
Statistical Partial Constraints for 3DModel Matching and Pose EstimationProblemsM. Waite1, M. Orr2, R. Fisher1, J. Hallam1(1) Dept. of Arti�cial Intelligence, University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QL, Scotland, United Kingdom(2) Advanced Robotics Research Ltd., University Road,Salford M5 4PP, England, United KingdomAbstractWe explore the potential of variance matrices to represent not just statis-tical error on object pose estimates but also partially constrained degreesof freedom. Using an iterated extended Kalman �lter as an estimationtool, we generate, combine and predict partially constrained pose esti-mates from 3D range data. We �nd that partial constraints on the trans-lation component of pose which occur frequently in practice are handledwell by the method. However, coupled partial constraints on rotation andtranslation are in general to non-linear to be adequately represented.Keywords: model-based vision, geometric constraints, pose estimation1 IntroductionMost model-based part recognition or location vision systems establish allmodel-to-data pairings during an initial matching phase, and then estimatethe pose from the consistent pairings. This is less than ideal, as insu�cientfeatures may have been segmented to estimate fully the pose, or it may bedesirable to improve the pose estimate by locating additional features usingthe current pose estimate. Or, some features may only provide partial or weakpose constraints.This paper integrates three themes in computer vision to show how modelmatching can be improved. The themes are: 1) incrementally improve poseestimates as new evidence is found, 2) represent both statistical error and lackof knowledge (i.e. partial pose constraints) and 3) use partial knowledge to guidemodel matching. The paper demonstrates six examples of model-matching orpose estimation problems where partial knowledge is integrated and used toimprove the quality of scene understanding. The domain of application usedfor examples here is 3D model matching using 3D image feature data, but theapproach can be adapted for 2D-to-2D and 3D-to-2D problems. The examplesshown in the paper are based on a surface-patch matching system where the1



2data surface patches are extracted from range data (by some adaptations of[3]) and the model surfaces are specialised instances of quadratic surfaces [7].The foundation of the approach is based on representing the uncertainty bya variance matrix. This by itself is not new and a number of vision, roboticsand tracking projects have followed this approach [18, 12, 20, 2]. That work hasused the variance representation to encode fully constrained but statisticallyerroneous poses. The advantage of the statistical approach is that there arewell-known and understood statistical tools for estimation (e.g. the Kalman�lter) and decision problems. Using these, one can test the likelihood of theestimates, determine when new evidence is compatible with existing estimates,continually re�ne the parameter estimates, integrate evidences with di�erentamounts of uncertainty and determine a most-likely parameter estimate. (Al-though it is not always easy to apply that theory to non-linear vision problems.)We also have problems where there are only partial pose constraints, andwe would like to exploit these constraints as well. For example, knowing thata point lies in a plane, or that two planes are co-planar. We would like torepresent these open degrees-of-freedom at the same time as representing thestatistical error on the known degrees-of-freedom.The method that we use to solve this problem is to represent the opendegrees-of-freedom (i.e. lack of knowledge) by one or more very large eigenval-ues in the variance matrix. Unlike the interval bounding method on parameterspace (see for example [4], [8]), the covariance (o� diagonal) terms in the vari-ance matrix represent correlations between the components of the parameterand allow degrees of freedom in any direction in the parameter space, not justalong the coordinate axes.Often, in practical problems involving surface patches from range data,enough information is available to establish an estimate of the rotational partof a pose whereas the translational part can only be partially constrained. Thisis because the normal vectors of planar surface patches are not particularlysensitive to occlusion or segmentation errors around the boundaries and it isthese surface normals which are used to estimate the translation. The oppositeis true for particular points on the patch, such as the centre of gravity. Thismakes it harder to create the paired points necessary to estimate the translation.What we suggest is, assuming enough evidence is available to constrain ro-tation (to within measurement errors only), that pairings between scene pointsand model points which contain degrees of freedom (over and above measure-ment errors) can be used to generate partial constraints on the translation andthat furthermore, combining two or more partially constrained estimates of thesame pose can lead to a fully constrained estimate. We could either attach thedegrees of freedom to the scene point or the model point. Where possible, wehave chosen the model point because the appropriate amount of variation indi�erent directions will be known a priori in the model so the variance onlyhas to be set up once and for all. In some cases the directions of the degreesof freedom are unknown in the model space and they must be associated withthe variance of the observed parameter.Based on this representation of uncertainty, we show how �ve di�erent prob-lems can be solved:



