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Abstract

In this paper, we are concerned with the problem of deciding whether a fitted model accu-
rately describes the data to which it has been fitted. We have developed an effective method of
testing the lack-of-fit of a parametric model to data, with applications to the computer vision
problems of robust estimation, model selection, and curve and surface segmentation.

The benefits of this technique are high sensitivity (large response to small outliers) and very
low dependence on the noise distribution of the input data. Our test is new to the computer
vision community in several ways:

o We look at the distribution of the residual errors, rather than basing statistics directly on
their values.

e We assume a broad enough class of distributions as to be essentially distribution inde-
pendent.

e The test requires no knowledge of the sensor noise level, and its response is essentially
independent of that level.

We present results of experiments that compare the test with the standard y? statistic, and
the median absolute deviation (MAD) measure used in robust estimation. The experiments
are designed to represent typical vision tasks, namely feature tracking, robust fitting, and
segmentation. We show that our test is comparable to the MAD and chi-square, but is cheaper
than the MAD, and requires no knowledge of the noise level.
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1 The Problem

It is very common in computer vision to wish to
represent some large dataset in a concise way
in order to extract geometric properties, at-
tenuate noise, or simply to reduce the volume
of data. In almost all cases, this is achieved
by fitting an appropriate parametric model to
the data set in the least squares sense. It is
then vital to have some way of telling when
the fit is wrong, and the model is not ‘appro-
priate’ to the data. Simple least squares tech-
niques [7] assume the noise in the data to be
strictly Gaussian of known variance, and then
use the y? test to give an estimate of the proba-
bility that, under that assumption, the data fits
the model. Robust estimators [5] approach the
problem more directly, by effectively ignoring
data points which do not fit the model. Ro-
bust models are, however, even more expen-
sive to fit than unbiased nonlinear models, and
do not help when the model is already fitted
to the data, and simple verification is all that
is needed. Our argument asserts that least
squares is adequate for most purposes, until its
assumptions are violated. Of course it is pre-
cisely these boundaries, at which the assump-
tions are violated, that are of most importance
to the visual process. Hence, a quick and effec-
tive test which identifies such errors will allow a
cheap estimator to be used on most of the sig-
nal, while the more expensive techniques are
held in reserve until the cheaper methods fail.

2 Goodness-of-fit Testing

We denote the data points to which the model
is to be fitted by {x;}, and the parame-
ters of the model by {a;}’_;. We also assume
that we have a distance metric D(a,x) which
measures the signed distance between a par-
ticular data point and the fitted model. The
model fitting process is assumed to have found
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the value of a for which ¢ =

is minimized. The function ¢(z) is an influ-
ence function, which for classical least squares
is ¢(z) = 2?. We do not need to know the
form of ¢, simply that it must be symmetric
or antisymmetric about x = 0. Having found
the value a, we can define the set of residu-
als R = D(a,x;)_;. The task of goodness-of-
fit testing is to determine, based on the values
of the residuals, whether it is likely that the
model describes the data. Lack-of-fit statistics
say whether the model is unlikely to describe
the datal.

2.1 Chi-Square Test

Whaite [9] provides an accessible summary of
the chi-square testing technique. The basic
assumption is that each observed point x; is
the exact point corrupted by an isotropic zero-
mean Gaussian noise process of variance o2.
If 02 is known, the chi-square statistic y? =

S 1 (R;/0;)? has a known distribution. In fact

the number Q(*5%, %
ing incomplete gamma function gives a measure
of how badly the model fits the data.

The disadvantages of the x? test are well
known: the Gaussian noise model has repeat-
edly proved unrealistic in computer vision and
the noise variance is often difficult to know in
general. Additionally, the test, depending on
a linearization of the residual equation, fails in

the presence of high noise (see Figure 2c).

) where @ is the increas-

2.2 Median Absolute Deviation

The median absolute deviation (MAD) mea-
sure is not strictly a test, in the sense of pro-
viding a probability of error. However, because
it is essentially the error metric used in robust
estimators, it is interesting to see how its re-

!The distinction between lack of fit and goodness of
fit is subtle and of great interest to statisticians, but
we shall not make it here, treating the two terms as
equivalent.



sponse compares with the RD test. The mea-
sure is simply the median of the absolute values
of the residuals, and may be evaluated in about
O(nloglogn) time. To use this measure as a
test of goodness of fit, we need an estimate of
the noise level. For Gaussian distributed resid-
uals with a standard deviation ¢, the median
M of the absolute values of the residuals satis-
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late the expected value of M and threshold the
MAD value accordingly.

“RANSAC” Maximum Run Length
Test:
The “RANSAC” system of Fischler and

Bolles [2] is the most similar test reported in
the vision literature. Their system considers
the mazimum run length (see below) observed
for a set of residuals. In our experiments, we
have found this measure to be noise sensitive.
In addition, we provide a possible extension to
two dimensions.

