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Abstract

We explore the potential of variance matrices to represent not just statis-
tical error on object pose estimates but also partially constrained degrees
of freedom. Using an iterated extended Kalman filter as an estimation
tool, we generate, combine and predict partially constrained pose esti-
mates from 3D range data. We find that partial constraints on the trans-
lation component of pose which occur frequently in practice are handled
well by the method. However, coupled partial constraints on rotation and
translation are in general to non-linear to be adequately represented.
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1 Introduction

Most model-based part recognition or location vision systems establish all
model-to-data pairings during an initial matching phase, and then estimate
the pose from the consistent pairings. This is less than ideal, as insufficient
features may have been segmented to estimate fully the pose, or it may be
desirable to improve the pose estimate by locating additional features using
the current pose estimate. Or, some features may only provide partial or weak
pose constraints.

This paper integrates three themes in computer vision to show how model
matching can be improved. The themes are: 1) incrementally improve pose
estimates as new evidence is found, 2) represent both statistical error and lack
of knowledge (i.e. partial pose constraints) and 3) use partial knowledge to guide
model matching. The paper demonstrates six examples of model-matching or
pose estimation problems where partial knowledge is integrated and used to
improve the quality of scene understanding. The domain of application used
for examples here is 3D model matching using 3D image feature data, but the
approach can be adapted for 2D-to-2D and 3D-to-2D problems. The examples
shown in the paper are based on a surface-patch matching system where the



data surface patches are extracted from range data (by some adaptations of
[3]) and the model surfaces are specialised instances of quadratic surfaces [7].

The foundation of the approach is based on representing the uncertainty by
a variance matrix. This by itself is not new and a number of vision, robotics
and tracking projects have followed this approach [18, 12, 20, 2]. That work has
used the variance representation to encode fully constrained but statistically
erroneous poses. The advantage of the statistical approach is that there are
well-known and understood statistical tools for estimation (e.g. the Kalman
filter) and decision problems. Using these, one can test the likelihood of the
estimates, determine when new evidence is compatible with existing estimates,
continually refine the parameter estimates, integrate evidences with different
amounts of uncertainty and determine a most-likely parameter estimate. (Al-
though it is not always easy to apply that theory to non-linear vision problems.)

We also have problems where there are only partial pose constraints, and
we would like to exploit these constraints as well. For example, knowing that
a point lies in a plane, or that two planes are co-planar. We would like to
represent these open degrees-of-freedom at the same time as representing the
statistical error on the known degrees-of-freedom.

The method that we use to solve this problem is to represent the open
degrees-of-freedom (i.e. lack of knowledge) by one or more very large eigenval-
ues in the variance matrix. Unlike the interval bounding method on parameter
space (see for example [4], [8]), the covariance (off diagonal) terms in the vari-
ance matrix represent correlations between the components of the parameter
and allow degrees of freedom in any direction in the parameter space, not just
along the coordinate axes.

Often, in practical problems involving surface patches from range data,
enough information is available to establish an estimate of the rotational part
of a pose whereas the translational part can only be partially constrained. This
is because the normal vectors of planar surface patches are not particularly
sensitive to occlusion or segmentation errors around the boundaries and 1t is
these surface normals which are used to estimate the translation. The opposite
is true for particular points on the patch, such as the centre of gravity. This
makes it harder to create the paired points necessary to estimate the translation.

What we suggest is, assuming enough evidence is available to constrain ro-
tation (to within measurement errors only), that pairings between scene points
and model points which contain degrees of freedom (over and above measure-
ment errors) can be used to generate partial constraints on the translation and
that furthermore, combining two or more partially constrained estimates of the
same pose can lead to a fully constrained estimate. We could either attach the
degrees of freedom to the scene point or the model point. Where possible, we
have chosen the model point because the appropriate amount of variation in
different directions will be known ¢ priori in the model so the variance only
has to be set up once and for all. In some cases the directions of the degrees
of freedom are unknown in the model space and they must be associated with
the variance of the observed parameter.

