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Abstract

Problem solving systems incorporating a truth or reason maintenance compo-
nent have been developed for a number of different domains, including hypothetical
reasoning, diagnosis, planning and circuit design.! Almost without exception, the
problems addressed by these systems are well structured, that is, there exists a
complete and consistent statement of the problem requirements when problem
solving begins. In this paper we argue that RMS (and in particular assumption-
based truth maintenance systems) can also be applied to ill structured problems.
We describe a hybrid ATMS-blackboard architecture which has been employed in
the development of a number of design support systems in different domains and
briefly outline some of the questions raised by our experience with the architecture.
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1 Introduction

A problem is ill structured if it is not well structured, that is, if there is no complete
and consistent problem statement when problem solving begins (Simon, 1973). Many
real world problems are ill structured. For example, in deciding whether to buy a house
or a car or where to go on holiday, one’s decision may be influenced by a wide range
of factors many of which may only emerge when the various alternatives have been
considered in detail, and initial requirements may have to be revised in response to
unexpected difficulties or opportunities. In this paper we concentrate on a particular
kind of ill structured problem, design problems. Design problems are interesting because
part of the problem definition is given in the form of requirements the designed artefact
or process must meet. However these requirements are typically incomplete and/or
inconsistent and considerable effort is often required to formulate the problem.

It is rare for any part of a designed artefact to serve only one purpose, and it
is frequently necessary to devise a solution which satisfies a whole range of different
requirements. In many cases the stated objectives are in direct conflict with one
another and the designer cannot satisfy one requirement without causing problems
elsewhere. Different trade-offs between the criteria result in a whole range of acceptable
solutions, each likely to prove more or less satisfactory in different ways to different
clients and users. The value judgments regarding ‘trade-offs’ between criteria are context
dependent, and the balance of satisfaction for such requirements are often unclear
until the designer explores the various possibilities in appropriate detail. Such value
judgments apply not only to the ‘qualitative’ criteria such as aesthetics, but also to
the relative importance of quantitative criteria which themselves may be susceptible to
objective measurement. Questions about which are the most important problems and
what kinds of solution most successfully solve these problems are also value laden, and
the answers given by designers to these questions are therefore frequently subjective
and highly context dependent.

As a result, a large part of the design process is devoted to discovering the nature
and scope of the task set by the requirement description. Particular aspects of the
problem may suggest certain features of solutions, but these solutions in turn create
new and different problems. It is the very inter-relatedness of all these factors which is
the essence of design problems rather than the isolated factors themselves, and it is the
structuring of relationships between these criteria that forms the basis for the design
process (Lawson, 1980). The fundamental objective is therefore that of understanding
the structure of the problem and analysing the inter-relationships between criteria to
gain some insight into the relationship between any individual design decision and all
of the other decisions which together define the solution.

2 Solving Ill Structured Problems

In attempting to solve such problems designers explore the space of possible solutions
trying out decisions and investigating their consequences in a way which develops both
the solution and the problem requirements (Smithers & Troxell, 1990). There is no
meaningful distinction between the analysis of problems and the synthesis of solutions



in this process; problems and solutions are seen as emerging together rather than one
logically following from the other. The problem is explored through a series of attempts
to create solutions and understand their implications in terms of other criteria. The
designer comes to understand the critical relationships and possible forms as a solution
evolves. Between generic solutions design is less a search for the best solution than an
exploration of the compromises that give suflicient solutions. These explorations help
the designer appreciate which requirements may be most readily achieved and those
that may be neglected without loss. As part of this process, the designer learns which
criterion values will achieve the design goals and how much variation of these values can
be tolerated while still achieving acceptable performance. The designer also discovers
the implications of achieving the current goal, and any other decisions required to make
the attainment of these goals consistent with the existing solution.

This process of exploration frequently results in inconsistencies between the de-
signer’s best guess at a solution and the problem requirements or between the current
decision and the existing partial solution. In some cases such inconsistencies can be
resolved by modifying the proposed solution. However, if no solution which meets
the problem requirements can be found, then the problem requirements are themselves
inconsistent (relative to the knowledge of the designer) and the problem is insoluble. To
‘solve’ such a problem it is necessary to redefine it. For example, the problem of design-
ing a house with a floor area of at least 100 m? costing less than £10,000 is probably
insoluble given existing construction techniques, prevailing statutory requirements etc.
without some redefinition of the concept of ‘house’. When an inconsistency arises, it is
unrealistic to expect the designer to restore consistency immediately. Indeed it is often
only be exploring the implications of the conflicting design decisions and requirements
that a choice can be made about which decision to abandon or which requirement
to relax and in many cases considerable work is required before the conflict can be
resolved. In such situations we are really working with several inconsistent but related
partial designs.

