
AbstractVisual perception is an essential sense for robots whose task is to learnabout the environment. A crucial role is played by the representa-tion of the world that the system must build and maintain, and bythe algorithms adopted to compute the representation itself. In therecent years range vision and surface-based representations have beenincreasingly used for robotic applications. A surface-based represen-tation of a scene is typically built from a range image by segmentingthe image into a collection of surface patches, whose position, orienta-tion and shape in 3-D space is estimated. We present a system whichcomputes such a representation e�ciently from range images. We con-sider patches belonging to a qualitative shape catalogue suggested bydi�erential geometry as the main features of our representation. Thesurface is segmented and the patches classi�ed by estimating the signof mean and gaussian curvature at each nonsingular point. The pa-rameters of the local di�erential structure of the surface are also es-timated (augmented Darboux frame). We discuss shape distortione�ects introduced by gaussian smoothing, modelled according to thedi�usion paradigm. We propose a shape-preserving boundary condi-tion for the di�usion equation. We precompute depth and orientationdiscontinuities maps and use them to restrict the di�usion process tonon-discontinuity points, thus avoiding the creation of spurious curvedregions around discontinuity contours. Some experimental results andquantitative tests are also given.1. IntroductionVisual perception is an essential sense for robots whose task isto learn about its environment. In the past years range vision hasbeen increasingly used for robotic applications involving acquisitionof information about the world by a robot system, as for instance inintelligent autonomous navigation (Crowley [1], Thorpe [2]). A crucialrole is played by the representation of the world that the system mustbuild and maintain. Such a representation must contain the informa-tion necessary for the robot to perform its task; moreover, it must becomputed in a time acceptable for the given application. Surface-basedrepresentations ([1], [14], [18]) seem to o�er attractive properties forthis aim. Surfaces are large and stable features; they apply to curvedobjects; there are generally fewer surface patches than edges in an im-age; �nally, information about surfaces is directly contained in rangeimages. In order to build a representation, signi�cant surface featuresmust be extracted from raw range data and a proper description de-vised. The input range image is typically segmented into a collection1



of homogeneous surface patches, whose position, orientation and shapein 3-D space is estimated.There are several problems, however, in computing such a repre-sentation. Second-order derivatives must be estimated from the rangeimage in order to obtain the curvatures. This is a noise-sensitive op-eration. Range images are quantized, typically over 255 levels. Quan-tization noise proves worse than the distortions introduced by moststate-of-the-art range scanners (Naidu and Fisher [13]) in corrupt-ing curvature estimates. Noise smoothing is therefore necessary, andgaussian smoothing is a commonly adopted technique. Unfortunately,gaussian smoothing introduces several side-e�ects. The �rst is the gen-eral decreasing of the absolute value of curvatures all over the image.This is due to the averaging nature of gaussian smoothing (Lowe [4]).A second side-e�ect of gaussian smoothing is that the sign of H andK can be changed near the boundary. The e�ect of this distortionincreases with the standard deviation of the gaussian kernel. Finally,orientation discontinuities contours, e.g. the visible edges of a cube,are smoothed into spurious curved patches.We present a system (sketched in Figure 1) which computes aqualitative surface-based description of a scene from a range image.Smoothing is performed by solving a di�usion equation with an e�-cient numerical scheme. The sign of the mean and gaussian curvature(H and K respectively) are estimated subsequently at each nonsingu-larity point. The patches we consider in this paper belong to a qual-itative shape catalogue suggested by di�erential geometry, in whicheach class is characterized completely by the sign of the mean andgaussian curvatures. In actual fact, the system computes an exhaus-tive local representation D(P ) = (P; d1; d2; N; �1; �2) known as theaugmented Darboux frame (Ferrie et al. [3]), where d1 and d2 are theprincipal directions, N is the normal to the surface and �1, �2 are theprincipal curvatures at P . However, qualitative shape estimates aremore reliable than quantitative surface structure estimates. The �naloutput is a collection of surface patches, for each of which a qualita-tive shape class and estimates of the di�erential structure are given.An adjacency graph expresses the structure of the scene as observedby the sensor. This versatile representation embeds both intrinsicpatch properties like shape class, and relational patch properties likeadjacency. It seems appropriate for several robotic tasks, includinglocation, recognition (Fisher [14]), intelligent navigation (Crowley [1],Thorpe [2]) and planning visual strategies (Bajcsy [16], Sakane [17]).The boundary distortion problem is approached with a curvature-preserving boundary treatment for di�usion smoothing, in the formof an adaptive-leakage boundary condition enforced at depth and ori-entation discontinuities. This method has some advantages over re-2