Based on this representation of uncertainty, we show how five different prob-
lems can be solved:
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. A partially constrained translation can be estimated using a planar sur-
face patch match.

2. A partially constrained translation can be estimated using a cylindrical
surface patch match.

3. A priori problem knowledge can lead to partially constrained translation
estimates.

4. A fully constrained translation can be estimated from multiple pieces of
partially constraining evidence.

5. A fully constrained pose can be estimated from partially constrained poses
for distinct subcomponents of an object.

6. A partial pose estimate can be used to guide image search for additional
matchable features.

The solutions to these problems are discussed in separate subsections of
Section 3 and the statistical techniques underlying the solutions are described
in Section 2. In Section 4 we discuss the problems associated with representing
partial rotation constraints and then present our conclusions in Section 5.

The work reported here builds on techniques which have become standard
in robotics and vision through the work of, among others, groups at INRIA [20]
and Oxford University [12]. The approach to partial evidence representation
is similar to that of [4] and [8] except that there intervals, which are known to
be inferior to variance matrices [16], were used to represent the bounds on the
parameters. There are also links with early research into pose constraints from
object relationships as specified in a robot programming language (RAPT) [17]
though that work modeled relationships as exact and not uncertain.

2 The Statistical Framework

2.1 Kalman Filtering

The Kalman filter (and its extension for non-linear problems) is the basic esti-
mation tool we are using. Here we merely give a brief description of its function;
more details, in particular, the Kalman filter equations, can be readily found
elsewhere, e.g. [11, 1, 2].

Knowledge at time step k£ about a parameter vector or state, x, is rep-
resented by the estimated mean vector, x;, and variance matrix, X, of an
assumed Gaussian probability distribution. Observations, zy, pertaining to the
state are themselves uncertain with means, zj, and variances, Zj. To link the
observations to the state there are measurement equations of the form

fk(xa Zk‘) = Oa

which are usually non-linear and often under-constrained (cannot be put
in the form x = gi(z;)). The Kalman filter is a tool for incorporating the
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Figure 1: Inputs and outputs to the IEFK as it processes a the kth observation.

knowledge in the observations into the state when the measurement equations
are linear. The iterated extended Kalman filter (IEKF) is an adaptation of
this tool to deal with non-linear equations. In both cases incorporating the kth
observation leads to an update of the state estimate to a new mean, x;41, and
a new variance, Xp41 (see Figure 1).

In addition to the prior state estimate, the kth observation and the kth
measurement equation, the IEKF requires input of the Jacobians 0fy/0x and
Ofy, / Oz which are functions of x and z;. These are necessary to perform the
linearisation step inside the IEKF. The Appendix lists all the measurement
functions (and their Jacobians) used in this paper.

2.2 Representing Lack of Knowledge

The state variance matrix, X, represents the size of an assumed Gaussian prob-
ability distribution in n-dimensional space (n is the dimension of the state vec-
tor, x). Loosely speaking, it can be thought of as representing an n-dimensional
ellipsoid centred on the mean, x, and containing the true state vector, x. The
ellipsoidal axes are parallel to the eigenvectors of X in direction and propor-
tional to the square roots of the eigenvalues of X in length.

The uncertainty in a parameter estimate which has one unconstrained de-
gree of freedom can be adequately represented by a variance matrix with one
large eigenvalue. However, this is only possible if the degree of freedom corre-
sponds to a single direction in n-space. Correspondingly, if there are two uncon-
strained degrees of freedom they can be represented with two large eigenvalues
but must correspond to a plane in n-space, and so on. The important thing is
that the curve, surface etc. over which the parameter vector can vary must be
linear (i.e. a line, a plane etc.). In cases where the constraint is partial (over
a finite range) rather than unbounded then the requirement can be relaxed to
approximate linearity, planarity etc. over the range.