3 Run-distribution Test

We now introduce our test, which we have
called the run-distribution test. We describe
the idea behind the test, the noise model which
we assume, the actual test, and how it differs
from similar tests in the literature.

The tests discussed above essentially extract
one number from the set of residuals, and use
that as a basis for discrimination. Instead we
want to look at the set of residuals R, and de-
cide whether that set is what we would expect,
given data which is in concordance with both
our parametric and noise models.

3.1 Noise model

We allow each point to be corrupted in each di-
mension by a scalar noise component sampled
from a symmetric zero-median process plus an
outlier process. Note that this is a very wide
range of distributions, trivially including the
normal distribution. Moreover, this particular
type of distribution is common in computer vi-
sion. With such a distribution, the residuals
after least-squares fitting will be similarly dis-
tributed. We can therefore detect outliers by
quantifying the extent to which the distribu-
tion of the residuals matches our noise model.

3.2 Motivation

We do this by creating the set S = sign(R —
median(R)). By deleting the zeroes at the me-
dian from 5, we now have a set whose elements
may be represented as either + or -. Following
von Mises [8, page 184] we define a run as a
sequence of one or more symbols of the same
sign. For example the set § = {+-+++--+}
contains runs of lengths 1,1,3,2,1 respectively.
Intuitively, we would expect that if the model
fits well, there will be a large number of short
runs, with long runs of positive or negative
residuals indicating that the model has been
biased. This idea was used by Besl [1] to de-
cide whether a model was of high enough order
to describe the data. Besl also hints at the def-
inition of an n dimensional run: We assume
that there is some topology defining adjacency
between different data points — commonly the
points are defined on a grid, implicitly provid-
ing such a topology. A run is then a connected
set of points with the same label, the ‘length’ of
the run becoming the volume of the connected
set. Again, with gridded data, this value will
be an integral multiple of some constant.
Measuring the likelihood of a particular dis-
tribution of runs is a problem that has been ap-
proached in the statistical literature [3, 4, 6]. In
particular, having decided to measure the runs,



the question arises as to how to quantify the de-
viation of a particular example from the general
population. Kempthorne et al [4, page 234] cal-
culate the expected value and variance of the
total number of runs (E[M] = n+ 1, E[M?] =
%), and approximate the distribution by
a Gaussian in order to calculate probabilities.
This approach, taken also by Brownlee[3], von
Mises [8] and Mood[6], simplifies the analysis,
but reduces the sensitivity of the test. In this
paper, we instead compare the “actual” dis-
tribution to the observed distributions using a
modified Kolmogorov-Smirnoff test.

3.3 Comparing the distributions

If we make a histogram H(j) where bin j con-
tains the number of runs of length j in the
residuals, then the sequence

will approximate the cumulative distribution
function. By comparing this function to the
predicted cdf P given by a zero-median pro-
cess (see Figure 1), we can determine the extent
to which the outlier process has corrupted the
fit. Comparison of cdfs normally entails use of
the Kolmogorov-Smirnoff test, where the likeli-
hood is calculated from the known distribution
of D = max | Cy — P(k) |. However, this has
the well-known disadvantage that the sample
variance of D varies with k. Our alternative,
arrived at experimentally, was to calculate the
weighted sum of distances

_ pm (PR) = Cpwy,
P= > wr

In the experiments described below, the
weighting function used was a simple quadratic
wg = k? chosen to give more importance to
longer runs.
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Figure 1: Empirically derived distributions of run
frequencies for two values of n, the number of data
points.

3.4 Determining the Actual Distri-
bution

To enable use of the Kolmogorov-Smirnoff test,
we must know the expected distribution of
To this end we performed a
Monte-Carlo simulation of the fitting process
and recorded the results. We modelled the sen-
sor noise process as a Gaussian plus quanti-
zation, which is an appropriate model for the
laser range finder in use in our laboratory.

our measure.

The distributions (graphed in Figure 1) were
calculated as follows: For a given number of
points n, the line y = o + 1,2 = 1l...n was
corrupted by Gaussian noise of ¢ = 5, then
quantized to the next lowest integer. The runs
histogram was calculated using the residuals of
a linear least-squares fit. Repeating this pro-
cess 5000 times, and measuring the cumulative
frequencies for each length of run gave the dis-
tributions shown. This technique was chosen
because it was felt that the particular choice of
this line would not alter the results. To test this
conjecture, the line slope and noise were varied
widely and the experiment repeated. Results



were comparable to within about 0.2 percent.
However, changing the model to a quadratic al-
tered the frequencies by up to 10 percent, sug-
gesting that in real applications, it is important
to ‘train’ the test on the models expected.