lated methods, in particular Cai's �xed small-leakage boundary treat-ment [5]. In order to avoid the creation of noisy patches due to dis-continuity smoothing, we precompute depth and orientation discon-tinuities maps and use them to restrict the di�usion process to non-discontinuity points, thus avoiding the creation of spurious curved re-gions around discontinuity contours. We have tested our system inorder to estimate quantitatively its performance. We sketch in thispaper a few results concerning accuracy in H estimation and classi�-cation. Similar experiments on accuracy have been reported by Flynnand Jain [15]. Figure 1: Architecture of the system.2. Discontinuity detectionDepth and orientation discontinuity maps are computed �rst. Theraw range data are �rst initially smoothed using a nonlinear, conser-vative �lter to remove spikes of noise.2.1. Depth discontinuitiesAt each image point P on a surface (x; y; h(x; y), the absolute valueof the directional derivatived(P;n) = @h@n(P )is estimated in a 3x3 neighbourhood and for four directions of n. If thisquantity is large enough P is labelled as a depth discontinuity point.At present, discontinuities are detected by comparing ��� @h@n��� with a user-supplied threshold �d, tuned manually to an optimal value (usuallybetween 10 and 20 pixels). All subsequent computations are performedon world-coordinate values.2.2. Orientation discontinuitiesOrientation discontinuities are detected as loci of discontinuitypoints for the tangent plane. Given the parametrization s(x; y) =(x; y; h(x; y)) of surface S and a point P 2 S, the tangent plane T atP is the plane through P and perpendicular to the normalN(P ) = (�hx;�hy ; 1)(1 + h2x + h2y)1=2where the subscripts indicate partial di�erentiation. Least squares areused to estimate N(P ) in a 3x3 local environment of P , so that theestimated gradient (hx; hy) at P is given byhx = Pk2I(P )�xk�h(�xk)Pk2I(P )�xk2 hy = Pk2I(P )�yk�h(�yk)Pk2I(P )�yk23



where I(P ) is a local neighbourhood of P , �xk and �yk are the incre-mental steps in the x and y directions and �h(�q) is the incrementof h over the increment �q. In the continuous case, a discontinuitypoint for T corresponds to a discontinuity in the normal �eld N. Inthe discrete case, an orientation discontinuity is a point P such thatat least one point P1 in a local neighbourhood of P satis�esjN(P ) �N(P1)j < �owhere �o is a user-de�ned threshold. In our experiments, usual valuesof �o were between 0.75 and 0.9.3. Di�usion smoothingDi�usion smoothing provides an elegant mathematical frameworkfor gaussian smoothing and scale-space analysis (Witkin [7], Linde-berg [8]). Intuitively, di�usion smoothing regards a surface S = (x; y; h(x; y)),expressed here through a parametrization on the cartesian plane, asthe initial con�guration of a heat distribution u(x; y; t) at t = 0, whichevolves according to the di�usion equation@u@t = br2u (1)with initial value u(x; y; 0) = h(x; y).The closed-form solution of this problem is the gaussian convolu-tionu(x; y) = 14�bt Z 1�1 Z 1�1 h(�; �)exp[�(�� x)2 + (� � y)24bt ]d�d�where the relation � = p2bt (2)links the time t to the standard deviation � of gaussian smoothing.Given the same initial values, therefore, the solution of equation (1)at time tk is equivalent to the result of the convolution of the initialsurface with a gaussian of variance p2btk.Equation 1 is solved numerically using Feng's implicit scheme de-scribed in [5]:1� (uk+ 12p;q � ukp;q)� bh2 (uk+ 12p+1;q � 2uk+ 12p;q + uk+ 12p�1;q) = 0 (3)1� (uk+1p;q � uk+ 12p;q )� bh2 (uk+1p;q+1 � 2uk+1p;q + uk+1p;q�1) = 0 (4)u0p;q = fp;q p; q = 0; : : : ;M k = 0; : : : ;1 (5)4