As an example, consider the constraint that a point lies somewhere on a line.
The position of the point, x, is the state we wish to estimate and estimates
of the end-point, e, and direction, d (a unit vector), of the line as well as the
distance, A, of the point from the end-point are the observations supplied. If
the uncertainty of the estimate of A is very large then the variance matrix of the
estimated position will have a large eigenvalue in the direction of d. A similar
problem to this occurred in [20] where it was necessary to represent lines from
a stereo system which had good estimates for position and orientation but poor
estimates (due to occlusion) for length.

One way to calculate the variance matrix of a partially constrained vector
is to generate a first order approximation to the variance (as in [20]). For the
problem of a point lying on a line this method starts with the equation for the
point position

x = e+ Ad, (1)
and the first order approximation for the variance

ox_oxT  9x oxT ox_ oxT

where E, A and D are the variances of the estimates for, respectively, e, A and
d. From (1) the Jacobians can be derived and substituted in (2), which leads,
in this case, to

X = E+AddT + D, (3)

where A and d are the means of the estimates for, respectively, A and d. To
obtain a one-dimensional degree of freedom of the point x along the line, A is
set to some suitably large value.

This is almost exactly what the IEKF does, the difference being that the
TEKF, being recursive, must have an initial estimate. Equation (1) is used as
the measurement equation, the initial estimate is

X0 = e+,
X, = o°1,

(é is the mean of the estimate for e) and the (single) observation is

0 o0
D o
0 A

cod o m

-

The uncertainty of the initial estimate, o, can be made high to diminish its
influence and the variance, Xy, calculated by the filter will match the result of




evaluating (3). Note that since d is a unit vector its variance, D, is singular

(for details see [20]).

The simplest way to construct partially constrained variances is to (1) set up
a diagonal matrix where one or more of the diagonals are large (corresponding
to the degrees of freedom) and the others are small or zero and (2) rotate this
matrix into the correct orientation. However, this method depends on being
able to sensibly choose the diagonal entries and the rotation matrix and it
is not always obvious how to do this. We could, for example, represent the
uncertainty of a point which lies somewhere along a line whose length is of the
order of o by

e 0 0
| 0 & o0 |7,
0 0 o2

where ® is any rotation matrix which rotates the z-axis into the line direc-
tion. The smaller eigenvalue, €2, can either be chosen to represent measurement
error, in the case where the parameter vector 1s a measured quantity, or be set
to zero for a model parameter!. This is the method we use to construct partially
constrained observation vector variances for the illustrative examples later in
the paper. While this is fine for illustration purposes, applications where the
accuracy of the uncertainty estimate is more critical may demand one of the
two more elaborate methods of calculating the variance.

3 Six Applications of Partial Constraints

This Section shows how a number of scene understanding problems can be rep-
resented and solved using this uncertainty approach. The first two problems
(Sections 3.1 and 3.2) are examples where partial translation constraints can be
generated from matches between points, one of which 1s partially constrained.
Section 3.3 shows how, in a similar manner, the representation can also sup-
port some types of a priori evidence about feature positions. The next two
Sections both illustrate the combining of partial pose estimates, Sections 3.4
for estimates of the same pose and Section 3.5 for estimates of the poses of
distinct subcomponents of an object. Section 3.6 shows how partially or fully
constraining position evidence can be used to predict the location of additional
features.

3.1 Planar Patch Matching

Suppose the model-matching and reasoning module of a vision system has
paired a number of model and data planar patch surface normals and from
these estimated a rotation by using an IEKF with the measurement equation

IWe find it advantageous to avoid singular matrices and instead use a tiny number in
place of zero.



detailed in Appendix A. An estimate of the translation has yet to be made
but a constraint is available from the pairing of a model patch central point
and the observed central point of a scene patch (the true central point is un-
known, due to occlusion or segmentation effects). Three (of the six) spatial
degrees of freedom are already constrained. One translational degree of free-
dom is constrained by the requirement that the transformed model point must
lie in the plane of the data surface and there are loose constraints on the other
two because the incomplete data patch must lie within the boundaries of the
transformed model patch.

