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1 IntroductionA problem is ill structured if it is not well structured, that is, if there is no completeand consistent problem statement when problem solving begins (Simon, 1973). Manyreal world problems are ill structured. For example, in deciding whether to buy a houseor a car or where to go on holiday, one's decision may be in
uenced by a wide rangeof factors many of which may only emerge when the various alternatives have beenconsidered in detail, and initial requirements may have to be revised in response tounexpected di�culties or opportunities. In this paper we concentrate on a particularkind of ill structured problem, design problems. Design problems are interesting becausepart of the problem de�nition is given in the form of requirements the designed artefactor process must meet. However these requirements are typically incomplete and/orinconsistent and considerable e�ort is often required to formulate the problem.It is rare for any part of a designed artefact to serve only one purpose, and itis frequently necessary to devise a solution which satis�es a whole range of di�erentrequirements. In many cases the stated objectives are in direct con
ict with oneanother and the designer cannot satisfy one requirement without causing problemselsewhere. Di�erent trade-o�s between the criteria result in a whole range of acceptablesolutions, each likely to prove more or less satisfactory in di�erent ways to di�erentclients and users. The value judgments regarding `trade-o�s' between criteria are contextdependent, and the balance of satisfaction for such requirements are often unclearuntil the designer explores the various possibilities in appropriate detail. Such valuejudgments apply not only to the `qualitative' criteria such as aesthetics, but also tothe relative importance of quantitative criteria which themselves may be susceptible toobjective measurement. Questions about which are the most important problems andwhat kinds of solution most successfully solve these problems are also value laden, andthe answers given by designers to these questions are therefore frequently subjectiveand highly context dependent.As a result, a large part of the design process is devoted to discovering the natureand scope of the task set by the requirement description. Particular aspects of theproblem may suggest certain features of solutions, but these solutions in turn createnew and di�erent problems. It is the very inter-relatedness of all these factors which isthe essence of design problems rather than the isolated factors themselves, and it is thestructuring of relationships between these criteria that forms the basis for the designprocess (Lawson, 1980). The fundamental objective is therefore that of understandingthe structure of the problem and analysing the inter-relationships between criteria togain some insight into the relationship between any individual design decision and allof the other decisions which together de�ne the solution.2 Solving Ill Structured ProblemsIn attempting to solve such problems designers explore the space of possible solutionstrying out decisions and investigating their consequences in a way which develops boththe solution and the problem requirements (Smithers & Troxell, 1990). There is nomeaningful distinction between the analysis of problems and the synthesis of solutions1



in this process; problems and solutions are seen as emerging together rather than onelogically following from the other. The problem is explored through a series of attemptsto create solutions and understand their implications in terms of other criteria. Thedesigner comes to understand the critical relationships and possible forms as a solutionevolves. Between generic solutions design is less a search for the best solution than anexploration of the compromises that give su�cient solutions. These explorations helpthe designer appreciate which requirements may be most readily achieved and thosethat may be neglected without loss. As part of this process, the designer learns whichcriterion values will achieve the design goals and how much variation of these values canbe tolerated while still achieving acceptable performance. The designer also discoversthe implications of achieving the current goal, and any other decisions required to makethe attainment of these goals consistent with the existing solution.This process of exploration frequently results in inconsistencies between the de-signer's best guess at a solution and the problem requirements or between the currentdecision and the existing partial solution. In some cases such inconsistencies can beresolved by modifying the proposed solution. However, if no solution which meetsthe problem requirements can be found, then the problem requirements are themselvesinconsistent (relative to the knowledge of the designer) and the problem is insoluble. To`solve' such a problem it is necessary to rede�ne it. For example, the problem of design-ing a house with a 
oor area of at least 100m2 costing less than $10,000 is probablyinsoluble given existing construction techniques, prevailing statutory requirements etc.without some rede�nition of the concept of `house'. When an inconsistency arises, it isunrealistic to expect the designer to restore consistency immediately. Indeed it is oftenonly be exploring the implications of the con
icting design decisions and requirementsthat a choice can be made about which decision to abandon or which requirementto relax and in many cases considerable work is required before the con