where � is the time unit, h the spatial grid unit, M the image size (seeCai [5] for an extended discussion of this scheme), p; q 2 [0;M) andk 2 [0;1).In matrix form, we haveAUk+ 12q = Ukq AUk+1p = Uk+ 12pwhere A is a tridiagonal and diagonal-dominant matrix, U tr is the arrayof u values for constant r (r row or column index as appropriate).There are several practical advantages which make the di�usionapproach attractive. Cai [5] has shown that the scheme (3, 4) is un-conditionally stable and faster than repeated averaging. Moreover, thescheme can be adopted with a variable time step to obtain a scale spacerepresentation. The �nite scale space produced is denser than that ofgaussian smoothing (Cai [5]). We take advantage of such features inour implementation: the image is smoothed at a desired spatial scale� by calculating the corresponding t = t(�) and solving system (3, 4)only once. Finally, the di�usion equation form allows an elegant andcoherent boundary treatment on the surface being smoothed, as dis-cussed in Section 3.4. Computing the curvature imagesThe task of this module is to estimate the sign of the gaussianand mean curvatures at each non-discontinuity point of the surface.The principal curvatures at each point P of the smoothed surface arecommonly estimated from the coe�cients of a regular patch �ttedlocally to a neighbourhhod of P (Ferrie et al. [3], Monga et al. [10]).We have adopted an e�cient, mixed approach. The idea is to estimatethe curvatures from a local spline approximation of the surface, usingcubic B-splines
3(x) = 8><>: 0 if jxj � 212 jxj3 � x2 + 23 if jxj � 1�16 jxj3 + x2 � 2 jxj+ 43 if jxj 2 (1; 2) (6)Instead of �tting coe�cients explicitly - a computationally expensiveoperation to be performed at each non-discontinuity point of the sur-face - we compute the discrete convolutionu0p;q = mXi=�1 mXj=�1 ui;j
3(p� i)
3(q � j) (7)which, when iterated, will converge to a C2 continuous surface whichpreserves the concavity-convexity of the original surface (Ahlberg etal. [11], Reinsch [12]). Moreover, for each iteration, the computation5



K H shape class0 0 plane0 + negative cylindrical0 { positive cylindrical+ + negative elliptic+ { positive elliptic{ any hyperbolicTable 1: Surface patches classi�cation scheme.can be done in parallel within 3x3 windows. The gaussian and meancurvature K and H are then given by the relations (Do Carmo [9])K = hxxhyy � h2xy(1 + h2x + h2y)2 (8)2H = (1 + h2x)hyy � 2hxhyhxy + (1 + h2y)hxx(1 + h2x + h2y)3=2 (9)where the subscripts indicate partial di�erentiation and we have as-sumed as usual a surface parametrization s(x; y) = (x; y; h(x; y)).5. Patch formationThe H and K sign images are combined together to give the �nalsurface segmentation into patches belonging to several shape classes.The shape classes are illustrated in Table .The case K > 0, H = 0 makes no geometric sense and has beenomitted. Notice also that we do group the various possible saddlesubclasses identi�ed by H when K < 0 in one class. The reason isthat they do not seem to be perceptually signi�cant for the humanvision system. The above classi�cation allows to represent a largenumber of complex objects which are still a challenge for state-of-the-art recognition systems. Zero-curvature points are detected bythresholding the H , K maps. We adopt Cai's consistent curvaturethresholding "K � "H2 + 2 jH j "H (10)which is consistent in the sense that a small perturbation � in theprincipal curvatures will still lead to a correct classi�cation of H andK (Cai [5]).6. Quality enhancement on H, K sign images6



Figure 2: Left: Typical distortion of quantized planar pro�le aftergaussian smoothing. The original pro�le is bent at the border: towardsthe background on the right, away from the background on the left.Right: Examples of performance of adaptive boundary condition forthe di�usion equation.Small, insigni�cant spots in the H and K sign images are elimi-nated by a simple erosion-expansion technique. This is based on theidea that, in discrete mathematics, an invertible transformation T doesnot always satisfy f�1f = I (identity matrix), as it is the case in con-tinuous mathematics. In our case, eroding the regions in the H andK sign images is aimed to make small spots disappear completely, sothat nothing of them is left to be grown by the subsequent expansion.The erosion operation is a wall-following algorithm which erodesregion contours to a depth speci�ed by the user (generally 1 or 2 pix-els). The expansion poses the problem of which regions should begrown �rst. For each region contour pixel in the H and K images,a local neighbourhood is inspected to decide which label should grow�rst. The criterion adopted is local maximum energy: for each labell a local energy function El = P(a;b)2N(i;j) �l(a; b) is computed in aneighbourhood I of pixel (i; j), where�l(a; b) = ( 1 if H(a; b) = l0 otherwiseThe label to be grown is then the one associated with the maximumEl in I . 7. Preserving shape at boundariesContours of orientation discontinuities are preserved against cur-vature distorions introduced by gaussian smoothing by means of thediscontinuity maps. Each discontinuity point is considered a boundarypoint for the di�usion process and the adaptive boundary conditiondetailed in the next section is enforced. This results in a good preserva-tion of both discontinuities and curvature sign near patch boundaries.Cai [5] suggested a small leakage boundary condition for attenuatingthe boundary deformation e�ect (corruption of H , K signs) in thedi�usion approach.From this point of view Gaussian smoothing is equivalent to dif-fusion smoothing with \perfectly insulated" boundaries; the typicaldistortion arising is avoided by allowing the surface to leak into thebackground. Figure 2 (left) shows the smoothed data both changinginmagnitude and with an introduced curvature at the extrema. It is7