Previous attempts at supporting this process using computers have tended to adopt
one of two approaches: deriving the characteristics of a design given a description of
the solution; and generating a solution or part of a solution given the design goals and
requirements. Such systems can be effective when the problem and solution are well
defined. However they are typically incapable of operating with incomplete or inconsis-
tent information. If the problem requirements are incomplete or inconsistent then no
consistent solution can be found. Similarly, if the proposed solution is incomplete or
inconsistent no consistent evaluation is possible and the question of whether the solution
meets its design goals is meaningless. The response of most systems to these problems
is to ignore them. Existing CAD tools are ill suited to the exploration of ill structured
problems, tending to focus on individual design characteristics such as cost, structural
stability etc. With no overall framework to integrate the individual tools, the problem
of inconsistencies between criteria is not addressed and they provide no support for the
process of exploration or problem redefinition. The designer is left with the task of
reformulating the problem requirements and/or the solution and trying again.



3 The Edinburgh Designer System

In an attempt to overcome these difficulties we have implemented a design support
system, the Edinburgh Designer System (EDS), which allows the designer to explore the
implications of inconsistent sets of assumptions (Logan, Millington & Smithers, 1991;
Smithers et al., 1990; Smithers et al., 1992). EDS doesn’t actually design anything—
rather it attempts to support the designer in exploring the space of possible designs.

EDS consists of four principal subsystems: knowledge representation; inference;
consistency maintenance; and context management.

3.1 Knowledge Representation

In EDS, domain and design knowledge is represented as a series of module classes, related
by part_of and kind_of relations. Domain knowledge expresses facts about the domain,
such as the heat conduction properties of different building materials and the properties
and attributes of basic objects and processes associated with the domain—its ontology—
such as walls, windows, doors, etc. It also reflects scientific, technological, sociological
and statutory knowledge and constraints relevant to the domain. This knowledge is
represented declaratively in the form of constraints and is organised hierarchically using
specialisation (kind_of) relationships between representation objects. Design knowledge
derives from previous designs and is concerned with how domain knowledge is used to
define and solve design problems; how the space of possible designs is explored and
how a developing design problem structure is created, modified, and refined. Design
knowledge includes useful decomposition criteria and strategies, synthesis and analysis
methods and techniques, and required validation, documentation, and presentation
procedures, for example. While domain knowledge governs the underlying behaviour of
a design problem, design knowledge is used in deciding how it is to be configured—what
priority to put on requirements and constraints, what is to be ignored, and what is
to be included etc. Since, during the design process, this problem structure is often
modified and revised as its nature is explored and understood, design knowledge must
also be represented declaratively. In our representation scheme an aggregation (part_of)
relationship is used to ‘chunk’ design knowledge expressed in terms of domain knowledge.

Each module class declares a set of parameters, variables and constraints which
define a particular class or type of object. For example, in the house design problem
mentioned above, we would typically have module classes containing information about
houses, rooms, walls etc. Relevant parameters for a house module class might include
the floor area of the house A, the total cost of the house ' and the cost/m? floor
area U, together with constraints expressing dependencies between these parameters,
such as A Xx U = (. Instances of these module classes form the design description
which contains the requirements, domain knowledge and design decisions relating to a
particular problem.



3.2 Inference

This knowledge of the domain is used by a series of inference engines or support
systems to infer the consequences of the designer’s decisions.? The system attempts
to assist the designer in exploring the consequences of design decisions, constraints and
the requirements defining the design problem, together with physical laws, heuristics
and other domain knowledge relating the parameters of the design. In addition the
system tries, where possible, to provide assistance in solving particular design problems,
drawing on the large amounts of knowledge encoded in design handbooks, codes of
practice and in the expertise of individual designers.

There are currently four main support systems within EDS (Smithers et al., 1990):

1. the Fuvaluation FEngine which handles value propagation, constraint satisfaction
and expression simplification;

2. the Algebraic Manipulation Engine which takes an arbitrary set of equations and
solves them for any number of variables in which they are linear;

3. the Relation Manipulation Engine which performs value interpolation and rela-
tional operations on tabular data; and

4. the Spatial Reasoning Engine which performs spatial inferencing.

