
Non-Wildcard Matching Beats TheInterpretation TreeRobert B. FisherDept. of Arti�cial Intelligence, University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QL, Scotland, United KingdomAbstractProbably the best known control algorithm for high-level model matchingin computer vision is the Interpretation Tree expansion algorithm, pop-ularized and extended by Grimson and Lozano-Perez. This algorithmhas been shown to have a high computational complexity, particularlywhen applied to matching problems with large numbers of features. Thispaper introduces a non-wildcard variation on this algorithm that has animprovement of about 4-10 in performance over the standard Interpret-ation Tree algorithm.1 IntroductionProbably the most well-known control algorithm for high-level model match-ing in computer vision is the Interpretation Tree(IT) expansion algorithm, asused by Grimson and Lozano-Perez[2]. The IT algorithm searches a tree ofmodel-to-data correspondences, such that each node in the tree represents onecorrespondence and the path of nodes from the current node back to the rootof the tree is a set of simultaneous pairings.Unfortunately, this algorithm has the potential for combinatorial search ex-plosion. This has prompted researchers to develop techniques for pruning thetrees, thus limiting the number of matches considered. The main techniquescommonly used are based on pruning constraints[2] (which locally reject pair-ings that are inconsistent, and hence eliminate all of the search that mightfurther extend this inconsistent pairing) and early termination[4]. The latterstops search (1) at the �rst hypothesis with a given number of pairings, or (2)at any time that it is impossible to make su�cient pairings with the remainingpotential matches. However, even with these e�ective forms of pruning, thealgorithms still can have an exponential complexity, making them unsuitablefor use in scenes with many features.As reported by Grimson[4], the main cause of the exponential complexityis the use of a \wildcard" match feature. This paper discusses and analyses avariation to the standard IT algorithm that explores a di�erent tree withoutusing a wildcard and requires 4-10 times less work.1



2 The Standard Interpretation Tree AlgorithmConsider a set f di g of D data features and a set f mi g of M model features.Then, the root of the interpretation tree has no pairings. The �rst level expandsthe root node to pair all of the M model features with data feature d1. Thesecond level in the tree expands each of these nodes to pair all model featureswith data feature d2 (multiple pairings are allowed), and so on. The expansioncontinues for all D data features. At each node at level k in the tree, therefore,there is a hypothesis with k features matched.If this IT were explored completely, there would be MD \leaf" nodes at thebottom of the tree (i.e. these many complete interpretations) andDXi=0 M i = MD+1 � 1M � 1 :=MDnodes in the full tree. If either M or D are of any reasonable size (e.g. largerthan 5), then we can expect to have excessively large search trees.An additional complication is that one usually wishes to include a \wild-card" model feature that will match with any data feature. This is necessarybecause it may not always be possible to �nd a model feature that matchesthe data feature at the current level of the tree (because of fragmentation, badsegmentation, noise, unrelated features, etc.).One way to reduce the amount of searching is to `prune whole branches ofthe tree', by showing that a given pairing or sequence of pairings is inconsistent.Therefore, all descendents from that node in the tree will also be inconsistentand need not be explored. The most common approach uses unary and binarypruning constraints. Unary constraints eliminate model-to-data pairings whensome shared property is inconsistent. Binary constraints eliminate hypotheseswhen a relative property between a pair of model features is inconsistent withthe same property between the corresponding pair of data features. For ex-ample, Grimson and Lozano-Perez[2] provide a set of binary constraints usefulfor three-dimensional scene analysis, based on pairwise consistency constraints,that compare quantities such as relative distance, orientation and direction.Similar constraints can be developed for higher-order consistency (e.g. vectortriple products). Of particular importance is the local nature of the consist-ency tests, based on the assumption that a few simple, fast tests on partiallygenerated hypotheses will eliminate large numbers of globally inconsistent hy-potheses.In the discussion below, the following quantities are used:� there are M model features in the model.� on average, pvM of these are visible in the scene (less thanM by occlusion,being on the back side of the object, etc.). In 2D scenes, pv := 1 and,in 3D scenes, pv := 0:5 as about half of the features are back-facing andhence not visible.



