Abstract

Visual perception is an essential sense for robots whose task is to learn
about the environment. A crucial role is played by the representa-
tion of the world that the system must build and maintain, and by
the algorithms adopted to compute the representation itself. In the
recent years range vision and surface-based representations have been
increasingly used for robotic applications. A surface-based represen-
tation of a scene is typically built from a range image by segmenting
the image into a collection of surface patches, whose position, orienta-
tion and shape in 3-D space is estimated. We present a system which
computes such a representation efficiently from range images. We con-
sider patches belonging to a qualitative shape catalogue suggested by
differential geometry as the main features of our representation. The
surface is segmented and the patches classified by estimating the sign
of mean and gaussian curvature at each nonsingular point. The pa-
rameters of the local differential structure of the surface are also es-
timated (augmented Darboux frame). We discuss shape distortion
effects introduced by gaussian smoothing, modelled according to the
diffusion paradigm. We propose a shape-preserving boundary condi-
tion for the diffusion equation. We precompute depth and orientation
discontinuities maps and use them to restrict the diffusion process to
non-discontinuity points, thus avoiding the creation of spurious curved
regions around discontinuity contours. Some experimental results and
quantitative tests are also given.

1. Introduction

Visual perception is an essential sense for robots whose task is
to learn about its environment. In the past years range wvision has
been increasingly used for robotic applications involving acquisition
of information about the world by a robot system, as for instance in
intelligent autonomous navigation (Crowley [1], Thorpe [2]). A crucial
role is played by the representation of the world that the system must
build and maintain. Such a representation must contain the informa-
tion necessary for the robot to perform its task; moreover, it must be
computed in a time acceptable for the given application. Surface-based
representations ([1], [14], [18]) seem to offer attractive properties for
this aim. Surfaces are large and stable features; they apply to curved
objects; there are generally fewer surface patches than edges in an im-
age; finally, information about surfaces is directly contained in range
images. In order to build a representation, significant surface features
must be extracted from raw range data and a proper description de-
vised. The input range image is typically segmented into a collection



of homogeneous surface patches, whose position, orientation and shape
in 3-D space is estimated.

There are several problems, however, in computing such a repre-
sentation. Second-order derivatives must be estimated from the range
image in order to obtain the curvatures. This is a noise-sensitive op-
eration. Range images are quantized, typically over 255 levels. Quan-
tization noise proves worse than the distortions introduced by most
state-of-the-art range scanners (Naidu and Fisher [13]) in corrupt-
ing curvature estimates. Noise smoothing is therefore necessary, and
gaussian smoothing is a commonly adopted technique. Unfortunately,
gaussian smoothing introduces several side-effects. The first is the gen-
eral decreasing of the absolute value of curvatures all over the image.
This is due to the averaging nature of gaussian smoothing (Lowe [4]).
A second side-effect of gaussian smoothing is that the sign of H and
K can be changed near the boundary. The effect of this distortion
increases with the standard deviation of the gaussian kernel. Finally,
orientation discontinuities contours, e.g. the visible edges of a cube,
are smoothed into spurious curved patches.

We present a system (sketched in Figure 1) which computes a
qualitative surface-based description of a scene from a range image.
Smoothing is performed by solving a diffusion equation with an effi-
cient numerical scheme. The sign of the mean and gaussian curvature
(H and K respectively) are estimated subsequently at each nonsingu-
larity point. The patches we consider in this paper belong to a qual-
itative shape catalogue suggested by differential geometry, in which
each class is characterized completely by the sign of the mean and
gaussian curvatures. In actual fact, the system computes an exhaus-
tive local representation D(P) = (P, dy,dz, N,k1,k2) known as the
augmented Darboux frame (Ferrie et al. [3]), where dy and dy are the
principal directions, IV is the normal to the surface and x1, ko are the
principal curvatures at P. However, qualitative shape estimates are
more reliable than quantitative surface structure estimates. The final
output is a collection of surface patches, for each of which a qualita-
tive shape class and estimates of the differential structure are given.
An adjacency graph expresses the structure of the scene as observed
by the sensor. This versatile representation embeds both intrinsic
patch properties like shape class, and relational patch properties like
adjacency. It seems appropriate for several robotic tasks, including
location, recognition (Fisher [14]), intelligent navigation (Crowley [1],
Thorpe [2]) and planning visual strategies (Bajcsy [16], Sakane [17]).