Figure 3: @u@x changes for di�erently sloping boundaries (see text).this latter e�ect that we eish to avoid. This is achieved by imposingat each border point the boundary conditionbin @u@n = bout @u@n (11)where bin is the di�usion coe�cient on the surface, bout is the di�usioncoe�cient of a narrow stripe surrounding the background and n is thenormal at the boundary in the z = 0 plane. Cai suggests that boutshould be \much smaller" than bin, e.g. 10%. Condition (11) canbe simpli�ed by splitting it into two equations along the x and y axisrespectively. Discretizing at the boundary pixel (p; q) at time (k+1=2)for x and (k + 1) for y, we obtainh bin �(bin � bout) bout i2664 uk+1=2p�1;quk+1=2p;quk+1=2p+1;q 3775 = 0h bin �(bin � bout) bout i264 uk+1p;q�1uk+1p;quk+1p;q+1 375 = 0A �xed leakage coe�cient can work, in the best case, with one slopetype (sloping towards or away from the background) and one pair ofdirectional derivative values across the boundary (���@u@e ���in ; ���@u@e ���out), ebeing x or y according to which equation of the numerical scheme isbeing solved. But in most cases both sgn(@u@e ) and ���@u@e ��� change alongthe boundary, thus suggesting the introduction of an adaptive leakagecoe�cient. The sign will be di�erent for borders sloping towards asopposed to away from the background. This is illustrated in �gure 3considering a right-hand border for the x equation of the numericalscheme. In (a) the signs of the discrete gradients across the boundary(ui+1 � ui)out and (ui � ui�1)in (assuming �x = 1) are the same; in(b) they are di�erent, but a �xed positive bout would still pull the sur-face towards the background. Moreover, depending on the reciprocalposition of surface and background, the absolute value of the internaland external gradients will change as well.The main attractive point of boundary condition (11) is that itsimplementation is e�cient: it requires only a small revision of matrixA for boundary pixels. A complex boundary treatment would spoilthe e�ciency of the numerical scheme. We have therefore tried to8



% specialps�le=puma.psFigure 4: Synthetic range image of a PUMA robot.Figure 5: Discontinuity map for the PUMA robot image.introduce a similar but more general condition to generalize (11) byintroducing an adaptive leakage coe�cient baout given bybaout = bin0@ @u@n���in@u@n���out1A (12)The adaptive coe�cient baout is evaluated at each border pixel and usedin (11) instead of the �xed leakage bout. The e�ect is to adapt theamount of leakage at the particular border pixel, taking into accountthe di�erence between internal and external slope before enforcingthe boundary condition (11). In our experiments, detailed in [6] thiscondition performed better with both planar and curved surfaces (anexample is given in Figure 2 right).8. Experimental resultsWe present in this Section a few illustrative experiments run witha prototype implemented in C++ on a SPARC workstation underXWindows and Unix. The images used in the experiments were ei-ther synthetic or acquired by a laser striper developed by our group(Naidu and Fisher [13]). All images are 128x128 pixels, 8 bit per pixel.Note that the quantization e�ect has serious e�ects on the accuracy ofcurvature estimation.8.1. Examples of segmentationsThe �rst example (Figure 4) is a synthetic 128x128 range imageof a PUMA robot model (about 170x140x100mm3). All the surfacesare developable; the classi�cation was therefore based on the H signimage only. Figure 5 shows the discontinuity map (�d = 7, �o = 0:75).The �nal classi�cation is shown in Figure 6. The zero threshold for Hwas "H = 0:009, determined experimentally. The image was smoothedwith di�usion interval t0 = 0, tmax = 4 equivalent to �max = 2 forgaussian smoothing, given the di�usion coe�cient of equation 1 b = 0:5(notice that, with b = 0:5, equation 2 reduces to � = pt). A fewpatches were lost as an e�ect of the combined shrinking due to thediscontinuity detection and the erosion-expansion. Small patches aremore vulnerable to shape distortion and therefore likely to disappearafter the erosion-expansion stage.The second example is a real image of a Renault part (Figure 7),whose size is about 190x100x80mm3. This is a complex sculptured9