31. A partially constrained translation can be estimated using a planar sur-face patch match.2. A partially constrained translation can be estimated using a cylindricalsurface patch match.3. A priori problem knowledge can lead to partially constrained translationestimates.4. A fully constrained translation can be estimated from multiple pieces ofpartially constraining evidence.5. A fully constrained pose can be estimated from partially constrained posesfor distinct subcomponents of an object.6. A partial pose estimate can be used to guide image search for additionalmatchable features.The solutions to these problems are discussed in separate subsections ofSection 3 and the statistical techniques underlying the solutions are describedin Section 2. In Section 4 we discuss the problems associated with representingpartial rotation constraints and then present our conclusions in Section 5.The work reported here builds on techniques which have become standardin robotics and vision through the work of, among others, groups at INRIA [20]and Oxford University [12]. The approach to partial evidence representationis similar to that of [4] and [8] except that there intervals, which are known tobe inferior to variance matrices [16], were used to represent the bounds on theparameters. There are also links with early research into pose constraints fromobject relationships as speci�ed in a robot programming language (RAPT) [17]though that work modeled relationships as exact and not uncertain.2 The Statistical Framework2.1 Kalman FilteringThe Kalman �lter (and its extension for non-linear problems) is the basic esti-mation tool we are using. Here we merely give a brief description of its function;more details, in particular, the Kalman �lter equations, can be readily foundelsewhere, e.g. [11, 1, 2].Knowledge at time step k about a parameter vector or state, x, is rep-resented by the estimated mean vector, x̂k, and variance matrix, Xk, of anassumed Gaussian probability distribution. Observations, zk, pertaining to thestate are themselves uncertain with means, ẑk, and variances, Zk. To link theobservations to the state there are measurement equations of the formfk(x; zk) = 0 ;which are usually non-linear and often under-constrained (cannot be putin the form x = gk(zk)). The Kalman �lter is a tool for incorporating the
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Figure 1: Inputs and outputs to the IEFK as it processes a the kth observation.knowledge in the observations into the state when the measurement equationsare linear. The iterated extended Kalman �lter (IEKF) is an adaptation ofthis tool to deal with non-linear equations. In both cases incorporating the kthobservation leads to an update of the state estimate to a new mean, x̂k+1, anda new variance, Xk+1 (see Figure 1).In addition to the prior state estimate, the kth observation and the kthmeasurement equation, the IEKF requires input of the Jacobians @fk=@x and@fk=@zk which are functions of x and zk. These are necessary to perform thelinearisation step inside the IEKF. The Appendix lists all the measurementfunctions (and their Jacobians) used in this paper.2.2 Representing Lack of KnowledgeThe state variance matrix,X, represents the size of an assumed Gaussian prob-ability distribution in n-dimensional space (n is the dimension of the state vec-tor, x). Loosely speaking, it can be thought of as representing an n-dimensionalellipsoid centred on the mean, x̂, and containing the true state vector, x. Theellipsoidal axes are parallel to the eigenvectors of X in direction and propor-tional to the square roots of the eigenvalues of X in length.The uncertainty in a parameter estimate which has one unconstrained de-gree of freedom can be adequately represented by a variance matrix with onelarge eigenvalue. However, this is only possible if the degree of freedom corre-sponds to a single direction in n-space. Correspondingly, if there are two uncon-strained degrees of freedom they can be represented with two large eigenvaluesbut must correspond to a plane in n-space, and so on. The important thing isthat the curve, surface etc. over which the parameter vector can vary must belinear (i.e. a line, a plane etc.). In cases where the constraint is partial (overa �nite range) rather than unbounded then the requirement can be relaxed toapproximate linearity, planarity etc. over the range.