ict can beresolved. In such situations we are really working with several inconsistent but relatedpartial designs.Previous attempts at supporting this process using computers have tended to adoptone of two approaches: deriving the characteristics of a design given a description ofthe solution; and generating a solution or part of a solution given the design goals andrequirements. Such systems can be e�ective when the problem and solution are wellde�ned. However they are typically incapable of operating with incomplete or inconsis-tent information. If the problem requirements are incomplete or inconsistent then noconsistent solution can be found. Similarly, if the proposed solution is incomplete orinconsistent no consistent evaluation is possible and the question of whether the solutionmeets its design goals is meaningless. The response of most systems to these problemsis to ignore them. Existing CAD tools are ill suited to the exploration of ill structuredproblems, tending to focus on individual design characteristics such as cost, structuralstability etc. With no overall framework to integrate the individual tools, the problemof inconsistencies between criteria is not addressed and they provide no support for theprocess of exploration or problem rede�nition. The designer is left with the task ofreformulating the problem requirements and/or the solution and trying again.2



3 The Edinburgh Designer SystemIn an attempt to overcome these di�culties we have implemented a design supportsystem, the Edinburgh Designer System (EDS), which allows the designer to explore theimplications of inconsistent sets of assumptions (Logan, Millington & Smithers, 1991;Smithers et al., 1990; Smithers et al., 1992). EDS doesn't actually design anything|rather it attempts to support the designer in exploring the space of possible designs.EDS consists of four principal subsystems: knowledge representation; inference;consistency maintenance; and context management.3.1 Knowledge RepresentationIn EDS, domain and design knowledge is represented as a series ofmodule classes, relatedby part of and kind of relations. Domain knowledge expresses facts about the domain,such as the heat conduction properties of di�erent building materials and the propertiesand attributes of basic objects and processes associated with the domain|its ontology|such as walls, windows, doors, etc. It also re
ects scienti�c, technological, sociologicaland statutory knowledge and constraints relevant to the domain. This knowledge isrepresented declaratively in the form of constraints and is organised hierarchically usingspecialisation (kind of) relationships between representation objects. Design knowledgederives from previous designs and is concerned with how domain knowledge is used tode�ne and solve design problems; how the space of possible designs is explored andhow a developing design problem structure is created, modi�ed, and re�ned. Designknowledge includes useful decomposition criteria and strategies, synthesis and analysismethods and techniques, and required validation, documentation, and presentationprocedures, for example. While domain knowledge governs the underlying behaviour ofa design problem, design knowledge is used in deciding how it is to be con�gured|whatpriority to put on requirements and constraints, what is to be ignored, and what isto be included etc. Since, during the design process, this problem structure is oftenmodi�ed and revised as its nature is explored and understood, design knowledge mustalso be represented declaratively. In our representation scheme an aggregation (part of)relationship is used to `chunk' design knowledge expressed in terms of domain knowledge.Each module class declares a set of parameters, variables and constraints whichde�ne a particular class or type of object. For example, in the house design problemmentioned above, we would typically have module classes containing information abouthouses, rooms, walls etc. Relevant parameters for a house module class might includethe 
oor area of the house A, the total cost of the house C and the cost/m2 
oorarea U , together with constraints expressing dependencies between these parameters,such as A � U = C. Instances of these module classes form the design descriptionwhich contains the requirements, domain knowledge and design decisions relating to aparticular problem. 3



3.2 InferenceThis knowledge of the domain is used by a series of inference engines or supportsystems to infer the consequences of the designer's decisions.2 The system attemptsto assist the designer in exploring the consequences of design decisions, constraints andthe requirements de�ning the design problem, together with physical laws, heuristicsand other domain knowledge relating the parameters of the design. In addition thesystem tries, where possible, to provide assistance in solving particular design problems,drawing on the large amounts of knowledge encoded in design handbooks, codes ofpractice and in the expertise of individual designers.There are currently four main support systems within EDS (Smithers et al., 1990):1. the Evaluation Engine which handles value propagation, constraint satisfactionand expression simpli�cation;2. the Algebraic Manipulation Engine which takes an arbitrary set of equations andsolves them for any number of variables in which they are linear;3. the Relation Manipulation Engine which performs value interpolation and rela-tional operations on tabular data; and4. the Spatial Reasoning Engine which performs spatial inferencing.Control of the interactions between the support systems is in the style of a blackboardsystem (Hayes-Roth, 1985). In EDS each support system is implemented as one ormore knowledge sources which derive consequences of the current design descriptionrepresented on the blackboard. At each blackboard cycle the system