Control of the interactions between the support systems is in the style of a blackboard
system (Hayes-Roth, 1985). In EDS each support system is implemented as one or
more knowledge sources which derive consequences of the current design description
represented on the blackboard. At each blackboard cycle the system applies the col-
lection of (user defined) knowledge sources to the design description represented on the
blackboard, reviewing any uncompleted work in the light of what is discovered and
adjusting its inference priorities accordingly. The designer is viewed as a knowledge
source whose ‘bids’ are always processed first. This allows the system to follow several
lines of reasoning as it attempts to infer the consequences of the designer’s decisions,
while still giving priority to user input.

3.3 Consistency Maintenance

The system pays particular attention to any inconsistencies derived by the knowledge
sources as these are often indicative of inconsistencies in the problem requirements or
problems with the proposed solution. A design description must be consistent if it is
to refer to anything. At the same time we have to recognise that inconsistencies are
inevitable—a design description is typically inconsistent for much of its history as the
designer explores the space of possible designs attempting to meet the various design
requirements. One approach to this problem would have been to use a justification-
based truth maintenance system (Doyle, 1979). However while such systems guarantee

?In general the support systems derive necessary consequences of the designer’s decisions. For a
discussion of the problems of integrating the derivation of possible consequences into a monotonic

ATMS see (Logan, Corne & Smithers, 1992).



consistency, they do so by forcing the user to maintain a single consistent design
description. All a contradiction between two decisions indicates is that any inference
which depends on both decisions is of no value; it is still important to draw inferences
from each of the decisions independently. Moreover, because the TMS algorithms
allow only one solution to be considered at any one time, it is difficult to compare
the implications of alternative design decisions.

If a design support system is to effectively support the exploration activities of the
designer, the various incompatible design alternatives must be considered in parallel.
This, together with the need to derive as much information as possible from inconsistent
design descriptions, led to the adoption of an assumption-based reason maintenance
system (ATMS) for EDS (de Kleer, 1986a). Each item on the blackboard (including the
knowledge source activation records in the agenda) is associated with an ATMS node.
In EDS, the assumptions represent the problem requirements, knowledge of the domain
and the basic design decisions made by the designer.

The ATMS forms the core of the system and all of the other system components
are implemented using the facilities it provides. The ATMS builds and maintains a
dynamic datastructure, the Design Description Document (DDD), and provides an
interface between the contents of the DDD and the other sub-systems, passing out
relevant pieces of information to them as required and incorporating new information
which it receives from them into the dependency structure. The justification structure
records the dependencies between design decisions about problem requirements and
solutions and their consequences.

3.4 Context Management

While the ATMS is effective in restricting inferences to those based on consistent
premises, in general the consistency of a set of assumptions is too weak a criterion
to determine the relevance of a possible inference and typically results in the derivation
of a large amount of redundant information. To provide a degree of control the user can
partition the information on the blackboard into a number of distinct contexts or views
each of which contains the information relating to part of a particular design solution
or task using an assumption based context management system (ACMS).?

A context is any (possibly inconsistent) set of assumptions.* A wiew is a named
context, i.e. a named set of assumptions. The assumptions are termed the assumption
base of the view. The extension of a view is everything that can be derived from its
assumption base. More precisely, an item is a member of a view if the assumption
base of the view subsumes one or more of the environments in the item’s label. Views
are defined relative to the the set of all assumptions or ‘universal assumption base’,
V. The assumptions forming a view’s assumption base are specified by its defining
abstraction. The definition of a view can be either intensional or extensional depending

®Views represent an extension of the focus environments described by Forbus and De Kleer (1988),
except that there can be more than one view and the assumptions defining a view need not be consistent.
In the terminology of Martins and Shapiro (1986) a view is a belief set.