One way to account for this partial constraint is to create a pairing between
the infinite plane parameters of the model and data patches. However, a better
method, which accounts, at least in a crude way, for the finite size of the patch,
is to create a pairing between the scene point and the model point and give the
model point large variance eigenvalues in the plane of the model patch. The
variance of the model point then has the characteristic elliptical shape

o2 0 0
&l 0 o2 0|7,
0 0 0

where 1 and o3 are the major and minor axes of the smallest ellipse fitting
round the model patch. @ is the rotation matrix which rotates the z-axis
into the surface normal of the patch and the x-axis into the major axis of the
surrounding ellipse.

3.2 Cylindrical Patch Matching

As for the previous section, we suppose the rotation component of a pose esti-
mate has already been established, but this time we suppose that the constraint
on translation comes from a pairing between a cylindrical model patch and a
cylindrical data patch. When rotated and translated into position, the model
patch must have the same axis as the data patch (within measurement errors)
and must lie in the infinite cylinder defined by the data cylinder.

We can account for this partial constraint by pairing up the central point
of the scene patch axis with the central point on the model axis and by giving
the model point a degree of freedom in the direction of the cylinder axis. The
variance matrix of the model point is

0
0
o2

@T

bl

L=
coco
coco

where o is of the order of half the model axis length, and ® is any rotation
matrix which rotates the z-axis into the data axis.



3.3 A Priori Knowledge

This statistical framework is also suitable for exploiting a prior: knowledge of
the position of the object. For example, we might know that the object is face
up. This knowledge defines rotation and translation constraints analogously to
those constraints defined from observed feature relationships. However, where
no fully constrained estimate of the rotation is available, such a priori knowl-
edge usually leads to non-linear coupled constraints between translation and
rotation which cannot be represented with a variance matrix. We illustrate
with four types of constraints.

1. A known model point lies in a known scene plane: An example of this con-
straint is when an object is known to be lying such that one of its corners
is lying on the work surface. This knowledge alone does not constrain
the orientation of the part in a way that is representable with a variance
matrix. However, once the rotation is known, the point constraint defines
the translation to lie in some plane. Since we cannot tell @ prioriin which
direction the surface normal is in the model frame, we are forced, unlike
Section 3.1, to attach the degrees of freedom to the data point, using a
variance matrix of the form

a2 0 0
| 0 o 0 | @7,
0 0 €

where ® is any rotation matrix which rotates the z-axis into the surface
normal of the work bench, ¢ 1s the size of the work bench and ¢ represents
measurement, error.

2. Two known planar model points (or a given model edge) lie in a known
scene plane: An example of this constraint is when an object is known to
be lying such that one of its straight edges is lying on the work surface.
When the rotation has already been estimated, this knowledge does not
constrain the translation beyond that of a single point (see last case), as
the pair of points can still move freely within the scene plane. If a rota-
tion estimate has not yet been made the information from the constraint
cannot satisfactorily be represented in the variance matrix even though
the direction of the vector between the points i1s constrained to lie in the
plane. Coupling between the rotation and translation ensures the nature
of the constraint is non-linear.

3. A known model direction 1s parallel to a known scene direction: Examples
of this constraint arise from knowing two surface normals are aligned, or
the axes of two cylinders, or that a cylinder axis is perpendicular to the
surface on which it sits, etc. The pairing of model to scene directions
defines a rotation with a single degree of freedom. This can be crudely
represented by a rotation variance whose smallest axis lies parallel to the
vector difference of the two directions. It is not a particularly useful con-
straint to have unless it can be combined with other partially constrained
rotations. Because the actual constraint is stronger than that expressible



in the variance matrix, predictions of the object’s orientation on the basis
of the variance (see Section 3.6) are not sufficiently constrained. Section
4 contains further discussion of partial rotation constraints.

4. A given model plane lies in a known scene plane: An example of this
constraint 1s when we know that an object’s base 1s lying on a particular
scene surface. This constraint is equivalent to the combination of two
previous constraints: the aligned direction constraint (from the surface
normals — see case 3 above) and the point-in-plane constraint (see Section
3.1). Although stronger than the two-points-in-plane constraint of case 2
above, the combined constraint still cannot be represented in a variance
matrix due of the non-linear coupling between translation and rotation.