applies the col-lection of (user de�ned) knowledge sources to the design description represented on theblackboard, reviewing any uncompleted work in the light of what is discovered andadjusting its inference priorities accordingly. The designer is viewed as a knowledgesource whose `bids' are always processed �rst. This allows the system to follow severallines of reasoning as it attempts to infer the consequences of the designer's decisions,while still giving priority to user input.3.3 Consistency MaintenanceThe system pays particular attention to any inconsistencies derived by the knowledgesources as these are often indicative of inconsistencies in the problem requirements orproblems with the proposed solution. A design description must be consistent if it isto refer to anything. At the same time we have to recognise that inconsistencies areinevitable|a design description is typically inconsistent for much of its history as thedesigner explores the space of possible designs attempting to meet the various designrequirements. One approach to this problem would have been to use a justi�cation-based truth maintenance system (Doyle, 1979). However while such systems guarantee2In general the support systems derive necessary consequences of the designer's decisions. For adiscussion of the problems of integrating the derivation of possible consequences into a monotonicATMS see (Logan, Corne & Smithers, 1992). 4



consistency, they do so by forcing the user to maintain a single consistent designdescription. All a contradiction between two decisions indicates is that any inferencewhich depends on both decisions is of no value; it is still important to draw inferencesfrom each of the decisions independently. Moreover, because the TMS algorithmsallow only one solution to be considered at any one time, it is di�cult to comparethe implications of alternative design decisions.If a design support system is to e�ectively support the exploration activities of thedesigner, the various incompatible design alternatives must be considered in parallel.This, together with the need to derive as much information as possible from inconsistentdesign descriptions, led to the adoption of an assumption-based reason maintenancesystem (ATMS) for EDS (de Kleer, 1986a). Each item on the blackboard (including theknowledge source activation records in the agenda) is associated with an ATMS node.In EDS, the assumptions represent the problem requirements, knowledge of the domainand the basic design decisions made by the designer.The ATMS forms the core of the system and all of the other system componentsare implemented using the facilities it provides. The ATMS builds and maintains adynamic datastructure, the Design Description Document (DDD), and provides aninterface between the contents of the DDD and the other sub-systems, passing outrelevant pieces of information to them as required and incorporating new informationwhich it receives from them into the dependency structure. The justi�cation structurerecords the dependencies between design decisions about problem requirements andsolutions and their consequences.3.4 Context ManagementWhile the ATMS is e�ective in restricting inferences to those based on consistentpremises, in general the consistency of a set of assumptions is too weak a criterionto determine the relevance of a possible inference and typically results in the derivationof a large amount of redundant information. To provide a degree of control the user canpartition the information on the blackboard into a number of distinct contexts or viewseach of which contains the information relating to part of a particular design solutionor task using an assumption based context management system (ACMS).3A context is any (possibly inconsistent) set of assumptions.4 A view is a namedcontext, i.e. a named set of assumptions. The assumptions are termed the assumptionbase of the view. The extension of a view is everything that can be derived from itsassumption base. More precisely, an item is a member of a view if the assumptionbase of the view subsumes one or more of the environments in the item's label. Viewsare de�ned relative to the the set of all assumptions or `universal assumption base',V . The assumptions forming a view's assumption base are speci�ed by its de�ningabstraction. The de�nition of a view can be either intensional or extensional depending3Views represent an extension of the focus environments described by Forbus and De Kleer (1988),except that there can be more than one view and the assumptions de�ning a view need not be consistent.In the terminology of Martins and Shapiro (1986) a view is a belief set.4Note that this di�ers from de Kleer's terminology (de Kleer, 1984), where context is taken to meanthe set of data derivable from an environment. Our use of the term is closer to that of Martins andShapiro (1986). 5