*Note that this differs from de Kleer’s terminology (de Kleer, 1984), where contest is taken to mean
the set of data derivable from an environment. Our use of the term is closer to that of Martins and
Shapiro (1986).



on whether its defining abstraction is open or closed. An intensional definition is a
predication P defining a set of assumptions {z : Pz} where x ranges over V and P is a
boolean test defined on node labels or their contents. A small number of system-defined
tests are provided by the ACMS. More complex view definitions can be constructed
from these primitive definitions using the set operators union, intersection and set-
difference. An extensional definition is simply a list of assumptions {ay,...,a,}. Unlike
an open abstract which produces different results at different times, a closed abstract
always returns the same set of assumptions. The current assumption base of a view
is found by evaluating its defining abstraction relative to the universal assumption
base. The evaluation of an abstract returns the assumptions for which it is currently
true. Evaluating a closed abstract simply returns the corresponding list of assumptions
Evaluation effectively freezes the definition of a view relative to the current state of the
DDD. Assumptions or inferences introduced into the DDD after the evaluation of the
view’s defining abstraction do not form part of the view’s definition.”

The set of views forms a tree. Each view is associated with a unique node in the
tree. A ‘view-name’ is a sequence of named abstractions of the form

name -view —name

Within this structure there are two distinguished views called ‘univ’ (the universal or
‘root” view) and ‘nil’ (the empty view) corresponding to the set of all assumptions V
and the empty set &£ respectively. The name of a view specifies its location within the
tree relative to the root node. For example

univ -widget

denotes the the view widget which is a child of the universal view. As a syntactic
convenience, any view name beginning with the view name separator ‘-’ is assumed to
be an absolute view name. For example

-assembly -sub-assembly -component-1

names the view component-1 which is a child of the view -assembly -sub-assembly. All
assumptions are by definition members of the universal view and all views are defined
relative to it.

The organisation of views into a tree allows ‘relative naming’ of views. For example,
the components of an assembly can have the same name in different assemblies. To refer
to the same part in assembly-1 and assembly-2 we could write

-assembly -1 -widget

and
-assembly -2 -widget

The view structure can be thought of as a task decomposition for the design problem
—keeping track of the various alternative design proposals and the information required

®Note that assumptions which are subsequently discovered to be inconsistent with the definition of
the view will not be removed from the assumption base, although the ATMS will partition environments
to maintain consistency.



to solve particular problems, both as a record of the design process (which alternatives
have been tried and what was learned) and to allow the designer to partition the problem
appropriately (Logan, 1989). The views system provides a level of organisation above
that of the dependencies maintained by the ATMS which reflects the designer’s interests
and goals. Whereas justifications model the fine structure of the problem, views model
the broad structure.

Note that the definition of a view is independent of its position in the view structure.
The name of a view simply provides a convenient way to refer to its defining abstraction.
Since a view name ultimately reduces to the abstraction defining its assumption base, it
is straightforward to define a view in terms of other views. This provides a primitive form
of inheritance between views. As the contents of a view change so too do those views
defined in terms of it. Defining views in terms of other views allows the construction
of complex inheritance structures. While the view structure is a tree, the inheritance
structure is a directed acyclic graph. Inheritance can sometimes be a problem however,
for example, when we want to create variants of an existing design, and to avoid this the
user can force the evaluation of part or all of a defining abstraction to obtain its current
extension which is stored as the view’s definition. This has the effect of ‘copying’ the
definition of the view and breaking any inheritance links it has to other views.

The system provides a number of other primitive operations on views, including copy
and deletion. Copying the view view; copies the sub-tree of views rooted at the view
viewy to another view, views, resolving all references to views below wview,. References
to views outwith the tree rooted at view are preserved; references to views below view;
(and the corresponding definitions) are copied to the new tree below wview;. When
combined with evaluation and/or redefinition, copy can be used to efficiently explore
the implications of alternative parameter values. Deleting a view deletes the view and its
children (if any) from the view structure. Any view whose defining abstraction references
a deleted view is marked as undefined but is otherwise unchanged. In particular,
it continues to reference the now non-existent view. Any view defined in terms of
an undefined view is also marked as undefined. Together with copy, evaluation and
redefinition, this allows the rapid construction and reorganisation of the task structure
in response to the designer’s exploration of the problem. For example, the designer
can delete the subtree of views representing part of a solution and replace it with an
alternative solution by substituting a copy of another part.

At any time one or more views are selected as the user’s current focus of attention.
Only those items which are members of the current view(s) are visible to the knowledge
sources and hence can form the basis of further inferences. Potential inferences which
could be performed in other views—for example in views which inherit from the the
current view—are ignored. Assumptions made within a current view are automatically
added to its defining abstraction and hence to its assumption base. This may in turn
result in new inferences being made or previously derived inferences gaining support
within the view.® Switching views can therefore be used as a simple but effective means
of process control. By changing contexts, the user can focus the system’s attention
on a particular part of the problem or on a particular kind of inference. As different
assumptions become visible, so different knowledge sources are activated and different
kinds of inferences performed.