The boundary distortion problem is approached with a curvature-
preserving boundary treatment for diffusion smoothing, in the form
of an adaptive-leakage boundary condition enforced at depth and ori-
entation discontinuities. This method has some advantages over re-



lated methods, in particular Cai’s fixed small-leakage boundary treat-
ment [5]. In order to avoid the creation of noisy patches due to dis-
continuity smoothing, we precompute depth and orientation discon-
tinuities maps and use them to restrict the diffusion process to non-
discontinuity points, thus avoiding the creation of spurious curved re-
gions around discontinuity contours. We have tested our system in
order to estimate quantitatively its performance. We sketch in this
paper a few results concerning accuracy in H estimation and classifi-

cation. Similar experiments on accuracy have been reported by Flynn
and Jain [15].

Figure 1: Architecture of the system.

2. Discontinuity detection

Depth and orientation discontinuity maps are computed first. The
raw range data are first initially smoothed using a nonlinear, conser-
vative filter to remove spikes of noise.

2.1. Depth discontinuities

At each image point P on a surface (z,y, h(z,y), the absolute value

of the directional derivative

dPm) = p)
is estimated in a 3x3 neighbourhood and for four directions of n. If this
quantity is large enough P is labelled as a depth discontinuity point.
At present, discontinuities are detected by comparing ‘%‘ with a user-

supplied threshold 74, tuned manually to an optimal value (usually
between 10 and 20 pixels). All subsequent computations are performed
on world-coordinate values.
2.2. Orientation discontinuities

Orientation discontinuities are detected as loci of discontinuity
points for the tangent plane. Given the parametrization s(z,y) =
(z,y,h(z,y)) of surface S and a point P € 5, the tangent plane T at
P is the plane through P and perpendicular to the normal
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where the subscripts indicate partial differentiation. Least squares are
used to estimate N(P) in a 3x3 local environment of P, so that the
estimated gradient (hy, hy) at P is given by
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where I(P) is a local neighbourhood of P, Az and Ayy are the incre-
mental steps in the z and y directions and Ah(Agq) is the increment
of I over the increment Ag. In the continuous case, a discontinuity
point for T corresponds to a discontinuity in the normal field N. In
the discrete case, an orientation discontinuity is a point P such that
at least one point P; in a local neighbourhood of P satisfies

IN(P)-N(P)| <7

where 7, is a user-defined threshold. In our experiments, usual values
of 7, were between 0.75 and 0.9.

3. Diffusion smoothing

Diffusion smoothing provides an elegant mathematical framework
for gaussian smoothing and scale-space analysis (Witkin [7], Linde-
berg [8]). Intuitively, diffusion smoothing regards a surface S = (2, y, h(z,y)),
expressed here through a parametrization on the cartesian plane, as
the initial configuration of a heat distribution u(z,y, ) at t = 0, which
evolves according to the diffusion equation

88—?; = bV3u (1)

with initial value u(z,y,0) = h(z,y).
The closed-form solution of this problem is the gaussian convolu-
tion

we) = [ emen - E S g,

where the relation

o =V2bt (2)

links the time ¢ to the standard deviation ¢ of gaussian smoothing.
Given the same initial values, therefore, the solution of equation (1)
at time t; is equivalent to the result of the convolution of the initial
surface with a gaussian of variance v/20ty.

Equation 1 is solved numerically using Feng’s implicit scheme de-
scribed in [5]:
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where 7 is the time unit, & the spatial grid unit, M the image size (see
Cai [5] for an extended discussion of this scheme), p,q € [0, M) and
k€ [0,00).
In matrix form, we have
1 1
AURTE = Uk AUkt = gyt
where A is a tridiagonal and diagonal-dominant matrix, U! is the array
of u values for constant r (r row or column index as appropriate).
There are several practical advantages which make the diffusion
approach attractive. Cai [5] has shown that the scheme (3, 4) is un-
conditionally stable and faster than repeated averaging. Moreover, the
scheme can be adopted with a variable time step to obtain a scale space
representation. The finite scale space produced is denser than that of
gaussian smoothing (Cai [5]). We take advantage of such features in
our implementation: the image is smoothed at a desired spatial scale
o by calculating the corresponding ¢ = ¢(o) and solving system (3, 4)
only once. Finally, the diffusion equation form allows an elegant and
coherent boundary treatment on the surface being smoothed, as dis-
cussed in Section 3.