on whether its de�ning abstraction is open or closed. An intensional de�nition is apredication P de�ning a set of assumptions fx : Pxg where x ranges over V and P is aboolean test de�ned on node labels or their contents. A small number of system-de�nedtests are provided by the ACMS. More complex view de�nitions can be constructedfrom these primitive de�nitions using the set operators union, intersection and set-di�erence. An extensional de�nition is simply a list of assumptions fa1; : : : ; ang. Unlikean open abstract which produces di�erent results at di�erent times, a closed abstractalways returns the same set of assumptions. The current assumption base of a viewis found by evaluating its de�ning abstraction relative to the universal assumptionbase. The evaluation of an abstract returns the assumptions for which it is currentlytrue. Evaluating a closed abstract simply returns the corresponding list of assumptionsEvaluation e�ectively freezes the de�nition of a view relative to the current state of theDDD. Assumptions or inferences introduced into the DDD after the evaluation of theview's de�ning abstraction do not form part of the view's de�nition.5The set of views forms a tree. Each view is associated with a unique node in thetree. A `view-name' is a sequence of named abstractions of the formname �view nameWithin this structure there are two distinguished views called `univ' (the universal or`root' view) and `nil' (the empty view) corresponding to the set of all assumptions Vand the empty set E respectively. The name of a view speci�es its location within thetree relative to the root node. For exampleuniv �widgetdenotes the the view widget which is a child of the universal view. As a syntacticconvenience, any view name beginning with the view name separator `�' is assumed tobe an absolute view name. For example�assembly �sub assembly �component 1names the view component-1 which is a child of the view �assembly �sub-assembly. Allassumptions are by de�nition members of the universal view and all views are de�nedrelative to it.The organisation of views into a tree allows `relative naming' of views. For example,the components of an assembly can have the same name in di�erent assemblies. To referto the same part in assembly-1 and assembly-2 we could write�assembly 1 �widgetand �assembly 2 �widgetThe view structure can be thought of as a task decomposition for the design problem|keeping track of the various alternative design proposals and the information required5Note that assumptions which are subsequently discovered to be inconsistent with the de�nition ofthe view will not be removed from the assumption base, although the ATMS will partition environmentsto maintain consistency. 6



to solve particular problems, both as a record of the design process (which alternativeshave been tried and what was learned) and to allow the designer to partition the problemappropriately (Logan, 1989). The views system provides a level of organisation abovethat of the dependencies maintained by the ATMS which re
ects the designer's interestsand goals. Whereas justi�cations model the �ne structure of the problem, views modelthe broad structure.Note that the de�nition of a view is independent of its position in the view structure.The name of a view simply provides a convenient way to refer to its de�ning abstraction.Since a view name ultimately reduces to the abstraction de�ning its assumption base, itis straightforward to de�ne a view in terms of other views. This provides a primitive formof inheritance between views. As the contents of a view change so too do those viewsde�ned in terms of it. De�ning views in terms of other views allows the constructionof complex inheritance structures. While the view structure is a tree, the inheritancestructure is a directed acyclic graph. Inheritance can sometimes be a problem however,for example, when we want to create variants of an existing design, and to avoid this theuser can force the evaluation of part or all of a de�ning abstraction to obtain its currentextension which is stored as the view's de�nition. This has the e�ect of `copying' thede�nition of the view and breaking any inheritance links it has to other views.The system provides a number of other primitive operations on views, including copyand deletion. Copying the view view1 copies the sub-tree of views rooted at the viewview1 to another view, view2, resolving all references to views below view1. Referencesto views outwith the tree rooted at view1 are preserved; references to views below view1(and the corresponding de�nitions) are copied to the new tree below view2. Whencombined with evaluation and/or rede�nition, copy can be used to e�ciently explorethe implications of alternative parameter values. Deleting a view deletes the view and itschildren (if any) from the view structure. Any view whose de�ning abstraction referencesa deleted view is marked as unde�ned but is otherwise unchanged. In particular,it continues to reference the now non-existent view. Any view de�ned in terms ofan unde�ned view is also marked as unde�ned. Together with copy, evaluation andrede�nition, this allows the rapid construction and reorganisation of the task structurein response to the designer's exploration of the problem. For example, the designercan delete the subtree of views representing part of a solution and replace it with analternative solution by substituting a copy of another part.At any time one or more views are selected as the user's current focus of attention.Only those items which are members of the current view(s) are visible to the knowledgesources and hence can form the basis of further inferences. Potential inferences whichcould be performed in other views|for example in views which inherit from the thecurrent view|are ignored. Assumptions made within a current view are automaticallyadded to its de�ning abstraction and hence to its assumption base. This may in turnresult in new inferences being made or previously derived inferences gaining supportwithin the view.6 Switching views can therefore be used as a simple but e�ective meansof process control. By changing contexts, the user can focus the system's attentionon a particular part of the problem or on a particular kind of inference. As di�erentassumptions become visible, so di�erent knowledge sources are activated and di�erentkinds of inferences performed.6Note that while inference is con�ned to the set of current views, the operation of the ATMS is not.7