5Note that while inference is confined to the set of current views, the operation of the ATMS is not.



When a view becomes current (i.e. when it becomes a current task), the system
must bring it up to date by performing any inferences made possible by information
(assumptions or inferences) added to the DDD since the view was last visited. The
defining abstraction of the view is re-evaluated and the resulting assumption base is
used to rebuild the view’s extension. If the view is defined in terms of other views, their
defining abstractions must first be evaluated and so on recursively. This effectively
recomputes the inheritance relation between the current view and the views forming its
definition. New bids are posted for any work based either partially or wholly on ‘new’
information. Any pending KSARs which were not processed the last time the view was
visited (and which have not subsequently been executed in other views) are also added
to the agenda. The system goes to some lengths to minimise the cost of switching views
by maintaining a record of when each view’s defining abstraction was last evaluated,
and by attempting to ensure that the KSARs produced on switching views have not
been processed before. This recognises that out of any collection of contexts or variants,
many are effectively ‘dead’ in that they will never be considered again. As the extension
of a view is rebuilt only when the view is visited, the overhead of a view is limited to the
small amount of memory required to store the view’s definition. Given the relatively
low cost of creating views and the fact that each assumption is stored only once there
is little penalty in creating as many views as necessary to solve a particular problem.

4 Supporting the Design Process

Design proceeds by creating instances of module classes and assigning values to their
parameters to define one or more possible solutions.” When the user makes an assump-
tion in one of the current views, one or more datum nodes are created to hold the
new information. For example, in attempting to solve the house design problem, the
designer might begin by creating an instance of the house module and assigning values
to some of its parameters: A > 100, €' < 10,000 etc. This information is examined
by the knowledge sources to see if it, together with any information already assumed
or derived, can be used to make further inferences. If a knowledge source is able to
make an inference, it generates a bid in the form of a knowledge source activation
record (KSAR) which is scored and merged into an agenda. At each blackboard cycle,
the KSAR with the highest score is executed and the results are added to the design
description. As the design proceeds the consequences of the designer’s assumptions
are derived by the support systems. Such derived information typically relates to
the predicted performance of the designed artefact (including any constraints violated
by the proposed design) and any parameter values which can be inferred from the
designer’s assumptions or their consequences and the constraints linking these values.
In the example above, the assumptions made by the user together with the constraint
Ax U =, can be used by a valuePropagation knowledge source to infer the additional
constraint /' < 100. This information may in turn form the basis for a new round of
bids and this cycle continues until no executable KSARs remain in the agenda.

In general, the support systems are triggered automatically by changes in the design

"This is an oversimplification—the user can also define new parameters and constraints and assemble
novel designs from existing modules.



description. However our understanding of the design process at the level of an indi-
vidual designer solving a particular design problem is insufficient to determine which of
the many inferences the system could make are most appropriate at any given point in
the problem solving process. This basic difficulty is compounded by two additional
problems: the design description is constantly changing, both as a consequence of
assumptions made by the designer and information derived by the system from the
current design description; and any inferences made by the system may subsequently
be invalidated if the underlying assumptions are discovered to be inconsistent.

One strategy would be to try to derive everything we can about the design. While
this may result in the derivation of some useless information, it allows us to have
confidence in the information we do produce, as any inconsistencies implicit in the
design description which the system is capable of finding will be discovered. This is the
rationale underlying the choice of the blackboard and its opportunistic control strategy.
However this approach is not practical in its pure form. While the knowledge sources
are selected with a view to producing useful consequences, not all of them will be
equally useful in a given situation, and at any point there will be many more inferences
we can make than we have the resources to make. We therefore compromise. If the
computational costs associated with a particular support system are high, the decision
to invoke it is typically left to the user due to the difficulty of determining a prior:
the relevance of the information produced to the user’s current interests and objectives.
On the other hand, if the computational costs are low, the support system is typically
invoked automatically, even if the results may not be of immediate interest to the user.
Hopefully this will also reveal any inconsistencies before the computationally expensive
support systems are invoked by the user. In practice, the system uses a simple scoring
policy for KSARs which embodies a number of simple heuristics applicable in a range
of domains. The difficulties associated with this heuristic are part of a larger problem
involving the determination of the context of design tasks and the control of inference
which is considered in (Logan, Millington & Smithers, 1991).