5As an example, consider the constraint that a point lies somewhere on a line.The position of the point, x, is the state we wish to estimate and estimatesof the end-point, e, and direction, d (a unit vector), of the line as well as thedistance, �, of the point from the end-point are the observations supplied. Ifthe uncertainty of the estimate of � is very large then the variance matrix of theestimated position will have a large eigenvalue in the direction of d. A similarproblem to this occurred in [20] where it was necessary to represent lines froma stereo system which had good estimates for position and orientation but poorestimates (due to occlusion) for length.One way to calculate the variance matrix of a partially constrained vectoris to generate a �rst order approximation to the variance (as in [20]). For theproblem of a point lying on a line this method starts with the equation for thepoint positionx = e+ �d ; (1)and the �rst order approximation for the varianceX = @x@eE@x@e T + @x@��@x@� T + @x@dD @x@DT ; (2)where E, � and D are the variances of the estimates for, respectively, e, � andd. From (1) the Jacobians can be derived and substituted in (2), which leads,in this case, toX = E+ �d̂d̂T + �̂2D ; (3)where �̂ and d̂ are the means of the estimates for, respectively, � and d. Toobtain a one-dimensional degree of freedom of the point x along the line, � isset to some suitably large value.This is almost exactly what the IEKF does, the di�erence being that theIEKF, being recursive, must have an initial estimate. Equation (1) is used asthe measurement equation, the initial estimate isx̂0 = ê+ �̂d̂ ;X0 = �2 I ;(ê is the mean of the estimate for e) and the (single) observation isẑ0 = 24 ê̂d̂� 35 ;Z0 = " E 0 00 D 00 0 � # :The uncertainty of the initial estimate, �2, can be made high to diminish itsin
uence and the variance, X1, calculated by the �lter will match the result of



6evaluating (3). Note that since d is a unit vector its variance, D, is singular(for details see [20]).The simplest way to construct partially constrained variances is to (1) set upa diagonal matrix where one or more of the diagonals are large (correspondingto the degrees of freedom) and the others are small or zero and (2) rotate thismatrix into the correct orientation. However, this method depends on beingable to sensibly choose the diagonal entries and the rotation matrix and itis not always obvious how to do this. We could, for example, represent theuncertainty of a point which lies somewhere along a line whose length is of theorder of � by�24 �2 0 00 �2 00 0 �2 35�T ;where � is any rotation matrix which rotates the z-axis into the line direc-tion. The smaller eigenvalue, �2, can either be chosen to represent measurementerror, in the case where the parameter vector is a measured quantity, or be setto zero for a model parameter1. This is the method we use to construct partiallyconstrained observation vector variances for the illustrative examples later inthe paper. While this is �ne for illustration purposes, applications where theaccuracy of the uncertainty estimate is more critical may demand one of thetwo more elaborate methods of calculating the variance.3 Six Applications of Partial ConstraintsThis Section shows how a number of scene understanding problems can be rep-resented and solved using this uncertainty approach. The �rst two problems(Sections 3.1 and 3.2) are examples where partial translation constraints can begenerated from matches between points, one of which is partially constrained.Section 3.3 shows how, in a similar manner, the representation can also sup-port some types of a priori evidence about feature positions. The next twoSections both illustrate the combining of partial pose estimates, Sections 3.4for estimates of the same pose and Section 3.5 for estimates of the poses ofdistinct subcomponents of an object. Section 3.6 shows how partially or fullyconstraining position evidence can be used to predict the location of additionalfeatures.3.1 Planar Patch MatchingSuppose the model-matching and reasoning module of a vision system haspaired a number of model and data planar patch surface normals and fromthese estimated a rotation by using an IEKF with the measurement equation1We �nd it advantageous to avoid singular matrices and instead use a tiny number inplace of zero.