Figure 1: Generated and Accepted Nodes versus Number of Model Features(M) with S = 20 pr = 0:95 p1 = 0:1 p2 = 0:01 pv = 0:5 � = 0:5 (loglog plot)� of the visible model features, only pr of these are recognizable (less thanthose visible because of segmentation failures, etc.) forming C = prpvMcorrect observable data features. (If the model chosen for this scene isincorrect, pr = 0.) Which C of the M model features are matchable isnot known initially.� there are also S spurious data features (including noise features and visiblemodel features that are not recognizable); hence altogether there are D =C + S data features.� the probability that a randomly chosen model feature matches with anincorrect random data feature is p1 (correct pairings alway match).� the probability that a random pair of model features is consistent with anincorrect random pair of data features (given that the individual model-to-data pairings are consistent) is p2.� an acceptable set of model-to-data pairings must have at least T = �pvMnon-wildcard correspondences (� 2 [0::1]). Whenever this many areachieved, then the whole matching process terminates successfully im-mediately. Any set of matches that can never get T matches (becauseinsu�cient potential matches remain) is terminated immediately and thematching process proceeds to considering other matches.In the discussion that follows, the term generated refers to nodes and pathsthat are created prior to testing the consistency of the node or path, andaccepted refers to nodes or paths that pass the consistency tests.Grimson[3] analyzed the combinatorics of the standard algorithm, and showedthat, without wildcards, the algorithm tends to accept (Proposition 5, pg 274)a single path with many pairings (i.e. the correct one), and generates (Propos-ition 6, pg 274) a number of nodes that is quadratic in the number of modelfeatures. However, allowing a wildcard means that the algorithm will accept



Figure 2: Generated and Accepted Nodes by Spurious Features (S) with M =40 pr = 0:95 p1 = 0:1 p2 = 0:01 pv = 0:5 � = 0:5 (loglog plot)an exponential number of correctly matchable features. One key term is 2C ,arising from the power set of the C matchable features. The complexity occursbecause each matchable data feature can be either matched with the correctmodel feature or the wildcard. Examination of a typical search tree shows thatmost of the tree consists of paths containing either members of this power setor wildcards. Many of these paths can be eliminated by using the terminationthreshold described above. This can only apply when the search is su�cientlyadvanced, but it does make a signi�cant improvement.Grimson[3] analyzed the consequences of this termination condition andshowed (Corollary 3.2, pg 367) that if:p2MD < 2then the expected number of nodes generated is bounded by:MD2C < num generated < aT MD2Cwhere a is a small constant. There might be some problems with the exact-ness these bounds, but the conclusion that the use of a termination conditionimproves performance is valid.Unfortunately, the p2MD < 2 condition given above does not always hold,in which case the algorithm again seems to be exponential. In fact, in theexperiments described below, it only holds for the smallest test cases.3 The Non-wildcard Matching AlgorithmThe vast number of nodes in the standard algorithm arises because of the use ofwildcards. An alternative search algorithm explores the same search space, but



Figure 3: Generated and Accepted Nodes by Unary Match Probability (p1)with M = 40 S = 20 pr = 0:95 p2 = 0:01 pv = 0:5 � = 0:5 (loglog plot)does not use a wildcard model feature matched to data features. The essenceof the di�erence is the search process skips over all data pairings that use awildcard, to consider the next true data-model feature pairing. This results ina attening of the search tree. The algorithm has two phases:1. The set 
 = fskg = f(mi(k); dj(k))g; k = 1::N of all pairs of featuressatisfying the unary pairing constraints is formed, such that if sr is beforess (i.e. r < s), then j(r) � j(s).2. A di�erent search tree is explored, in which each extension of a branch isformed by appending new entries from 
, subject to the constraints that(1) each data feature appears at most once on a path through the treeand (2) the data features are used in order (with gaps allowed).Starting from a branch ending with pair s� (or nothing at the root of the tree),all pairs s�+1 . . . sN are possible extensions to the branch. Only extensions thatsatisfy the normal binary constraints are accepted. Extension stops when thetermination number of matches is reached, or on branches where insu�cientpossibilities remain in the tail of 
.For example, if 
 = fs1; s2; s3; s4g = f(m2; d1); (m4; d2); (m1; d2); (m5; d4)g,the tree: Xs1 s2 s3 s4s2 s3 s4 s4 s4s4 s4is searched depth �rst following the leftmost branches �rst (no pruning is shownhere to illustrate the shape of the tree). The initial step considers the individualmodel-data pairings once (i.e. the unary constraints are tested once instead ofwhenever needed, as in the IT tree). As the second and third levels of the newsearch tree contain complete matches, the binary constraints eliminate almost