4. Computing the curvature images

The task of this module is to estimate the sign of the gaussian
and mean curvatures at each non-discontinuity point of the surface.
The principal curvatures at each point P of the smoothed surface are
commonly estimated from the coeflicients of a regular patch fitted
locally to a neighbourhhod of P (Ferrie et al. [3], Monga et al. [10]).
We have adopted an efficient, mixed approach. The idea is to estimate
the curvatures from a local spline approximation of the surface, using
cubic B-splines

0 if 2] > 2

Qs(z) = %|x|3—x2—|—% iflz] <1 (6)
—¢le|® + 2 = 22|+ 3 if|z[€(1,2)

Instead of fitting coeflicients explicitly - a computationally expensive

operation to be performed at each non-discontinuity point of the sur-
face - we compute the discrete convolution

Up g = i i uijQs(p — 1)Q3(q — J) (7)

i=—1j5=—-1

which, when iterated, will converge to a C'? continuous surface which
preserves the concavity-convexity of the original surface (Ahlberg et
al. [11], Reinsch [12]). Moreover, for each iteration, the computation



‘ K H ‘ shape class ‘
0 0 plane
0 + negative cylindrical
0 - positive cylindrical
+  + negative elliptic
+ - positive elliptic
- any hyperbolic

Table 1: Surface patches classification scheme.

can be done in parallel within 3x3 windows. The gaussian and mean
curvature K and I are then given by the relations (Do Carmo [9])

= hmhyy - hazcy
(1+h2 + h2)
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(8)
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where the subscripts indicate partial differentiation and we have as-
sumed as usual a surface parametrization s(z,y) = (z,y, h(z,y)).

5. Patch formation

The H and K sign images are combined together to give the final
surface segmentation into patches belonging to several shape classes.
The shape classes are illustrated in Table .

The case K > 0, H = 0 makes no geometric sense and has been
omitted. Notice also that we do group the various possible saddle
subclasses identified by H when K < 0 in one class. The reason is
that they do not seem to be perceptually significant for the human
vision system. The above classification allows to represent a large
number of complex objects which are still a challenge for state-of-
the-art recognition systems. Zero-curvature points are detected by
thresholding the H, K maps. We adopt Cai’s consistent curvature
thresholding

5[&"25H2‘|‘2|H|5H (10)

which is consistent in the sense that a small perturbation £ in the
principal curvatures will still lead to a correct classification of H and

K (Cai [5)).

6. Quality enhancement on H, K sign images




Figure 2: Left: Typical distortion of quantized planar profile after
gaussian smoothing. The original profile is bent at the border: towards
the background on the right, away from the background on the left.
Right: Examples of performance of adaptive boundary condition for
the diffusion equation.

Small, insignificant spots in the i/ and K sign images are elimi-
nated by a simple erosion-expansion technique. This is based on the
idea that, in discrete mathematics, an invertible transformation T does
not always satisfy f~!'f = I (identity matrix), as it is the case in con-
tinuous mathematics. In our case, eroding the regions in the H and
K sign images is aimed to make small spots disappear completely, so
that nothing of them is left to be grown by the subsequent expansion.

The erosion operation is a wall-following algorithm which erodes
region contours to a depth specified by the user (generally 1 or 2 pix-
els). The expansion poses the problem of which regions should be
grown first. For each region contour pixel in the H and K images,
a local neighbourhood is inspected to decide which label should grow
first. The criterion adopted is local mazimum energy: for each label
[ a local energy function Ej = )7, 5)eNij) di(@,b) is computed in a
neighbourhood I of pixel (7, 7), where

i.J)

1 if H(a.b)=1

0 otherwise

6i(a,b) = {

The label to be grown is then the one associated with the maximum
FEpin [I.

7. Preserving shape at boundaries

Contours of orientation discontinuities are preserved against cur-
vature distorions introduced by gaussian smoothing by means of the
discontinuity maps. Each discontinuity point is considered a boundary
point for the diffusion process and the adaptive boundary condition
detailed in the next section is enforced. This results in a good preserva-
tion of both discontinuities and curvature sign near patch boundaries.
Cai [5] suggested a small leakage boundary condition for attenuating
the boundary deformation effect (corruption of H, K signs) in the
diffusion approach.