3.4 Integration of Partial Estimates

In general, if model-matching has produced a sufficient number of direction
matches to constrain the rotation, then there will be just as many partial
constraints on translation by pairing up model and data points, since each
surface patch contributes one normal and one central point. The combination of
three or more partial constraints from point matches will, except in degenerate
cases, lead to a fully constrained translation estimate where the eigenvalues of
the variance matrix are primarily determined by the measurement errors.

To achieve this combination of constraints each point-to-point pairing is
processed by the IEKF using the measurement equation and Jacobians given
in Appendix C. The output state estimate from the processing of one pair
becomes the input estimate for the next pairing. The initial estimate contains
the previously estimated rotation and a completely unconstrained translation.
The final estimate, barring accidental alignment of degrees of freedom, will not
have any large variance eigenvalues.

An example is the estimation of the position of an object consisting of sev-
eral surfaces, three of which are observed, by first estimating its rotation from
paired surface normals and then using paired points to constrain its transla-
tion. The model points have large eigenvalues in the model planes and only
the combination of all three pairings is sufficient to constrain translation to
within measurement errors. The rotation is initialised with the result of an
SVD analysis of the paired directions ([10], page 431) plus a large variance.
The translation is also initialised with a large variance but with an arbitrary
mean (the zero vector). In Figure 2 we show the relative position of the model
and data after each of the translation constraints have been incorporated into
the pose estimate. When a model surface (dark) is close to a data surface (light)
the graphics program which produced these Figures tends to intermingle dark
and light pixels. The intermingling effect shows clearly which surface, or sur-
faces, have been used to constrain the translation in each image. In each image
the variance of one of the object model’s vertices has been depicted by drawing
an ellipse around the predicted position of the point whose size corresponds to
the square root of the eigenvalues and which 1s aligned with the eigenvectors.
As the second and third translation constraints are added the ellipse can be
seen to shrink in size.
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Figure 2: A series of images showing the increased agreement between the mean
position of an object model (dark) and the position of some real data (light)
as three partial translation constraints are used to refine the pose estimate.
The decreasing variance of the model position is also depicted by showing the
decreasing size of the uncertainty ellipsoid associated with one of the model
vertices.

3.5 Integration of Subcomponent Positions

Most pose estimation processes use raw feature information (i.e. point posi-
tions and vector directions) as their inputs. However, if a model subcomponent
hierarchy is used, it is also possible to use partially or fully constrained sub-
component positions to estimate the pose of the full object [8]. This allows
a “hierarchical synthesis” [19], bottom-up recognition of the object from pre-
viously recognised subcomponents. Abstractly, the pose estimation process
requires three support functions [15]: 1) inversion of the transform between the
subcomponent and object frames, 2) composition of the subcomponent pose
estimate with the inverted transform to obtain a pose estimate for the parent,
and 3) merging the new estimate with the old. With the IEKF and a suitable
measurement function we can combine all three into one.

If p.s is the position of the subcomponent in the camera frame and py;
is the position of the subcomponent in the parent object’s coordinate system
(given in the model), then the parent object’s position in the camera frame,
Pcp, 18 the composition of p., with the inverse of p,;. We can write

Pep = compose(p.s, inverse (pps)) .
If two or more estimates of the parent object’s position, p(czl,), p(czz,), ... arise
from several subcomponents, then the estimates can be merged (averaged)

Pep = merge (p(czl;)a p(czz;)a ) :

The observed poses may be only partially constrained, having been generated
from pairings of the type discussed in Sections 3.1 and 3.2. In general, any
degrees of freedom in the translation parts of the subcomponent poses will
intersect to give a final estimate for p., in which the variance eigenvalues
are mainly the result of measurement error alone. In Appendix E we give a
measurement function and Jacobians which effectively combine the compose,
merge and inverse functions required to perform these pose estimates.
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Figure 3: A series of images showing the increased agreement between the mean
position of an object model (dark) and the position of some real data (light) as
two partially constrained subcomponent positions are used to refine the pose
estimate. The model, which consists of one small cube and one large one,
and the data are shown in the two tmages on the left. Neither subcomponent
alone can accurately estimate the object’s pose (third and fourth images) but
the combination of both lead to an accurate estimate (image on the right).