7detailed in Appendix A. An estimate of the translation has yet to be madebut a constraint is available from the pairing of a model patch central pointand the observed central point of a scene patch (the true central point is un-known, due to occlusion or segmentation e�ects). Three (of the six) spatialdegrees of freedom are already constrained. One translational degree of free-dom is constrained by the requirement that the transformed model point mustlie in the plane of the data surface and there are loose constraints on the othertwo because the incomplete data patch must lie within the boundaries of thetransformed model patch.One way to account for this partial constraint is to create a pairing betweenthe in�nite plane parameters of the model and data patches. However, a bettermethod, which accounts, at least in a crude way, for the �nite size of the patch,is to create a pairing between the scene point and the model point and give themodel point large variance eigenvalues in the plane of the model patch. Thevariance of the model point then has the characteristic elliptical shape�24 �21 0 00 �22 00 0 0 35�T ;where �1 and �2 are the major and minor axes of the smallest ellipse �ttinground the model patch. � is the rotation matrix which rotates the z-axisinto the surface normal of the patch and the x-axis into the major axis of thesurrounding ellipse.3.2 Cylindrical Patch MatchingAs for the previous section, we suppose the rotation component of a pose esti-mate has already been established, but this time we suppose that the constrainton translation comes from a pairing between a cylindrical model patch and acylindrical data patch. When rotated and translated into position, the modelpatch must have the same axis as the data patch (within measurement errors)and must lie in the in�nite cylinder de�ned by the data cylinder.We can account for this partial constraint by pairing up the central pointof the scene patch axis with the central point on the model axis and by givingthe model point a degree of freedom in the direction of the cylinder axis. Thevariance matrix of the model point is�24 0 0 00 0 00 0 �2 35�T ;where � is of the order of half the model axis length, and � is any rotationmatrix which rotates the z-axis into the data axis.



83.3 A Priori KnowledgeThis statistical framework is also suitable for exploiting a priori knowledge ofthe position of the object. For example, we might know that the object is faceup. This knowledge de�nes rotation and translation constraints analogously tothose constraints de�ned from observed feature relationships. However, whereno fully constrained estimate of the rotation is available, such a priori knowl-edge usually leads to non-linear coupled constraints between translation androtation which cannot be represented with a variance matrix. We illustratewith four types of constraints.1. A known model point lies in a known scene plane: An example of this con-straint is when an object is known to be lying such that one of its cornersis lying on the work surface. This knowledge alone does not constrainthe orientation of the part in a way that is representable with a variancematrix. However, once the rotation is known, the point constraint de�nesthe translation to lie in some plane. Since we cannot tell a priori in whichdirection the surface normal is in the model frame, we are forced, unlikeSection 3.1, to attach the degrees of freedom to the data point, using avariance matrix of the form�24 �2 0 00 �2 00 0 �2 35�T ;where � is any rotation matrix which rotates the z-axis into the surfacenormal of the work bench, � is the size of the work bench and � representsmeasurement error.2. Two known planar model points (or a given model edge) lie in a knownscene plane: An example of this constraint is when an object is known tobe lying such that one of its straight edges is lying on the work surface.When the rotation has already been estimated, this knowledge does notconstrain the translation beyond that of a single point (see last case), asthe pair of points can still move freely within the scene plane. If a rota-tion estimate has not yet been made the information from the constraintcannot satisfactorily be represented in the variance matrix even thoughthe direction of the vector between the points is constrained to lie in theplane. Coupling between the rotation and translation ensures the natureof the constraint is non-linear.3. A known model direction is parallel to a known scene direction: Examplesof this constraint arise from knowing two surface normals are aligned, orthe axes of two cylinders, or that a cylinder axis is perpendicular to thesurface on which it sits, etc. The pairing of model to scene directionsde�nes a rotation with a single degree of freedom. This can be crudelyrepresented by a rotation variance whose smallest axis lies parallel to thevector di�erence of the two directions. It is not a particularly useful con-straint to have unless it can be combined with other partially constrainedrotations. Because the actual constraint is stronger than that expressible