As new values for parameters or bounds on them are assumed or derived, consistency
checks are performed between constraints and values by the valueConflict knowledge
source. Conflicts result in the creation of a justification for the distinguished node
(false) recording the fact that the assumptions involved are mutually inconsistent and
cause the ATMS to partition the assumptions into mutually consistent sets. An inference
which is only derivable from inconsistent assumptions loses support and cannot form
the basis of further inferences. If there is no conflict, EDS marks this by justifying
the datum (consistent) and proceeds as usual. For example, we may know that the
lower limit on construction costs is £110/m?. Adding the constraint U > 110 to the
problem description leads to a justification for (false), recording the fact that the three
assumptions A > 100, C' < 10,000 and U > 110 are jointly inconsistent (and hence that
the problem is insoluble) and invalidating any inferences based on these assumptions.
However the constraint is consistent with each of the problem requirements individually
and it can be used to derive new bounds on the values of A and C', i.e., that A < 90.9 and
C' > 11,000. Even if if the design fails to violate any constraints the designer may elect
to pursue several different designs in parallel in an attempt to determine which gives the
best overall performance, or to determine the sensitivity of the derived performance to
the values of the design parameters. This will typically involve trying several alternative



values for parameters until the constraints are satisfied or the relative performance of
the various alternatives is understood.

Note that the presence of inconsistencies in the design description does not imply
that the proposed design is unsatisfactory. Rather it simply means the designer’s
assumptions are jointly inconsistent. The evaluation of a design solution is relative
to other designs both existing and entertained and what the designer believes to be
possible.  An ‘objective’ measure of the performance of the design such as its cost
is value free; it only becomes meaningful relative to the cost of other similar designs
or to the problem requirements (which themselves express an expectation about what
constitutes a ‘good’ solution). The same design can be both good and bad from different
points of view. For example, a particular house design may be expensive in comparison
with other houses of a similar area and type, but may represent good value when the
site conditions and the level of finishes is taken into account. Putting gold taps in the
bathroom not only increases the cost of the house, it changes the way the cost should
be evaluated.

Different members of the design team will evaluate the same design in different ways,
each emphasising different characteristics of the solution. Indeed, individual designers
will evaluate the same design differently at different times as they achieve a better
understanding of what is achievable using the available technology. A design which was
previously thought to be mediocre may acquire a higher score if it discovered that the
alternatives are even worse. Similarly, a design which represents a ‘good compromise’
may be abandoned when a constraint is relaxed.

When an inconsistency arises or the design is found to be unsatisfactory (as is
typically the case), the designer has several options. The designer can ignore the
inconsistency and continue to pursue the development of the inconsistent design based
on what can be coherently derived. The opportunistic nature of the blackboard control
strategy means that whatever can be consistently derived within the current view will
be derived. Multiple assignments to parameters (giving rise to multiple alternative
solutions) and their interactions are handled automatically by the ATMS as are incon-
sistencies between parameter values and any assumed constraints. This approach may
be appropriate when, for example, the inconsistency is considered minor or peripheral
and the main interest lies with the consequences of some (consistent) set of assumptions
which are considered central to the proposed solution.

Alternatively, the designer can attempt to eliminate the inconsistency by modifying
the offending parameter values using information on which assumptions are jointly in-
consistent provided by the ATMS. This may involve assigning new values to parameters
or relaxing constraints, i.e. changing the requirements or adopting a different approach.
To assist the designer in understanding the dependencies between assumptions and
derived results, EDS provides various utilities which allow the user to examine the
contents of the DDD. For example, using the graphical explanation facility, the user
can display a graphical representation of how a parameter was inferred by viewing its
justification, environment and inferencing method. In particular the user can discover
the reason for the inconsistency signaled above by requesting that the system display the
mutually inconsistent assumptions (and their consequences) which led to the derivation

of (false).
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However, if there are several different ways of ‘patching’ the design to restore
consistency which are to be investigated in parallel, it may be more appropriate to
create a view for each of the alternative solutions. For example, in determining how to
overcome the problem identified above, the designer may make further assumptions to
explore the implications of relaxing one or both of the original problem requirements,
for example that A = 90 or that €' = 11,000. These assumptions are inconsistent
with the existing design solution and with each other. However the inconsistencies
between the assignments are in a sense irrelevant. The designer does not care that they
are inconsistent and the system should not pursue inferences based on their union.®
While these inconsistencies will be trapped by the ATMS, they are of no interest to the
designer.? By placing assumptions relating to different designs in different views, the
designer can avoid the derivation of such meaningless inconsistencies and partition the
design description in response to their exploration of the problem. Such variant views
can either be used as a ‘scratchpad’ for rough working, merging the results back into
the main view structure by redefining the part view as the chosen variant or they can
form part of the final design record, in which case the component view can be redefined
to inherit from the appropriate part view.!?