When a view becomes current (i.e. when it becomes a current task), the systemmust bring it up to date by performing any inferences made possible by information(assumptions or inferences) added to the DDD since the view was last visited. Thede�ning abstraction of the view is re-evaluated and the resulting assumption base isused to rebuild the view's extension. If the view is de�ned in terms of other views, theirde�ning abstractions must �rst be evaluated and so on recursively. This e�ectivelyrecomputes the inheritance relation between the current view and the views forming itsde�nition. New bids are posted for any work based either partially or wholly on `new'information. Any pending KSARs which were not processed the last time the view wasvisited (and which have not subsequently been executed in other views) are also addedto the agenda. The system goes to some lengths to minimise the cost of switching viewsby maintaining a record of when each view's de�ning abstraction was last evaluated,and by attempting to ensure that the KSARs produced on switching views have notbeen processed before. This recognises that out of any collection of contexts or variants,many are e�ectively `dead' in that they will never be considered again. As the extensionof a view is rebuilt only when the view is visited, the overhead of a view is limited to thesmall amount of memory required to store the view's de�nition. Given the relativelylow cost of creating views and the fact that each assumption is stored only once thereis little penalty in creating as many views as necessary to solve a particular problem.4 Supporting the Design ProcessDesign proceeds by creating instances of module classes and assigning values to theirparameters to de�ne one or more possible solutions.7 When the user makes an assump-tion in one of the current views, one or more datum nodes are created to hold thenew information. For example, in attempting to solve the house design problem, thedesigner might begin by creating an instance of the house module and assigning valuesto some of its parameters: A � 100, C � 10; 000 etc. This information is examinedby the knowledge sources to see if it, together with any information already assumedor derived, can be used to make further inferences. If a knowledge source is able tomake an inference, it generates a bid in the form of a knowledge source activationrecord (KSAR) which is scored and merged into an agenda. At each blackboard cycle,the KSAR with the highest score is executed and the results are added to the designdescription. As the design proceeds the consequences of the designer's assumptionsare derived by the support systems. Such derived information typically relates tothe predicted performance of the designed artefact (including any constraints violatedby the proposed design) and any parameter values which can be inferred from thedesigner's assumptions or their consequences and the constraints linking these values.In the example above, the assumptions made by the user together with the constraintA�U = C, can be used by a valuePropagation knowledge source to infer the additionalconstraint U � 100. This information may in turn form the basis for a new round ofbids and this cycle continues until no executable KSARs remain in the agenda.In general, the support systems are triggered automatically by changes in the design7This is an oversimpli�cation|the user can also de�ne new parameters and constraints and assemblenovel designs from existing modules. 8



description. However our understanding of the design process at the level of an indi-vidual designer solving a particular design problem is insu�cient to determine which ofthe many inferences the system could make are most appropriate at any given point inthe problem solving process. This basic di�culty is compounded by two additionalproblems: the design description is constantly changing, both as a consequence ofassumptions made by the designer and information derived by the system from thecurrent design description; and any inferences made by the system may subsequentlybe invalidated if the underlying assumptions are discovered to be inconsistent.One strategy would be to try to derive everything we can about the design. Whilethis may result in the derivation of some useless information, it allows us to havecon�dence in the information we do produce, as any inconsistencies implicit in thedesign description which the system is capable of �nding will be discovered. This is therationale underlying the choice of the blackboard and its opportunistic control strategy.However this approach is not practical in its pure form. While the knowledge sourcesare selected with a view to producing useful consequences, not all of them will beequally useful in a given situation, and at any point there will be many more inferenceswe can make than we have the resources to make. We therefore compromise. If thecomputational costs associated with a particular support system are high, the decisionto invoke it is typically left to the user due to the di�culty of determining a priorithe relevance of the information produced to the user's current interests and objectives.On the other hand, if the computational costs are low, the support system is typicallyinvoked automatically, even if the results may not be of immediate interest to the user.Hopefully this will also reveal any inconsistencies before the computationally expensivesupport systems are invoked by the user. In practice, the system uses a simple scoringpolicy for KSARs which embodies a number of simple heuristics applicable in a rangeof domains. The di�culties associated with this heuristic are part of a larger probleminvolving the determination of the context of design tasks and the control of inferencewhich is considered in (Logan, Millington & Smithers, 1991).As new values for parameters or bounds on them are assumed or derived, consistencychecks are performed between constraints and values by the valueCon
