
'
&

$
%

A Promising Hybrid GA/HeuristicApproach for Open Shop SchedulingProblemsHsiao-Lan Fang, Peter Ross,and Dave CorneDAI Research Paper No. 699
In Proceedings of the 11th European Conference on Arti�cialIntelligence, John Wiley and Sons, 1994, pages 590{594.

Copyright cHsiao-Lan Fang, Peter Ross, and Dave Corne, 1994



A Promising Hybrid GA/Heuristic Approach forOpen-Shop Scheduling ProblemsHsiao-Lan Fang1 and Peter Ross1 and Dave Corne2Abstract. Many problems in industry are a form of open-shop scheduling problem (OSSP). We describe a hybrid ap-proach to this problem which combines a Genetic Algorithm(GA) with simple heuristic schedule building rules. Excel-lent performance is found on some benchmark OSS problems,including improvements on previous best-known results. Wedescribe how our approach can be simply amended to dealwith the more complex style of open shop scheduling prob-lems which occur in industry, and discuss issues relating tofurther improvement of performance and integration of theapproach into industrial job shop environments.1 INTRODUCTIONThe Open-Shop Scheduling Problem (OSSP) is a complex andcommon industrial problem [6]. OSSPs arise in an environ-ment where there is a collection of operations to perform onone or more machines. E�cient production and manufactur-ing demands e�ective methods to optimise various aspects ofa schedule, usually focussing on the total time taken to pro-cess all of the operations. We present a hybrid GA/heuristicapproach which performs very successfully in comparison withprevious results on some simple benchmark OSSPs [12]. In twocases (for which global optima had not already been found),our results improve on a previously best known result pro-duced by tabu search [12]. Our approach is exible and easyto use in terms of development time, and also exhibits severalareas for future improvement.We concentrate on three chromosome representation strate-gies. One is a straightforward extension to the OSSP of astrategy used for the job-shop scheduling problem (JSSP) inearlier work [5], which does not involve any hybridisation. Theother two strategies incorporate simple means of hybridisingthe GA with heuristic rules. One of these methods seems morepowerful and robust than the other two.We also note that the benchmark problems used can befreely obtained for comparative research, and describe howour approach can be extended to address more complex openshop scheduling problems. We know of no GA-based e�ortsexcept ours on the OSSP with which to compare, so we presentresults in order to show the potential for a GA approach toopen-shop scheduling, and invite fellow researchers to exper-iment with the same problems.1 University of Edinburgh, Department of Arti�cial Intelligence, 80South Bridge, Edinburgh, EH1 1FN, UK2 University of Edinburgh, Department of Arti�cial Intelligence, 5Forrest Hill, Edinburgh, EH1 2QL, UK

1.1 OverviewSection 2 describes the OSSP in detail, and our GA approachis described in section 3. Experiments and results on bench-mark problems are then presented in section 4. Section 5 dis-cusses these results, advances various issues concerning per-formance improvement, and notes how the approach may beextended to cope with more complex OSSPs.2 OPEN-SHOP SCHEDULINGPROBLEMSA commonly used simpli�cation of the OSSP is to specifythat each given operation can only be processed on a givenspeci�ed machine. In reality, an operation can often be pro-cessed in a number of alternative ways, any of which mayinvolve more than one machine. There may also be due datesand machine setup times to consider. In the following howeverwe will concentrate on a simpli�ed form of the general prob-lem; this is done mainly because the benchmark problems onwhich we test the performance of our GA approach are thussimpli�ed. We will later discuss simple amendments to ourapproach which promise to successfully cope with the moregeneral problem.An OSSP involves a collection of m machines and a col-lection of j jobs; each job comprises a collection of opera-tions (sometimes called tasks). An operation is an orderedpair (a; b), in which a is the machine on which the operationmust be performed, and b is the time it will take to processthis operation on machine a. A feasible OSSP schedule assignsa start time to each operation, satisfying the constraint thata machine can only process one operation at a time, and thattwo or more operations from the same job cannot be processedat the same time. The main objective is usually to generate aschedule with a makespan as short as possible; the makespanis simply the total elapsed time in the schedule. More com-plex objectives often arise in practice, where due dates andmachine set up times must also be taken into account, forexample.The common illustration of this kind of problem is thatof an automotive repair shop [6]. In such a shop, a typicaljob might involve the operations `spray-paint', and `change-tyres' to be performed on the same vehicle. These operationscannot usually be performed concurrently (especially if thestations at which these operations are performed are in dif-ferent places, for instance), but can be performed in any order.Also it is usually true that di�erent stations (ie: `machines'c 1994 H. Fang and P. Ross and D. CorneECAI 94. 11th European Conference on Arti�cial Intelligence Edited by A. CohnPublished in 1994 by John Wiley & Sons, Ltd.