We note that although the histogram should
be calculated for all possible values of the num-
ber of data point n (up to 10° in a 2D system),
there was no significant change in the frequen-
cies after about n = 100, lightening the com-
putational load significantly.

4 Experiments

A number of experiments were performed to as-
sess the performance of the new test and com-
pare it to existing test. The three tests were
designed to be representative of ‘everyday’ vi-
sion tasks.

4.1 Tracking

Here we consider the problem of tracking a
point through time or space while maintaining
an estimate of its trajectory. The tracking can
often be foiled when one point passes in front of
another and the program begins to follow the
second point. The error may be detected by
examining the fit between the trajectory model
and the data. In this experiment the track is
represented by a line at 45 degrees which pro-
ceeds for 100 points (see Figure 2). The false
trajectory is then represented by a second line
of 50 points joining the first at an angle of 90
degrees.? The response is observed for two dif-
ferent noise levels.

4.1.1 Procedure

The following experiment was performed 1000
times for each noise level:

2 Although the choice of 90° may seem arbitrary, us-
ing smaller angles proved to be equivalent to increasing
the noise level on the 90° case.

1. Gaussian noise was added to the trajectory
described above.

2. For each n between 3 and 150, a line
was least-squares fitted to the mnoisy
data points and the results of the three
goodness-of-fit tests were recorded.

This generates 3 by 1000 traces of 147 response
values.

4.1.2 Results

To combine these results, we consider the mean
and 98th percentile responses for each n. The
mean value gives a smoothed impression of
the abilities of the tests to reject the incorrect
model.
Figure 2. The 98th percentile response indi-
cates the potential for false negatives with each
method. To ensure a false negative rate of less
than 2%, it is necessary to threshold the test
at a value above the highest 98th percentile re-
sponse. These traces appear in the right hand
column of Figure 2.

These traces are shown on the left in

4.1.3 Discussion

The graphs of Figure 2 may be interpreted
as follows. To the left of the dotted vertical
line, false rejections will occur if the response
is high. To the right, low values imply false ac-
ceptances. A perfect test will be a step function
going from 0 on the left to 1 on the right. The
sensitivity of a test may be thought of as the
slope of the response curve at the breakpoint.
The greater the slope, the more likely the test
will correctly reject outliers.

The top left graph, for the low noise case,
shows all three tests performing well, partic-
ularly for large n. The x?, having been ap-
plied using the known noise variance shows the
greatest sensitivity. Despite the tendency to-
wards false rejections, as seen on the top right,
a threshold of 0.95 will give excellent rejection.
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Figure 2: Performance of the y2, MAD and RD tests on the tracking task.

With the RD test, the low false rejection rate
means that a much lower threshold will give
similar results.

The real advantage of the RD test becomes
apparent as noise is increased. The Y? test,
with a slightly incorrect a prior: noise model
(o = 4 rather than o = 5) fails drastically,
rejecting almost every point.

4.2 Segmentation

The test was applied to the problem of conic
curve segmentation, with results as shown in
Figure 3. This experiment indicates the ability

98th Percentile responses for MAD(r) CHI2(g) RD(w)
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See section 4.1 for details.

of the test to identify subtle changes in model,
at the (5 discontinuity between line and cir-
cle for example. Curves were fitted to the 2D
boundary of a 3D plane using Taubin’s gener-
alized eigenvector fit and the RD test used to
identify outliers. This model was chosen to be
similar to that used by Whaite [9], but the re-
sults are not comparable without knowing the
use to which the segmentation is intended to
be put.



Figure 3: Segmentation results. The tracked edge data on the left has been segmented into the
lines and circles shown on the right. The RD test is used to identify the breakpoints (shown as

dots on the right).

5 Conclusions

We have introduced a new method of testing
the hypothesis that some unknown data set is
a noisy instance of a parametric model. Our
method is superior to existing methods that
make unrealistic assumptions about the noise
characteristics of the input data. The method
is fast, and can in most cases be made to have
O(n) time and space complexity. Sensitivity to
small deviations in the model is high, while the
false rejection rate is extremely low, even when
the data are heavily corrupted by noise. The
major advantage of our test however is that
there is no need to know the input noise level.

A problem with the system is that in situa-
tions where quantization error grossly exceeds
sensor error, the noise model is violated and the
false rejection rate increases sharply. This can
be avoided by adding a little Gaussian noise
to the data, but this is obviously not an ideal
solution.

6 Current Work

1

5

Figure 4: Example residuals sign map for a plane
fit corrupted by several 100 outliers clustered in the
lower right corner.

The 2D version of the test is still under devel-
opment (see Figure 4), but preliminary tests in-
dicate similar performance to the 1D test. Us-
ing area as the equivalent to ‘length’ of a run
may need to be changed to a fractal measure of
slightly lower dimension. This is currently im-
plemented by using morphological operators to



approximate the dimensionality reduction, and
then measuring areas.
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