ict knowledgesource. Con
icts result in the creation of a justi�cation for the distinguished nodehfalsei recording the fact that the assumptions involved are mutually inconsistent andcause the ATMS to partition the assumptions into mutually consistent sets. An inferencewhich is only derivable from inconsistent assumptions loses support and cannot formthe basis of further inferences. If there is no con
ict, EDS marks this by justifyingthe datum hconsistenti and proceeds as usual. For example, we may know that thelower limit on construction costs is $110=m2. Adding the constraint U > 110 to theproblem description leads to a justi�cation for hfalsei, recording the fact that the threeassumptions A � 100, C � 10; 000 and U > 110 are jointly inconsistent (and hence thatthe problem is insoluble) and invalidating any inferences based on these assumptions.However the constraint is consistent with each of the problem requirements individuallyand it can be used to derive new bounds on the values of A and C, i.e., thatA � 90:9 andC � 11; 000. Even if if the design fails to violate any constraints the designer may electto pursue several di�erent designs in parallel in an attempt to determine which gives thebest overall performance, or to determine the sensitivity of the derived performance tothe values of the design parameters. This will typically involve trying several alternative9



values for parameters until the constraints are satis�ed or the relative performance ofthe various alternatives is understood.Note that the presence of inconsistencies in the design description does not implythat the proposed design is unsatisfactory. Rather it simply means the designer'sassumptions are jointly inconsistent. The evaluation of a design solution is relativeto other designs both existing and entertained and what the designer believes to bepossible. An `objective' measure of the performance of the design such as its costis value free; it only becomes meaningful relative to the cost of other similar designsor to the problem requirements (which themselves express an expectation about whatconstitutes a `good' solution). The same design can be both good and bad from di�erentpoints of view. For example, a particular house design may be expensive in comparisonwith other houses of a similar area and type, but may represent good value when thesite conditions and the level of �nishes is taken into account. Putting gold taps in thebathroom not only increases the cost of the house, it changes the way the cost shouldbe evaluated.Di�erent members of the design team will evaluate the same design in di�erent ways,each emphasising di�erent characteristics of the solution. Indeed, individual designerswill evaluate the same design di�erently at di�erent times as they achieve a betterunderstanding of what is achievable using the available technology. A design which waspreviously thought to be mediocre may acquire a higher score if it discovered that thealternatives are even worse. Similarly, a design which represents a `good compromise'may be abandoned when a constraint is relaxed.When an inconsistency arises or the design is found to be unsatisfactory (as istypically the case), the designer has several options. The designer can ignore theinconsistency and continue to pursue the development of the inconsistent design basedon what can be coherently derived. The opportunistic nature of the blackboard controlstrategy means that whatever can be consistently derived within the current view willbe derived. Multiple assignments to parameters (giving rise to multiple alternativesolutions) and their interactions are handled automatically by the ATMS as are incon-sistencies between parameter values and any assumed constraints. This approach maybe appropriate when, for example, the inconsistency is considered minor or peripheraland the main interest lies with the consequences of some (consistent) set of assumptionswhich are considered central to the proposed solution.Alternatively, the designer can attempt to eliminate the inconsistency by modifyingthe o�ending parameter values using information on which assumptions are jointly in-consistent provided by the ATMS. This may involve assigning new values to parametersor relaxing constraints, i.e. changing the requirements or adopting a di�erent approach.To assist the designer in understanding the dependencies between assumptions andderived results, EDS provides various utilities which allow the user to examine thecontents of the DDD. For example, using the graphical explanation facility, the usercan display a graphical representation of how a parameter was inferred by viewing itsjusti�cation, environment and inferencing method . In particular the user can discoverthe reason for the inconsistency signaled above by requesting that the system display themutually inconsistent assumptions (and their consequences) which led to the derivationof hfalsei. 10