This approach has a number of advantages. The designer can pursue the develop-
ment of the design without worrying about inconsistencies except insofar as they indicate
the shortcomings of a proposed solution. The ATMS ensures that only valid inferences
are drawn from the current design description by automatically detecting inconsistent
sets of assumptions and violated constraints and partitioning the design description
to restore consistency. Moreover the opportunistic nature of the blackboard control
strategy means that whatever can be consistently derived from the design description
will be derived. However, it does change the relationship between the user and the

ATMS.

5 Reason Maintenance in Ill Structured Problem Solving

In a conventional RMS based problem solving system, the RMS is usually seen as
an independent module associated with the problem solver (de Kleer, 1986b). The
problem solver communicates the results of its inferences to the RMS whose task is to
keep a record of the dependencies between propositions and use these dependencies to
inform the problem solver of which propositions it should believe. In a support system
there is no ‘problem solver’ as such. In design, both the problem and the problem-
solving process are ill-structured. The system has no well-defined goal such as ‘find
a configuration which satisfies the given constraints’. Rather it looks for ‘interesting’
consequences of the assumptions about requirements and parameter values made by the

8Whether two sets of assumptions should be considered disjoint in this sense is itself dependent on
the current context. At some point in the future the designer may wish to consider amalgamating these
two alternatives, at which point their consistency or otherwise does become an issue.

®Note that without the ATMS, these assumptions would result in the derivation of an infinite sequence
of values for A and C.

1°The problem of when a modification or revision should entail the creation of a new view is left to
the designer. The views system is intended to facilitate the exploration of alternative solutions and any
predefined strategy would simply constrain the exploration process. This is discussed in more detail in
the next section.
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user. Inconsistencies are particularly interesting both because they terminate a line of
exploration (from the system’s point of view), and also because they are interesting in
their own right—they indicate problems with the requirements or solution.

These assumptions and their consequences record explorations of the space of pos-
sible designs and are not necessarily solutions to the same problem. As a result
interpretations are not meaningful. In a conventional RMS-based problem-solving
system, a solution is implicitly identified with the notion of a ‘maximal environment’. In
EDS, the design description contains both decisions from alternative approaches to the
problem and assumptions about alternative requirements and constraints. As a result,
the efficiency of the ATMS is perhaps not as important as it is in more conventional
systems.!! With appropriate use of views to segregate inconsistent designs and control
the derivation and propagation of inconsistencies, few extraneous nogoods are created
and we have not found it necessary to limit label propagation to the current view (see
for example (Dressler & Farquhar, 1990)). While this would be advantageous in some
situations, label propagation outwith the current view does not seem to be a significant
overhead in the domains we have addressed.

Moreover the relationship between the support systems and the RMS is rather
different, in that we are interested not only in whether sets of assumptions are consistent
or not, but in the justification structure itself. From the system’s point of view, the
construction of the justification structure is not a means to an end, but (almost) an
end in itself. It records the results of the system’s exploration of the user’s decisions
and represents the structure of the problem. The justification structure records the
dependencies between criteria that the designer is trying to understand and forms the
basis of further exploration. This results in a major user interface problem which does
not arise in more conventional RMS based problem solving systems (or at least not to the
same extent) which are primarily interested in the answer rather than the structure of
the problem—that of presenting the justification structure to the user in an intelligible
way. Although the system provides a number of graphical tools for examining the
justification structure, there is no easy way for the user to identify an assumption or
datum node (for example in defining a view) without reference to the node-tag used by
the ATMS to to refer to the node in environments and justifications. The ATMS simply
maintains dependencies between data items—it has no knowledge of the contents of the
nodes or assumptions. It does not make sense to talk about “the value of parameter p
of instance 77 as p may have several values.