To illustrate we give an example involving the accurate estimation of an
object’s pose from estimates of the pose of its two subcomponents even though
neither subcomponent’s translation is fully constrained (see Figure 3). The
model consists of two cubes, one large and one small. Both cubes have received
pose estimates on the basis of two direction pairings and two partially con-
straining point pairings of the sort in Section 3.1. Alone, each subcomponent
can only generate a partially constrained estimate of the parent’s pose, but
together the pose estimate contains no degrees of freedom, only measurement
error.

3.6 Search for Missing Features

Once a few model features are recognised and a complete pose is estimated,
the pose estimate can be used to predict the image position of additional,
unmatched model features (e.g. [5, 8, 9]). Direct image verification can then
occur.

In the context of our approach to representing degrees of freedom, it is
possible to make such predictions even if only partial pose estimates are known.
For example, given an estimate of position p and an estimate of model point
Xm, the range of possible scene positions for the feature is given by the estimate
of the point x4, the transform of x,, by p. With this information, one could
predict the range of image positions for which it is (e.g.) 95% likely that the
feature appears. Observed features in this region are then likely candidates for
the desired model feature.

The problems of predicting transformed points, directions and subcompo-
nent positions can be solved with the IEKF by a suitable adjustment of the
state and observation vectors and rearrangement of the Jacobians used for the
corresponding pose estimation problems (see Appendices B, D and F). This is
how the ellipsoids in Figure 2 were produced. They represent the uncertainty
of the predicted position of one of the object model vertices. The estimated
object pose, the vertex position and the measurement equation and Jacobians
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in Appendix D were given as input to the IEKF and the output was the mean
position and variance of the point in scene coordinates. This was used to gen-
erate the size, position and orientation of the ellipsoid in the image. As the
object pose estimate gets more accurate the ellipsoid size shrinks.

4 Partial Rotation Constraints

The method is not able to cope with non-linear constraints such as the coupled
constraints that are often generated between rotation and translation when
there is no initial rotation estimate (see Section 3.3, cases 2, 4).

For example, a single direction pairing constrains the rotation vector to lie
on a closed curve lying in the plane of symmetry between the two vectors.
The curve constraint, of course, cannot be represented in a variance matrix
though the plane could (by having two large eigenvalues and one small one,
with its eigenvector perpendicular to the plane). Since the pairing subtracts
two degrees of freedom from the rotation vector, the Kalman filter produces
a variance which has only one large eigenvalues and a mean which is near the
point on the curve closest to the initial guess.

When errors are small and the initial guess is good then rotations can be
estimated by processing direction pairs one at a time (using the measurement
equation in Appendix A). In other circumstances, at least the first two pairs of
matched directions must be processed together by concatenating the observa-
tion vectors and the measurement functions [13]. Also, a good prior estimate
of the rotation helps to minimise the number of iterations in the IEKF and for
this we used a method based on singular value decomposition (see [10], page

431).

One other partial rotation constraint, where the rotation axis is fixed but
the rotation angle is variable, can be represented by a variance where there is a
single large eigenvalue along the axis. However, this constraint does not often
arise in practice.

5 Conclusions

The examples show that large variances are effective for encoding partial trans-
lation constraints, and that the Kalman filter is an effective tool for resolving
the constraints to produce fully constrained pose estimates. Moreover, the pose
estimates are very good, as demonstrated by the interweaving observed between
the raw range data and the projected model surfaces in the illustrations (Fig-
ures 2 and 3). The method is a significant improvement over previous methods
which used bounding intervals to represent uncertainty for two main reasons:

1. Many natural constraints are linear or planar in Euclidean space but not
necessarily aligned with the coordinate axes.
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2. Variance-covariance matrices are good at representing linear and planar
constraints.