However, if there are several di�erent ways of `patching' the design to restoreconsistency which are to be investigated in parallel, it may be more appropriate tocreate a view for each of the alternative solutions. For example, in determining how toovercome the problem identi�ed above, the designer may make further assumptions toexplore the implications of relaxing one or both of the original problem requirements,for example that A = 90 or that C = 11; 000. These assumptions are inconsistentwith the existing design solution and with each other. However the inconsistenciesbetween the assignments are in a sense irrelevant. The designer does not care that theyare inconsistent and the system should not pursue inferences based on their union.8While these inconsistencies will be trapped by the ATMS, they are of no interest to thedesigner.9 By placing assumptions relating to di�erent designs in di�erent views, thedesigner can avoid the derivation of such meaningless inconsistencies and partition thedesign description in response to their exploration of the problem. Such variant viewscan either be used as a `scratchpad' for rough working, merging the results back intothe main view structure by rede�ning the part view as the chosen variant or they canform part of the �nal design record, in which case the component view can be rede�nedto inherit from the appropriate part view.10This approach has a number of advantages. The designer can pursue the develop-ment of the design without worrying about inconsistencies except insofar as they indicatethe shortcomings of a proposed solution. The ATMS ensures that only valid inferencesare drawn from the current design description by automatically detecting inconsistentsets of assumptions and violated constraints and partitioning the design descriptionto restore consistency. Moreover the opportunistic nature of the blackboard controlstrategy means that whatever can be consistently derived from the design descriptionwill be derived. However, it does change the relationship between the user and theATMS.5 Reason Maintenance in Ill Structured Problem SolvingIn a conventional RMS based problem solving system, the RMS is usually seen asan independent module associated with the problem solver (de Kleer, 1986b). Theproblem solver communicates the results of its inferences to the RMS whose task is tokeep a record of the dependencies between propositions and use these dependencies toinform the problem solver of which propositions it should believe. In a support systemthere is no `problem solver' as such. In design, both the problem and the problem-solving process are ill-structured. The system has no well-de�ned goal such as `�nda con�guration which satis�es the given constraints'. Rather it looks for `interesting'consequences of the assumptions about requirements and parameter values made by the8Whether two sets of assumptions should be considered disjoint in this sense is itself dependent onthe current context. At some point in the future the designer may wish to consider amalgamating thesetwo alternatives, at which point their consistency or otherwise does become an issue.9Note that without the ATMS, these assumptions would result in the derivation of an in�nite sequenceof values for A and C.10The problem of when a modi�cation or revision should entail the creation of a new view is left tothe designer. The views system is intended to facilitate the exploration of alternative solutions and anyprede�ned strategy would simply constrain the exploration process. This is discussed in more detail inthe next section. 11



user. Inconsistencies are particularly interesting both because they terminate a line ofexploration (from the system's point of view), and also because they are interesting intheir own right|they indicate problems with the requirements or solution.These assumptions and their consequences record explorations of the space of pos-sible designs and are not necessarily solutions to the same problem. As a resultinterpretations are not meaningful. In a conventional RMS-based problem-solvingsystem, a solution is implicitly identi�ed with the notion of a `maximal environment'. InEDS, the design description contains both decisions from alternative approaches to theproblem and assumptions about alternative requirements and constraints. As a result,the e�ciency of the ATMS is perhaps not as important as it is in more conventionalsystems.11 With appropriate use of views to segregate inconsistent designs and controlthe derivation and propagation of inconsistencies, few extraneous nogoods are createdand we have not found it necessary to limit label propagation to the current view (seefor example (Dressler & Farquhar, 1990)). While this would be advantageous in somesituations, label propagation outwith the current view does not seem to be a signi�cantoverhead in the domains we have addressed.Moreover the relationship between the support systems and the RMS is ratherdi�erent, in that we are interested not only in whether sets of assumptions are consistentor not, but in the justi�cation structure itself. From the system's point of view, theconstruction of the justi�cation structure is not a means to an end, but (almost) anend in itself. It records the results of the system's exploration of the user's decisionsand represents the structure of the problem. The justi�cation structure records thedependencies between criteria that the designer is trying to understand and forms thebasis of further exploration. This results in a major user interface problem which doesnot arise in more conventional RMS based problem solving systems (or at least not to thesame extent) which are primarily interested in the answer rather than the structure ofthe problem|that of presenting the justi�cation structure to the user in an intelligibleway. Although the system provides a number of graphical tools for examining thejusti�cation structure, there is no easy way for the user to identify an assumption ordatum node (for example in de�ning a view) without reference to the node-tag used bythe ATMS to to refer to the node in environments and justi�cations. The ATMS simplymaintains dependencies between data items|it has no knowledge of the contents of thenodes or assumptions. It does not make sense to talk about \the value of parameter pof instance i" as p may have several values.6 Extending the ArchitectureEDS has been used extensively by several of the collaborators in the Alvey large scaledemonstrator project `Design to Product' (DtoP) which focussed on the design of lightelectro-mechanical components and formed part of the �nal DtoP demonstration system(The DtoP Consortium, 1991). The architecture has also been applied in a number ofother domains including drug design (Smithers et al., 1992), studies of of nuclear power11The ATMS used by EDS is not particularly e�cient; there are a number of possible optimisationswhich we have never bothered to make because the overhead of the ATMS within the system as a wholeis relatively small. A much bigger problem is controlling the knowledge sources (Smithers, 1989).12