From this point of view Gaussian smoothing is equivalent to dif-
fusion smoothing with “perfectly insulated” boundaries; the typical
distortion arising is avoided by allowing the surface to leak into the
background. Figure 2 (left) shows the smoothed data both changing
inmagnitude and with an introduced curvature at the extrema. It is
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Figure 3: g—l, changes for differently sloping boundaries (see text).

this latter effect that we eish to avoid. This is achieved by imposing
at each border point the boundary condition

Ou Ou
bzna_n = bouta_n (11)

where b;,, is the diffusion coefficient on the surface, b,,; is the diffusion
coeflicient of a narrow stripe surrounding the background and n is the
normal at the boundary in the z = 0 plane. Cai suggests that b,,;
should be “much smaller” than b;,, e.g. 10%. Condition (11) can
be simplified by splitting it into two equations along the & and y axis
respectively. Discretizing at the boundary pixel (p, ¢) at time (k+1/2)
for 2 and (k 4 1) for y, we obtain

k+1/2

=y
[ bzn _(bzn - bout) bout ] Up,q =0
k+1/2
Upt1,q |
k+1 7]
iy
[ bzn _(bzn - bout) bout ] up,q =0
uk-l—l
p,g+1

A fixed leakage coeflicient can work, in the best case, with one slope
type (sloping towards or away from the background) and one pair of

directional derivative values across the boundary ( g—“ , g—“ ), €
€ lin € lout
being x or y according to which equation of the numerical scheme is
du Ju

being solved. But in most cases both sgn(5%) and 86‘ change along
the boundary, thus suggesting the introduction of an adaptive leakage
coeflicient. The sign will be different for borders sloping towards as
opposed to away from the background. This is illustrated in figure 3
considering a right-hand border for the z equation of the numerical
scheme. In (a) the signs of the discrete gradients across the boundary
(wig1 — U )our and (w; — uij—1)in (assuming Az = 1) are the same; in
(b) they are different, but a fixed positive b,,; would still pull the sur-
face towards the background. Moreover, depending on the reciprocal
position of surface and background, the absolute value of the internal
and external gradients will change as well.

The main attractive point of boundary condition (11) is that its
implementation is efficient: it requires only a small revision of matrix
A for boundary pixels. A complex boundary treatment would spoil
the efficiency of the numerical scheme. We have therefore tried to
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Figure 4: Synthetic range image of a PUMA robot.
Figure 5: Discontinuity map for the PUMA robot image.

introduce a similar but more general condition to generalize (11) by
introducing an adaptive leakage coefficient b, given by

Au
b2, = bin ( o lin ) (12)
ou
out

on

The adaptive coefficient b2, is evaluated at each border pixel and used
in (11) instead of the fixed leakage b,,;. The effect is to adapt the
amount of leakage at the particular border pixel, taking into account
the difference between internal and external slope before enforcing
the boundary condition (11). In our experiments, detailed in [6] this
condition performed better with both planar and curved surfaces (an
example is given in Figure 2 right).

8. Experimental results

We present in this Section a few illustrative experiments run with
a prototype implemented in C4++ on a SPARC workstation under
XWindows and Unix. The images used in the experiments were ei-
ther synthetic or acquired by a laser striper developed by our group
(Naidu and Fisher [13]). All images are 128x128 pixels, 8 bit per pixel.
Note that the quantization effect has serious effects on the accuracy of
curvature estimation.
8.1. Examples of segmentations

The first example (Figure 4) is a synthetic 128x128 range image
of a PUMA robot model (about 170x140x100mm?). All the surfaces
are developable; the classification was therefore based on the H sign
image only. Figure 5 shows the discontinuity map (74 = 7, 7, = 0.75).
The final classification is shown in Figure 6. The zero threshold for I
was ;7 = 0.009, determined experimentally. The image was smoothed
with diffusion interval g = 0, t,,,, = 4 equivalent to 0,,,, = 2 for
gaussian smoothing, given the diffusion coefficient of equation 1 b = 0.5
(notice that, with b = 0.5, equation 2 reduces to o = /). A few
patches were lost as an effect of the combined shrinking due to the
discontinuity detection and the erosion-expansion. Small patches are
more vulnerable to shape distortion and therefore likely to disappear
after the erosion-expansion stage.

The second example is a real image of a Renault part (Figure 7),
whose size is about 190x100x80mm?>. This is a complex sculptured




Figure 6: Final segmentation for the PUMA robot image.
Figure 7: Range image of a Renault part.

object, including both developable and non-developable surfaces. The
H image was experimentally set at ey = 0.024. The consistent thresh-
olding equation (10) yields ex = 0.00422. The image was smoothed
between tg = 0 and t,,, = 9, equivalent to ¢4, = 3 with b = 0.5.