However, the method is not able to cope with non-linear constraints such as
the coupled constraints that are often generated between rotation and trans-
lation when there is only a partial rotation estimate (e.g. Section 3.3, cases 2,
4).

Future work could investigate the possibility of analysing the variance ma-
trix to deduce which large degrees of freedom remain, and thus what type of

constraints would be useful for optimally reducing the uncertainty and where
to search in the image for them.
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Appendix: Partial Derivatives for the IEKF

A: Estimating Rotations from Matched Directions

This is the problem of estimating a rotation vector, r (the product of the
rotation axis and angle), from pairs of matched Vectors uk and vy, such that
v} 1s the rotation 7Qby ) of ugp. The state vector is x = r, the observation
vectors are z; = [V} uk T and the measurement equation for each observation
is

f(x, z;) = vip—®u; = 0,
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where
sin ¢ 1—cosg __,
® =1+ H+ H-
¢ ¢*
o =|rf,
and
0 —7T3 9
H = s 0 —7T1
—7T2 1 0

The derivatives of the measurement function are

o _ | o2 02 0%

ox a7°1uk 37°2Uk 3r3uk ’

of

o I -],

where

0P  sing i .

o THZ‘FE((ZSCOSQS—SZRQS)H—F
i . 1—
%(ququ—Q(l—cosqS))Hz-F%MS(HHZ._FHZ,H)’

for ¢ = 1,2, 3 and the basis matrices H; are given by

00 0 0 0 1 0 -1 0
H = |00 —-1|, H,=| 0 00|, H;=1{1 0 0].
01 0 ~1.0 0 0 0 0

These equations have appeared before in the literature [6] but we include
them here for completeness.

B: Predicting Rotated Directions

When the problem in Appendix A is turned around so that we start with an
estimate of the rotation, r, and the model direction, uy, and want to predict
the rotated scene direction, vy, we must change the state to x; = v and the
observation to z; = [r7 u”]”. We can keep the same measurement equation,

namely

f(Xk, Zk) = vk—'@uk =0

bl



16

but the Jacobians change to

of

axe L

of o® o® o® o
— = |—-57—u; ——Fu; ——Fu; -—
6Zk 67“1 k 67“2 k 67“3 k

The derivatives 0®/0r;, i = 1,2, 3 are given above in Appendix A.

C: Estimating Translation from Matched Points

This is the problem of estimating the translational component of a 3D transform
from pairs of matched points, p; and qy, such that q is the transform (by
an already estimated rotation r and translation t) of pj. The state vector is
x = [r7 tT], the observation vectors are z; = [q] pY]? and the measurement
equation for each observation is

f(x, z;) = @ —®pr—t = 0,

where @ (a function of r, see Appendix A) is the rotation matrix. The
Jacobians are

o _[oe o o0e o 0e
aX - _67“1 P = 67“2 P = 67“3 P = ’
of

— =1 -9 .

. [ ]

The derivatives 0®/0r;, i = 1,2, 3 are given above in Appendix A.

D: Predicting Transformed Points

When the problem in Appendix C is turned around so that we start with an
estimate of the rotation, r, translation, t, and the model point, p;, and want to
predict the transformed scene point, qz, we must change the state to xx = qz
and the observation to z; = [r? t7 pT]T. We can keep the same measurement
equation, namely

f(xp, z1) = ar —Bpr—t = 0,
but the Jacobians change to

of

8xk - ’
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of _joe 0% 0% 1 _&
6Zk - 67“1 Pl 67“2 Pl 67“3 Pl

Expressions for ® and 9®/0r;, i = 1,2,3 are given in Appendix A.