Figure 6: Final segmentation for the PUMA robot image.Figure 7: Range image of a Renault part.object, including both developable and non-developable surfaces. TheH image was experimentally set at "H = 0:024. The consistent thresh-olding equation (10) yields "K = 0:00422. The image was smoothedbetween t0 = 0 and tmax = 9, equivalent to �max = 3 with b = 0:5.Figure 8 gives the discontinuity map (�d = 10, �o = 0:75). The re-sult of the segmentation is shown in Figure 9. Most of the signi�cantpatches appear in the �nal segmentation. This result is an improve-ment on many results achieved by analogous techniques applied to thisobject.8.2. Testing the systemWe ran several tests to assess quantitatively the performance of oursystem. A complete report will appear in a forthcoming paper. Wesummarize here two aspects, classi�cation and accuracy. Similar testswere reported by Flynn and Jain [15] but were limited to accuracy.Classi�cation tests were run by measuring the percentage of cor-rectly classi�ed points in a synthetic patch against variations of thepatch geometry (shape class and curvature), the number of smoothingcycles and the zero threshold "H . An example is given in Figure 10,which shows the upper bound of "H values guaranteeing a given per-centage of correctly classi�ed points on a cylindrical patch. From thiswe conclude that, if RM is the maximum radius of cylindrical fea-tures in an image, then the threshold "H should be less than about13RM . Similar graphs were generated for elliptic, planar and hyperbolicpatches and contain useful suggestions about how to choose the thresh-old "H . At present, good sign classi�cation accuracy is achieved withpatches of about 14 pixel side (referring to 128x128 images smoothedwith up to three smoothing cycles). The same causes make it di�cultto distinguish accurately between planar patches and curved surfaceswith low curvatures. Worst-case interference radii are about R = 70for cylinders and R = 140 for spheres. The number of smoothing cy-cles nc is linked to both the di�usion time interval and the standarddeviation of the equivalent smoothing gaussian by the relations�t = nc2 � = p2b�twhere �t is the di�usion interval and b is the di�usion coe�cient. InFigure 8: Discontinuity map for the Renault image.10



Figure 9: Final segmentation of the Renault image.Figure 10: Upper bound of "H values guaranteeing given classi�cationpercentage for quantized synthetic cylinders smoothed with nc = 2and nc = 3 against increasing radii.our implementation b is 0.5, therefore � = nc. Since we want to usethe segmentation results for recognition purposes we are interested invalues of nc preserving as many visible features as possible (i.e. notconsidering large, low-frequency blobs). We determined experimen-tally that values of nc less than 4 match this requirement in mostcases. Therefore our tests were run with nc = 1; 2; 3 to supply us withinformation useful for our purposes.Accuracy test were run by estimatingH on cylindrical and sphericalpatches of di�erent sizes, with and without quantization noise, andafter increasing amounts of smoothing. The estimates get worse asthe di�usion interval increases, as expected. For a sphere of radiusr = 19, for instance, the deviation from the expected value is 0.0026,0.0037 and 0.0054 for 1, 2 and 3 cycles of smoothing respectively; thecorrespondent percentage error in the estimated radius is 5%, 7% and11% respectively. The estimates become more and more unreliable asthe radii decrease. For radii less than 10 pixels, the estimates degraderapidly as the number of smoothing cycles increase; still looking atthe sphere case, the error in the estimated radius for r = 10 is already31% for one smoothing cycle and becomes 66% and 167% for two andthree smoothing cycles. The reason is that as the size of the smoothinggaussian approaches that of the surface to be smoothed, the curvatureof the latter is more and more distorted.In general, our tests indicate good performance for H sign estima-tion, but limited accuracy for absolute values. This is in accord withthe results of Flynn and Jain [15], which suggest that accuracies betterthan 10% are di�cult to obtained from quantized data even in largesmoothed patches of nonzero curvature. Therefore the representationcomputed by the system is a good qualitative description of the sur-faces in view, with the quantitative surface structure estimated withlimited accuracy. 9. ConclusionWe have presented a technique for computing a versatile surface-based representation from range images, and its implementation. Inparticular, we have discussed two problems in range segmentation: pre-serving curvature sign at boundaries and discontinuity contours oversmoothing. We believe a surface-based representation is useful for a11
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