systems design (Furuta & Smithers, 1991) and option trading. Our initial experiencewith the architecture has been encouraging. The ATMS-blackboard and ACMS haveproved useful in supporting ad hoc explorations of the trade o�s between design criteriain these domains. More importantly, our initial experience has served to highlight someof the shortcomings of the model of design support which the system embodies andwe brie
y summarise these below. While in the main these are not problems with theATMS-blackboard as such, it seems likely that signi�cant revisions to the architectureof the ATMS-blackboard will be necessary if they are to be overcome.Further development of the architecture is limited by our understanding of the designprocess. A major problem with the current system is that it has no understanding of thedesign task and consequently which inferences it should perform in a given situation.The system lacks any concept of the importance of a failure to achieve a particulardesign goal. There is no way in the current scheme to distinguish between what mightbe termed trivial inconsistencies due to minor di�erences in parameters values and the`radical inconsistencies' which are, at least initially, of greater interest to the designer,and which may completely invalidate an approach to the problem. At present if aset of assumptions prove to be inconsistent no further inferences are possible in anyenvironment subsumed by these assumptions. This is untenable if the knowledge sourcesare interpreted as implementing di�erent logics.One solution to this problem is to include (a name for) the knowledge sourceitself in the antecedents of a justi�cation. This information is currently available inthe method `slot' of the justi�cation in the ATMS. Making explicit the dependencyof a derivation on the knowledge source responsible for the inference simpli�es thesubsequent truth maintenance and allows the system to distinguish between di�erentkinds of inconsistencies. For example, it becomes possible to distinguish between`rounding errors' in the calculation of the same parameter by di�erent methods and`semantic' inconsistencies arising as a result of con
icting design decisions.12This in turn suggests that the knowledge sources themselves may pro�tably beviewed as �rst-class objects maintained by the ATMS. This facilitates reasoning aboutthe knowledge sources for control purposes and renders them subject to both consistencymaintenance and context management, by allowing the user to specify which knowledgesources should form part of the current task de�nition. For example, the systemcan identify those knowledge sources which are mutually `inconsistent', (in that theywill always derive inconsistent results from the same assumptions) or those which areconsidered appropriate in a particular context. A logical extension of this would be toallow the system to reason about views as �rst-class objects|for example to infer fromthe current task what the current view should be. Such a self-referential system o�ersa signi�cant increase in expressiveness, in allowing statements (and hence reasoningabout) other statements or collections of statements, such as their utility in particularcontexts or the completeness and consistency of design descriptions. It also provides anatural interpretation of knowledge sources as procedurally interpreted views.In an attempt to overcome these problems we are currently implementing a series12At present EDS handles rounding errors using an `epsilon' value which is the same in all contexts,as without knowledge of the justi�cation structure, the knowledge source responsible for detecting valuecon
icts cannot determine how the parameters were derived.13



of extensions to the ATMS-blackboard architecture including the introduction of user-de�ned preference orderings over problem requirements, knowledge sources and viewsand the representation of knowledge sources and views as �rst class objects withinthe ATMS-blackboard. We believe such extensions can form a framework for a moree�ective control of inference.7 ConclusionsWe have argued that RMS can form an appropriate framework for solving ill structuredproblems. We have described a design support system, the Edinburgh Designer Systemand its ATMS-blackboard architecture, and illustrated how it supports the explorationof design problems. The implications of this approach for the relationship betweenthe user of the system and the ATMS have been brie
y discussed and some of theproblems which result|problems which are not often found in `conventional' RMSapplications: problem rede�nition and interpretation construction; the interpretation ofinconsistencies; and the presentation of the justi�cation structure|outlined. Based onour experience with the system, we have argued that to improve the support provided byEDS, the ATMS-blackboard architecture must be extended and we have brie
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