6 Extending the Architecture

EDS has been used extensively by several of the collaborators in the Alvey large scale
demonstrator project ‘Design to Product’ (DtoP) which focussed on the design of light
electro-mechanical components and formed part of the final DtoP demonstration system
(The DtoP Consortium, 1991). The architecture has also been applied in a number of
other domains including drug design (Smithers et al., 1992), studies of of nuclear power

1 The ATMS used by EDS is not particularly efficient; there are a number of possible optimisations
which we have never bothered to make because the overhead of the ATMS within the system as a whole
is relatively small. A much bigger problem is controlling the knowledge sources (Smithers, 1989).
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systems design (Furuta & Smithers, 1991) and option trading. Our initial experience
with the architecture has been encouraging. The ATMS-blackboard and ACMS have
proved useful in supporting ad hoc explorations of the trade offs between design criteria
in these domains. More importantly, our initial experience has served to highlight some
of the shortcomings of the model of design support which the system embodies and
we briefly summarise these below. While in the main these are not problems with the
ATMS-blackboard as such, it seems likely that significant revisions to the architecture
of the ATMS-blackboard will be necessary if they are to be overcome.

Further development of the architecture is limited by our understanding of the design
process. A major problem with the current system is that it has no understanding of the
design task and consequently which inferences it should perform in a given situation.
The system lacks any concept of the importance of a failure to achieve a particular
design goal. There is no way in the current scheme to distinguish between what might
be termed trivial inconsistencies due to minor differences in parameters values and the
‘radical inconsistencies” which are, at least initially, of greater interest to the designer,
and which may completely invalidate an approach to the problem. At present if a
set of assumptions prove to be inconsistent no further inferences are possible in any
environment subsumed by these assumptions. This is untenable if the knowledge sources
are interpreted as implementing different logics.

One solution to this problem is to include (a name for) the knowledge source
itself in the antecedents of a justification. This information is currently available in
the method ‘slot” of the justification in the ATMS. Making explicit the dependency
of a derivation on the knowledge source responsible for the inference simplifies the
subsequent truth maintenance and allows the system to distinguish between different
kinds of inconsistencies. For example, it becomes possible to distinguish between
‘rounding errors’ in the calculation of the same parameter by different methods and

‘semantic’ inconsistencies arising as a result of conflicting design decisions.!?

This in turn suggests that the knowledge sources themselves may profitably be
viewed as first-class objects maintained by the ATMS. This facilitates reasoning about
the knowledge sources for control purposes and renders them subject to both consistency
maintenance and context management, by allowing the user to specify which knowledge
sources should form part of the current task definition. For example, the system
can identify those knowledge sources which are mutually ‘inconsistent’, (in that they
will always derive inconsistent results from the same assumptions) or those which are
considered appropriate in a particular context. A logical extension of this would be to
allow the system to reason about views as first-class objects—for example to infer from
the current task what the current view should be. Such a self-referential system offers
a significant increase in expressiveness, in allowing statements (and hence reasoning
about) other statements or collections of statements, such as their utility in particular
contexts or the completeness and consistency of design descriptions. It also provides a
natural interpretation of knowledge sources as procedurally interpreted views.

In an attempt to overcome these problems we are currently implementing a series

12 At present EDS handles rounding errors using an ‘epsilon’ value which is the same in all contexts,
as without knowledge of the justification structure, the knowledge source responsible for detecting value
conflicts cannot determine how the parameters were derived.
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of extensions to the ATMS-blackboard architecture including the introduction of user-
defined preference orderings over problem requirements, knowledge sources and views
and the representation of knowledge sources and views as first class objects within
the ATMS-blackboard. We believe such extensions can form a framework for a more
effective control of inference.

7 Conclusions

We have argued that RMS can form an appropriate framework for solving ill structured
problems. We have described a design support system, the Edinburgh Designer System
and its ATMS-blackboard architecture, and illustrated how it supports the exploration
of design problems. The implications of this approach for the relationship between
the user of the system and the ATMS have been briefly discussed and some of the
problems which result—problems which are not often found in ‘conventional” RMS
applications: problem redefinition and interpretation construction; the interpretation of
inconsistencies; and the presentation of the justification structure—outlined. Based on
our experience with the system, we have argued that to improve the support provided by
EDS, the ATMS-blackboard architecture must be extended and we have briefly outlined
some of our current work which aims to improve the system’s understanding of the task
the designer is currently pursuing.

We believe this approach is applicable to decision support systems and ill structured
problem-solving in general, and that such systems offer a fruitful new area for the
application of reason maintenance systems.
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