Mathematica. Tech-nical Report, Carnegie Mellon University, 1991.[8] R.W. Gosper. Inde�nite hypergeometric sums in MACSYMA. In Proc. MAC-SYMA Users Conference, pages 237{252, 1977.[9] D. Hutter. Guiding inductive proofs. In M.E. Stickel, editor, 10th InternationalConference on Automated Deduction, pages 147{161, Springer-Verlag, 1990.[10] L. Sterling, A. Bundy, L. Byrd, R. O'Keefe, and B. Silver. Solving symbolicequations with PRESS. J. Symbolic Computation, 7:71{84, 1989.15