E: Estimating the Composition of Two Transforms

Suppose we have estimates for the position, p.s, of a subcomponent object
in the camera frame and the position, pps, of the same subcomponent in its
parent object’s frame and we want to derive an estimate for the position, pp,
of the parent object in the camera frame. This problem is one of composing the
estimate for p.; with an estimate of the inverse of p,;. The state vector is x =

pep = [r1, t1]7, the observation vector is z = [pf, pL]" = [I, t% rl t1]7,
and the measurement equation is
r - g(rcsa 3 )
f(x, z) = v P
( ’ ) tcp - tcs + chigstps ’
a 6D vector) where r,, = —r,, (to invert the rotation) and ®., and ®,,
P P P

are rotation matrices (as given in Appendix A). The function g (derived in [14])
expresses rotation composition and 1s

g(I‘cs, I‘sp) = /\W,
where

2 arccos (cqp)

A =
1= cgp
SesS
Cep = CesCsp — ¢cs¢sp I‘Z;,I‘sp )
csPsp
SesCsp SspCes ScsSsp
w = T.s + rsy, + Tes X T
¢cs ~ ¢sp °r ¢cs¢sp - e
and where
Ces = COS(¢cs/2) s
Ses = Sin(¢cs/2) s
esp = cos(dsp/2) ,
ssp = sin(@sp/2) ,
¢cs = || Tes || s

Sp = lrspll
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The Jacobians are

of

x b

of —dg/0r s 0 dg/or,, 0
92 = | (0. /0r. )BT 6, —1 B, (08,,/0r,) t,, BT,

Note that 0®/0r is a tensor, not a matrix, so expressions like (90®/0r)t
where t is a vector are shorthand for [(0®/Jr1)t (OB /Jra)t (0B /Ors)t]. The
matrices ®/0r;, i = 1,2, 3 are given in Appendix A. Expressions for dg/0r
and 0g/0r,, (see [14] for details) are

g OA ow
= w2t 4\

8rcs W@I‘cs + aI‘cs ’
0 OA 0

8 _ L O, oW
Or,p Or,p Or,p

The derivatives of A and w are rather messy. Those for A are

OA _ Acep — 2 <scsssp T H2 B <scscsp n sspccsrcTsrsp) T)
aI‘cs 1 - ch ¢sp sp 2¢cs 2¢gs¢sp s ’
OA _ Acep — 2 ( Sc58sp T <sspccs scscsprcTsrsp) v )
aI'sp 1- Cgp ¢5p¢cs Yesthap 2¢sp 2¢§p¢cs 5P ’

where H,., and H,, are the same type of anti-symmetric matrix duals for r.,
and r,;, as H was for r in Appendix A. Finally, the derivatives of w are

ow s c c s SsS
— s I—ﬂHs ﬁI cs _ cs H2 cs Sp T
ors, (C” S ”)(2 +<2¢%s 3) ) Destep T
ow ( Ses ) (cs ( Cs S SesSs
(e (s (Lt ) et
aI‘sp ¢cs 2 2¢§p ?p r 2¢cs¢sp

F: Predicting the Composition of Two Transforms

We use the term prediction for problems in which we know an estimate for the
position of the parent object and wish to predict from it estimates for features,
such as directions, point positions or, as here, positions of subcomponent ob-
jects. The latter case is like the problem in Appendix E except here we have
estimates for the position, p.p, of the parent object in the camera frame and
the position, p,s, of the subcomponent in the parent object’s frame and wish
to derive an estimate for the position, p.s, of a subcomponent object in the
camera frame. The problem is to compose the estimate of p., with the esti-

mate of pys. The state vector is x = p.s = [rL, tL]T, the observation vector
isz= [pg, pgs] = [I‘Z;) tT I‘Zs tT] , and the measurement equation is
to gy = [ e B )

tcs - tcp - Qcptps

bl
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(a 6D vector) where ®,, is a rotation matrix (see Appendix A). The function
g is the same as given above in Appendix E with substitution of r., for r.,
and rp, for ry,. Since neither of the composed positions need be inverted, the
Jacobians are a little simpler than those in Appendix E, and are

of

ax
of —Jg /0. 0 -9g/or,s O
gz~ | —(0®.p /0oty —1 0 -®,,

The derivatives dg/0r., and Jg/0r,, are identical to those in Appendix
E after swapping indices c¢s and ¢p and substituting ps for sp. Derivatives for
rotation matrices with respect to their rotation vector components are given in

Appendix A.