9in the variance matrix, predictions of the object's orientation on the basisof the variance (see Section 3.6) are not su�ciently constrained. Section4 contains further discussion of partial rotation constraints.4. A given model plane lies in a known scene plane: An example of thisconstraint is when we know that an object's base is lying on a particularscene surface. This constraint is equivalent to the combination of twoprevious constraints: the aligned direction constraint (from the surfacenormals { see case 3 above) and the point-in-plane constraint (see Section3.1). Although stronger than the two-points-in-plane constraint of case 2above, the combined constraint still cannot be represented in a variancematrix due of the non-linear coupling between translation and rotation.3.4 Integration of Partial EstimatesIn general, if model-matching has produced a su�cient number of directionmatches to constrain the rotation, then there will be just as many partialconstraints on translation by pairing up model and data points, since eachsurface patch contributes one normal and one central point. The combination ofthree or more partial constraints from point matches will, except in degeneratecases, lead to a fully constrained translation estimate where the eigenvalues ofthe variance matrix are primarily determined by the measurement errors.To achieve this combination of constraints each point-to-point pairing isprocessed by the IEKF using the measurement equation and Jacobians givenin Appendix C. The output state estimate from the processing of one pairbecomes the input estimate for the next pairing. The initial estimate containsthe previously estimated rotation and a completely unconstrained translation.The �nal estimate, barring accidental alignment of degrees of freedom, will nothave any large variance eigenvalues.An example is the estimation of the position of an object consisting of sev-eral surfaces, three of which are observed, by �rst estimating its rotation frompaired surface normals and then using paired points to constrain its transla-tion. The model points have large eigenvalues in the model planes and onlythe combination of all three pairings is su�cient to constrain translation towithin measurement errors. The rotation is initialised with the result of anSVD analysis of the paired directions ([10], page 431) plus a large variance.The translation is also initialised with a large variance but with an arbitrarymean (the zero vector). In Figure 2 we show the relative position of the modeland data after each of the translation constraints have been incorporated intothe pose estimate. When a model surface (dark) is close to a data surface (light)the graphics program which produced these Figures tends to intermingle darkand light pixels. The intermingling e�ect shows clearly which surface, or sur-faces, have been used to constrain the translation in each image. In each imagethe variance of one of the object model's vertices has been depicted by drawingan ellipse around the predicted position of the point whose size corresponds tothe square root of the eigenvalues and which is aligned with the eigenvectors.As the second and third translation constraints are added the ellipse can beseen to shrink in size.



10
Figure 2: A series of images showing the increased agreement between the meanposition of an object model (dark) and the position of some real data (light)as three partial translation constraints are used to re�ne the pose estimate.The decreasing variance of the model position is also depicted by showing thedecreasing size of the uncertainty ellipsoid associated with one of the modelvertices.3.5 Integration of Subcomponent PositionsMost pose estimation processes use raw feature information (i.e. point posi-tions and vector directions) as their inputs. However, if a model subcomponenthierarchy is used, it is also possible to use partially or fully constrained sub-component positions to estimate the pose of the full object [8]. This allowsa \hierarchical synthesis" [19], bottom-up recognition of the object from pre-viously recognised subcomponents. Abstractly, the pose estimation processrequires three support functions [15]: 1) inversion of the transform between thesubcomponent and object frames, 2) composition of the subcomponent poseestimate with the inverted transform to obtain a pose estimate for the parent,and 3) merging the new estimate with the old. With the IEKF and a suitablemeasurement function we can combine all three into one.If pcs is the position of the subcomponent in the camera frame and ppsis the position of the subcomponent in the parent object's coordinate system(given in the model), then the parent object's position in the camera frame,pcp, is the composition of pcs with the inverse of pps. We can writepcp = compose (pcs; inverse (pps)) :If two or more estimates of the parent object's position, p(1)cp ; p(2)cp ; : : : arisefrom several subcomponents, then the estimates can be merged (averaged)pcp = merge (p(1)cp ; p(2)cp ; : : :) :The observed poses may be only partially constrained, having been generatedfrom pairings of the type discussed in Sections 3.1 and 3.2. In general, anydegrees of freedom in the translation parts of the subcomponent poses willintersect to give a �nal estimate for pcp in which the variance eigenvaluesare mainly the result of measurement error alone. In Appendix E we give ameasurement function and Jacobians which e�ectively combine the compose,merge and inverse functions required to perform these pose estimates.