all false pairings quickly. The trade-o� is that the branching factor of thenew tree is sizeof(
) instead of M . This search algorithm can produce thesame set of hypotheses as the standard IT algorithm, with respect to the datafeatures paired to non-wildcard model features. The order of generation maybe di�erent when the termination threshold is used.4 The ExperimentsTo demonstrate the e�ectiveness of the non-wildcard search algorithms, weuse the following experimental problem. The approach is designed to allowcomparison of methods for which no formal complexity measure has yet beendetermined, and also to allow comparison of algorithms within the same com-plexity class. The problem is based on an example described in Grimson[4].The experiments use simulated data. However, Grimson showed that the modeland simulation gave a reasonable characterization of real matching problems.The use of the simulated problems then allows us to compare the algorithmperformance on the same data sets of varying sizes.Based on the problem model given in Section 2, each model-match experi-ment of the two algorithms will consist of:1. Initially determining a random selection of C of the D data features tobe the solution.2. For each generated model-to-data pairing, a correspondence that is notpart of the solution and does not use a wildcard is accepted if the new cor-respondence is individually satis�ed with probability p1 and the new cor-respondence is pairwise satis�ed with each previously �lled non-wildcardfeature with probability p2. Correspondences that are part of the solutionor use the wildcard are accepted.The experiments with the non-wildcard search tree algorithm are similar. Forthe experiments described in this paper, we used:PARAMETER NOMINAL RANGEM 40 5 to 100 by 5S 20 0 to 100 by 5p1 0.1 0.05 to 0.75 by 0.05p2 0.01 0.001, 0.002, 0.004, 0.008, 0.01, 0.02, 0.04,0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20� 0.5 0.2 to 0.9 by 0.1pv 0.5 no variationpr 0.95 no variationIn each experiment described in this section, one parameter was variedover the range given above and all others were set to the nominal value. Allexperiments were run 200 times and the value reported is the mean value.



Figure 4: Generated and Accepted Nodes by Binary Match Probability (p2)with M = 40 S = 20 pr = 0:95 p1 = 0:1 pv = 0:5 � = 0:5 (loglog plot)The graphs in Figures 1{5 given show how the number of nodes generated andaccepted varied with the parameters for the new and standard IT algorithms.As we look over the results, which explore a substantial portion of the para-meter spaces likely to be encountered in visual matching problems, we cansee that the non-wildcard is clearly better than the standard IT algorithm.In search, the non-wildcard algorithm is not bad for most problems, but itsperformance deteriorates as p1 increases (this increases the number of pos-sible matches to consider at each stage). For acceptances, the non-wildcardalgorithm is also the better, as it does not allow proliferating wildcard hypo-theses. Except when p1 is large, the non-wildcard algorithm did about 4 timesless search and 10 times less accepting than the standard algorithm.One might also consider how the two algorithms perform when there is noinstance of the object in the scene. Then, it is unlikely that the early successconditions would occur, and thus almost all of the search space would have tobe explored. Figure 6 shows the number of nodes generated and accepted inthis case. When there is no true match possible, the non-wildcard is still muchbetter, but in both cases much more work is done (e.g. about 10-30 times morework). Grimson ([3], page 389) shows that the standard algorithm is also muchworse when no match is possible.5 Computational Complexity of theNon-Wildcard Matching AlgorithmGrimson[3] has mainly concentrated on estimating upper and lower bounds forthe standard algorithm. As seen in the results from the previous section, thenon-wildcard search algorithm looks very promising. Hence, we give here theresult of a complexity analysis for that algorithm, except that we state here



Figure 5: Generated and Accepted Nodes by Acceptance Threshold (�) withM = 40 S = 20 pr = 0:95 p1 = 0:1 p2 = 0:01 pv = 0:5 (loglog plot)(without proof) the mean performance of the algorithm.Theorem 1 (Mean Complexity of Non-Wildcard Algorithm) Given theproblem de�nitions from above, there are expected to be C true pairings andF = p1(MD�C) false pairings that arise from the initial model to data featurematching. Assume that M and D are very large, so that the e�ect of matchingone feature does not signi�cantly a�ect the rest of the algorithm. Also assumethat no false hypotheses containing 3 or more pairings survive the pruning tests(i.e. Fp2 < 1). Then, the expected amount of search is approximately:MD + T + FC (C + F ) + p2FC (C + F � T )(C + F � T + 1)) := O(M5)and the expected number of hypotheses accepted is approximately:T + FC + p2FC (C + F � T + 1) := O(M3)6 Discussion and ConclusionsAs Grimson observed, most of the complexity of the standard interpretationtree search is a consequence of the use of \wildcards" to overcome missing anderroneous data. However, merely having \good" data does not mean one canavoid the use of the wildcard, because the so-called false features may havearisen from other objects in the scene, or other subcomponents of the objectbeing recognized. Hence, the wildcard is likely to remain a key element of thegeneral interpretation tree search algorithm. If one could assume that therewere only a limited amount of scene clutter, then one might limit the use ofwildcards to a speci�c number. However, more than one or two would stillallow a considerable number of partially empty hypotheses.