Figure 8 gives the discontinuity map (74 = 10, 7, = 0.75). The re-
sult of the segmentation is shown in Figure 9. Most of the significant
patches appear in the final segmentation. This result is an improve-
ment on many results achieved by analogous techniques applied to this
object.
8.2. Testing the system

We ran several tests to assess quantitatively the performance of our
system. A complete report will appear in a forthcoming paper. We
summarize here two aspects, classification and accuracy. Similar tests

were reported by Flynn and Jain [15] but were limited to accuracy.
Classification tests were run by measuring the percentage of cor-
rectly classified points in a synthetic patch against variations of the
patch geometry (shape class and curvature), the number of smoothing
cycles and the zero threshold ep7. An example is given in Figure 10,
which shows the upper bound of ep values guaranteeing a given per-
centage of correctly classified points on a cylindrical patch. From this
we conclude that, if Rp; is the maximum radius of cylindrical fea-
tures in an image, then the threshold ez should be less than about
ﬁ. Similar graphs were generated for elliptic, planar and hyperbolic
patches and contain useful suggestions about how to choose the thresh-
old ep7. At present, good sign classification accuracy is achieved with
patches of about 14 pixel side (referring to 128x128 images smoothed
with up to three smoothing cycles). The same causes make it difficult
to distinguish accurately between planar patches and curved surfaces
with low curvatures. Worst-case interference radii are about R = 70
for cylinders and R = 140 for spheres. The number of smoothing cy-
cles ne is linked to both the diffusion time interval and the standard
deviation of the equivalent smoothing gaussian by the relations

At = ne? o = V2bAt

where At is the diffusion interval and b is the diffusion coefficient. In

Figure 8: Discontinuity map for the Renault image.
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Figure 9: Final segmentation of the Renault image.

Figure 10: Upper bound of 57 values guaranteeing given classification
percentage for quantized synthetic cylinders smoothed with ne = 2
and nc = 3 against increasing radii.

our implementation b is 0.5, therefore ¢ = ne. Since we want to use
the segmentation results for recognition purposes we are interested in
values of nc preserving as many visible features as possible (i.e. not
considering large, low-frequency blobs). We determined experimen-
tally that values of nc less than 4 match this requirement in most
cases. Therefore our tests were run with ne = 1,2, 3 to supply us with
information useful for our purposes.

Accuracy test were run by estimating H on cylindrical and spherical
patches of different sizes, with and without quantization noise, and
after increasing amounts of smoothing. The estimates get worse as
the diffusion interval increases, as expected. For a sphere of radius
r = 19, for instance, the deviation from the expected value is 0.0026,
0.0037 and 0.0054 for 1, 2 and 3 cycles of smoothing respectively; the
correspondent percentage error in the estimated radius is 5%, 7% and
11% respectively. The estimates become more and more unreliable as
the radii decrease. For radii less than 10 pixels, the estimates degrade
rapidly as the number of smoothing cycles increase; still looking at
the sphere case, the error in the estimated radius for r = 10 is already
31% for one smoothing cycle and becomes 66% and 167% for two and
three smoothing cycles. The reason is that as the size of the smoothing
gaussian approaches that of the surface to be smoothed, the curvature
of the latter is more and more distorted.

In general, our tests indicate good performance for H sign estima-
tion, but limited accuracy for absolute values. This is in accord with
the results of Flynn and Jain [15], which suggest that accuracies better
than 10% are difficult to obtained from quantized data even in large
smoothed patches of nonzero curvature. Therefore the representation
computed by the system is a good qualitative description of the sur-
faces in view, with the quantitative surface structure estimated with
limited accuracy.

9. Conclusion

We have presented a technique for computing a versatile surface-
based representation from range images, and its implementation. In
particular, we have discussed two problems in range segmentation: pre-
serving curvature sign at boundaries and discontinuity contours over
smoothing. We believe a surface-based representation is useful for a
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variety of robotic tasks involving vision, such as navigation, inspec-
tion, patch recognition or verification by matching segmented patches
to model patches with the same qualitative description, position esti-
mation of parts from model-to-data patch correspondence, and robot
grasping by gripper positioning on large stable patches.
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