11
Figure 3: A series of images showing the increased agreement between the meanposition of an object model (dark) and the position of some real data (light) astwo partially constrained subcomponent positions are used to re�ne the poseestimate. The model, which consists of one small cube and one large one,and the data are shown in the two images on the left. Neither subcomponentalone can accurately estimate the object's pose (third and fourth images) butthe combination of both lead to an accurate estimate (image on the right).To illustrate we give an example involving the accurate estimation of anobject's pose from estimates of the pose of its two subcomponents even thoughneither subcomponent's translation is fully constrained (see Figure 3). Themodel consists of two cubes, one large and one small. Both cubes have receivedpose estimates on the basis of two direction pairings and two partially con-straining point pairings of the sort in Section 3.1. Alone, each subcomponentcan only generate a partially constrained estimate of the parent's pose, buttogether the pose estimate contains no degrees of freedom, only measurementerror.3.6 Search for Missing FeaturesOnce a few model features are recognised and a complete pose is estimated,the pose estimate can be used to predict the image position of additional,unmatched model features (e.g. [5, 8, 9]). Direct image veri�cation can thenoccur.In the context of our approach to representing degrees of freedom, it ispossible to make such predictions even if only partial pose estimates are known.For example, given an estimate of position p and an estimate of model pointxm, the range of possible scene positions for the feature is given by the estimateof the point xd, the transform of xm by p. With this information, one couldpredict the range of image positions for which it is (e.g.) 95% likely that thefeature appears. Observed features in this region are then likely candidates forthe desired model feature.The problems of predicting transformed points, directions and subcompo-nent positions can be solved with the IEKF by a suitable adjustment of thestate and observation vectors and rearrangement of the Jacobians used for thecorresponding pose estimation problems (see Appendices B, D and F). This ishow the ellipsoids in Figure 2 were produced. They represent the uncertaintyof the predicted position of one of the object model vertices. The estimatedobject pose, the vertex position and the measurement equation and Jacobians



12in Appendix D were given as input to the IEKF and the output was the meanposition and variance of the point in scene coordinates. This was used to gen-erate the size, position and orientation of the ellipsoid in the image. As theobject pose estimate gets more accurate the ellipsoid size shrinks.4 Partial Rotation ConstraintsThe method is not able to cope with non-linear constraints such as the coupledconstraints that are often generated between rotation and translation whenthere is no initial rotation estimate (see Section 3.3, cases 2, 4).For example, a single direction pairing constrains the rotation vector to lieon a closed curve lying in the plane of symmetry between the two vectors.The curve constraint, of course, cannot be represented in a variance matrixthough the plane could (by having two large eigenvalues and one small one,with its eigenvector perpendicular to the plane). Since the pairing subtractstwo degrees of freedom from the rotation vector, the Kalman �lter producesa variance which has only one large eigenvalues and a mean which is near thepoint on the curve closest to the initial guess.When errors are small and the initial guess is good then rotations can beestimated by processing direction pairs one at a time (using the measurementequation in Appendix A). In other circumstances, at least the �rst two pairs ofmatched directions must be processed together by concatenating the observa-tion vectors and the measurement functions [13]. Also, a good prior estimateof the rotation helps to minimise the number of iterations in the IEKF and forthis we used a method based on singular value decomposition (see [10], page431).One other partial rotation constraint, where the rotation axis is �xed butthe rotation angle is variable, can be represented by a variance where there is asingle large eigenvalue along the axis. However, this constraint does not oftenarise in practice.5 ConclusionsThe examples show that large variances are e�ective for encoding partial trans-lation constraints, and that the Kalman �lter is an e�ective tool for resolvingthe constraints to produce fully constrained pose estimates. Moreover, the poseestimates are very good, as demonstrated by the interweaving observed betweenthe raw range data and the projected model surfaces in the illustrations (Fig-ures 2 and 3). The method is a signi�cant improvement over previous methodswhich used bounding intervals to represent uncertainty for two main reasons:1. Many natural constraints are linear or planar in Euclidean space but notnecessarily aligned with the coordinate axes.