Figure 6: Generated and Accepted Nodes versus Number of Model Features(M) When No Instance of the Model is Present with S = 20 pr = 0:95 p1 =0:1 p2 = 0:01 pv = 0:5 � = 0:5 (loglog plot)From the experiments, it is obvious that the non-wildcard algorithm pro-duces better performance than the standard IT matching algorithm. For thenon-wildcard algorithm, the real work occurs at the �rst or second step, whiche�ectively requires a comparison between all model and data features. As anymodel feature might be an explanation for any data feature, it is hard to avoidthis complexity, which results in MD initial comparisons and roughly p1MDfalse acceptances, which provides a lower bound on the amount of work re-quired. After that, a reduced search space needs to be considered, but theinitial e�ort is substantial. There does not seem to be much possibility of re-ducing this amount of e�ort, unless some additional aspect of the particularproblem can be exploited.Real bene�ts can be gained by reducing the number of features that needto be considered at a time. If the data features can be partitioned into Ksubsets, which can be matched independently, and the models features canalso be partitioned into L corresponding subcomponents, then the brute-forceversion of the matching algorithm is reduced from MD to:KL(ML )DKwhich is considerably less. This requires perceptual organization [5], such as aregion or surface patch grouping (e.g. [1] Chapter 5).The analysis above also assumed that only one model (i.e. one set of modelfeatures) was considered for matching. If all models must be considered, thenthe computational complexity will be high, as the results in Section 4 showed.Hence, some form of model invocation method is needed to reduce the numberof candidate models (e.g. [1] Chapter 8, [3] Chapter 15).The net conclusion is that by using the non-wildcard algorithm as an al-ternative to the standard interpretation tree visual matching algorithm, it is



possible to reduce the amount of search by a factor of about 4 and number ofpartial interpretations accepted by a factor of 10, where the precise amount ofimprovement depends on the problem parameters. Both factors are important,because, depending on the particular matching algorithm, the savings achieveddepend on relative costs of each action (e.g. the pairwise consistency checkingcosts may high relative to �nal veri�cation costs).The relative speed di�erence of the implemented matching algorithms mightovercome this reduction in theoretical search complexity. However, the M =100 case from Figure 1, matching requires 1.27 seconds for the non-wildcardalgorithm, as compared to 5.4 seconds for the standard algorithm (on a Sparc-Station 1+). Hence, the speed of the non-wildcard algorithm is also signi�cantlybetter than the standard algorithm in the implementations compared.AcknowledgementsThis research was funded by SERC (IED grant GR/F/38310). Other facilitiesprovided by University of Edinburgh. This paper bene�ted greatly from dis-cussions with Dibio Borges, John Hallam, Howard Hughes, Mark Orr, KristianSimsarian, Manuel Trucco and Mike Uschold.References[1] Fisher, R. B., From Surfaces to Objects: Computer Vision and ThreeDimensional Scene Analysis, John Wiley and Sons, Chichester, 1989.[2] Grimson, W. E. L., Lozano-Perez, T., Model-Based Recognition and Localiz-ation from Sparse Range or Tactile Data, International Journal of RoboticsResearch, Vol. 3, pp 3-35, 1984.[3] Grimson, W. E. L., Object Recognition By Computer: The Role ofGeometric Constraints, MIT Press, 1990.[4] Grimson, W. E. L., The Combinatorics of Heuristic Search Termination forObject Recognition in Cluttered Environments, Lecture Notes in ComputerScience, ECCV-90, Springer-Verlag, pp 552-556, 1990.[5] Witkin, A. P., Tenenbaum, J. M., What Is Perceptual Organization For?,Proceedings 8th IJCAI, pp1023-1026, 1983.A Non-Wildcard Search Algorithm// Non-wildcard expansion variation on standard algorithm:// expand tree by members of valid_pairs (not by data levels),// subject to not reusing data features.searchtree(treesofar, valid_pairs){ if empty(valid_pairs) return fail



trylist = valid_pairsdo {if can never get enough return failextension = head(trylist)trylist = tail(trylist)if data feature in extension already appears in treesofarthen skip this extensionif compatible(extension, treesofar){ if enough matches return successif success(searchtree(append(treesofar,extension),trylist)), then return success}} while non-empty(trylist)return fail}// test for compatibility of new pairing with rest of pairings:boolean compatible(new_pair, treesofar){ // check pairwise with previously filled slots of this hypfor each pair in treesofarif not compatible2(pair, new_pair) then return falsereturn true}