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15where� = I+ sin�� H+ 1� cos ��2 H2 ;� = k r k ;andH = " 0 �r3 r2r3 0 �r1�r2 r1 0 # :The derivatives of the measurement function are@f@x = ��@�@r1uk � @�@r2uk � @�@r3uk� ;@f@zk = [I ��] ;where@�@ri = sin�� Hi + ri�3 (� cos �� sin�)H +ri�4 (� sin�� 2 (1� cos �))H2 + 1� cos ��2 (HHi +HiH) ;for i = 1; 2; 3 and the basis matrices Hi are given byH1 = " 0 0 00 0 �10 1 0 # ; H2 = " 0 0 10 0 0�1 0 0 # ; H3 = " 0 �1 01 0 00 0 0 # :These equations have appeared before in the literature [6] but we includethem here for completeness.B: Predicting Rotated DirectionsWhen the problem in Appendix A is turned around so that we start with anestimate of the rotation, r, and the model direction, uk, and want to predictthe rotated scene direction, vk, we must change the state to xk = vk and theobservation to zk = [rT uT ]T . We can keep the same measurement equation,namelyf (xk; zk) = vk ��uk = 0 ;



16 but the Jacobians change to@f@xk = I ;@f@zk = ��@�@r1uk � @�@r2uk � @�@r3uk ��� :The derivatives @�=@ri; i = 1; 2; 3 are given above in Appendix A.C: Estimating Translation from Matched PointsThis is the problem of estimating the translational component of a 3D transformfrom pairs of matched points, pk and qk, such that qk is the transform (byan already estimated rotation r and translation t) of pk. The state vector isx = [rT tT ], the observation vectors are zk = [qTk pTk ]T and the measurementequation for each observation isf (x; zk) = qk ��pk � t = 0 ;where � (a function of r, see Appendix A) is the rotation matrix. TheJacobians are@f@x = ��@�@r1 pk � @�@r2 pk � @�@r3 pk �I� ;@f@zk = [I ��] :The derivatives @�=@ri; i = 1; 2; 3 are given above in Appendix A.D: Predicting Transformed PointsWhen the problem in Appendix C is turned around so that we start with anestimate of the rotation, r, translation, t, and the model point, pk, and want topredict the transformed scene point, qk, we must change the state to xk = qkand the observation to zk = [rT tT pT ]T . We can keep the same measurementequation, namelyf (xk; zk) = qk ��pk � t = 0 ;but the Jacobians change to@f@xk = I ;



17@f@zk = ��@�@r1 pk � @�@r2 pk � @�@r3 pk �I ��� :Expressions for � and @�=@ri; i = 1; 2; 3 are given in Appendix A.E: Estimating the Composition of Two TransformsSuppose we have estimates for the position, pcs, of a subcomponent objectin the camera frame and the position, pps, of the same subcomponent in itsparent object's frame and we want to derive an estimate for the position, pcp,of the parent object in the camera frame. This problem is one of composing theestimate for pcs with an estimate of the inverse of pps. The state vector is x =pcp = [rTcp tTcp]T , the observation vector is z = [pTcs pTps]T = [rTcs tTcs rTps tTps]T ,and the measurement equation isf (x; z) = � rcp � g(rcs; rsp)tcp � tcs +�cs�Tpstps � ;(a 6D vector) where rsp = �rps (to invert the rotation) and �cs and �psare rotation matrices (as given in Appendix A). The function g (derived in [14])expresses rotation composition and isg(rcs; rsp) = �w ;where� = 2 arccos (ccp)q1� c2cp ;ccp = ccscsp � scsssp�cs�sp rTcsrsp ;w = scscsp�cs rcs + sspccs�sp rsp + scsssp�cs�sp rcs � rsp ;and whereccs = cos(�cs=2) ;scs = sin(�cs=2) ;csp = cos(�sp=2) ;ssp = sin(�sp=2) ;�cs = k rcs k ;�sp = k rsp k :



18The Jacobians are@f@x = I ;@f@z = � �@g=@rcs 0 @g=@rsp 0(@�cs=@rcs)�Tpstps �I �cs(@�ps=@rps)T tps �cs�Tps � :Note that @�=@r is a tensor, not a matrix, so expressions like (@�=@r)twhere t is a vector are shorthand for [(@�=@r1)t (@�=@r2)t (@�=@r3)t]. Thematrices @�=@ri, i = 1; 2; 3 are given in Appendix A. Expressions for @g=@rcsand @g=@rsp (see [14] for details) are@g@rcs = w @�@rcs + � @w@rcs ;@g@rsp = w @�@rsp + � @w@rsp :The derivatives of � and w are rather messy. Those for � are@�@rcs = �ccp � 21� c2cp � scsssp�3cs�sp rTspH2cs � �scscsp2�cs + sspccsrTcsrsp2�2cs�sp � rTcs� ;@�@rsp = �ccp � 21� c2cp � scsssp�3sp�cs rTcsH2sp � �sspccs2�sp + scscsprTcsrsp2�2sp�cs � rTsp� ;where Hcs and Hsp are the same type of anti-symmetric matrix duals for rcsand rsp as H was for r in Appendix A. Finally, the derivatives of w are@w@rcs = �csp I� ssp�sp Hsp��ccs2 I+� ccs2�2cs � scs�3cs�H2cs�� scsssp2�cs�sp rsprTcs ;@w@rsp = �ccs I+ scs�cs Hcs��csp2 I +� csp2�2sp � ssp�3sp�H2sp�� scsssp2�cs�sp rcsrTsp :F: Predicting the Composition of Two TransformsWe use the term prediction for problems in which we know an estimate for theposition of the parent object and wish to predict from it estimates for features,such as directions, point positions or, as here, positions of subcomponent ob-jects. The latter case is like the problem in Appendix E except here we haveestimates for the position, pcp, of the parent object in the camera frame andthe position, pps, of the subcomponent in the parent object's frame and wishto derive an estimate for the position, pcs, of a subcomponent object in thecamera frame. The problem is to compose the estimate of pcp with the esti-mate of pps. The state vector is x = pcs = [rTcs tTcs]T , the observation vectoris z = [pTcp pTps]T = [rTcp tTcp rTps tTps]T , and the measurement equation isf (x; z) = � rcs � g(rcp; rps)tcs � tcp ��cptps � ;



19(a 6D vector) where �cp is a rotation matrix (see Appendix A). The functiong is the same as given above in Appendix E with substitution of rcs for rcpand rps for rsp. Since neither of the composed positions need be inverted, theJacobians are a little simpler than those in Appendix E, and are@f@x = I ;@f@z = � �@g=@rcp 0 �@g=@rps 0�(@�cp=@rcp)tps �I 0 ��cp � :The derivatives @g=@rcp and @g=@rps are identical to those in AppendixE after swapping indices cs and cp and substituting ps for sp. Derivatives forrotation matrices with respect to their rotation vector components are given inAppendix A.