) can concurrently process operations from di�erent jobs (eg:involving di�erent vehicles). If the operations in a job must beperformed in some �xed order, then this becomes a `Job-ShopScheduling Problem' (JSSP).Certain benchmark OSSPs have been used for comparativeresearch. In these, each job comprises precisely one operationfor each machine. These benchmarks are hence completelyde�ned by an ordered collection of m processing times foreach job. For example, table 1 shows a 5�5 (ie: 5 jobs and 5machines) benchmark problem, taken from [9].Table 1. A 5x5 benchmark OSSPMachines: 1 2 3 4 5Job 1: 64 66 31 85 44Job 2: 7 69 68 14 18Job 3: 74 70 60 1 90Job 4: 54 45 98 76 13Job 5: 80 45 10 15 91In the above example, operation 1 of job 1 must go tomachine 4 for 85 units of processing time, operation 2 of job 1must go to machine 1 for 64 units of processing time, and soon, with no restrictions on the order in which the tasks for anyjob are to be processed. The problem is to generate a validschedule with minimal makespan. Figure 1 shows a minimum-makespan (300) schedule for the benchmark in table 1.
1 5 2 1

5 3 1

5 5 5 4

1 2 2 2

4 4 4

3

machine

4

5

3

2

1

0 50 100 150 200 250 300

time

3

2

3

4

1

3

Job 1 2 3 4 5Figure 1. Minimal-makespan schedule for a 5x5 OSSPbenchmark3 A GA/HEURISTIC APPROACH TOTHE OSSPA common general technique for hybridising a GA with aheuristic search or heuristic rule based method is to use theGA to search a space of abstractions of solutions, and employa heuristic or some other method to convert the points deliv-ered by the GA into candidate solutions. Such hybridisationis one way of avoiding the often highly complicated problemof representing a complete solution as a chromosome in a waythat facilitates e�ective GA-based search; it is usually moreeasy to represent abstract regions of the solution space, andhave these abstractions converted into (ie: interpreted as) so-lutions by some other technique.

This paper presents some simple examples of such hybridGA/heuristic methods for the OSSP. Similar GA/heuristichybridisation occurs variously in the GA literature. Eg, a re-cent discussion of hybrid GA/heuristic hybrids for bin-packingand related problems appears in [11]. In the following, we de-scribe three simple strategies for using a GA to address anOSSP.3.1 Basic chromosome representationEach of the representations we discuss is based on the follow-ing basic technique. The genotype for a problem is a string ofp genes, where p is the total number of operations involved,summed over each job. Each gene can take alleles in the rangef1,2,: : : ,jg, where j is the largest job number. A chromosomeprovides instructions for building a schedule as follows: thestring of genes abc � � � means: \choose an untackled operationfrom the the a-th uncompleted job, and place it in the earli-est place where it will �t in the developing schedule, choosean untackled operation from the b-th uncompleted job andplace it into the earliest place where it will �t in the devel-oping schedule, : : : ", and so on. Building a schedule is ac-complished by a schedule builder, which maintains a circularlist of uncompleted jobs and a list of untackled operations foreach such job. Thus the notion of \a-th uncompleted job" istaken modulo the length of the circular list to �nd the actualuncompleted job being referred to.Evidently, this description is incomplete because of theword \choose" in the interpretation method. In this sense,each chromosome represents a region of the space of possiblesolutions. For example, the region of solutions which may berepresented by the chromosome \1,2,1,: : : " is that in whichthe �rst operation scheduled comes from job 1, the secondfrom job 2, the third from job 1, and so on. The way that achromosome is interpreted as a single solution somewhere inthis region can vary. In this paper we look at three ways ofdoing this.3.2 Directly encoding the operationThis is the most straightforward method; we simply doublethe size of the chromosome by incorporating genes for thechoice of operation in addition to those for choice of job.Hence, abcd � � � will now mean: \choose the a-th untackledoperation from the the b-th uncompleted job, and place it inthe earliest place where it will �t in the developing schedule,choose the c-th untackled operation from the d-th uncom-pleted job and place it into the earliest place where it will �tin the developing schedule, : : : ", and so on. We will refer tothis method with the abbreviation job+op.3.3 Fixed heuristic choiceIn this method, a �xed heuristic is decided upon beforehand,and used by the schedule builder to make the choice of op-eration at each step. Hence, if we use heuristic X to makethis choice, then the interpretation of abcd � � � becomes : \useheuristic X to choose an operation from the a-th uncompletedjob, and place it in the earliest place where it will �t in thedeveloping schedule, use heuristic X to choose an operationfrom the b-th uncompleted job, and place it in : : : ", and so on.Planning, Scheduling and Reasoning about Actions 591 H. Fang and P. Ross and D. Corne



We use the abbreviation FH(X) in referring to this strategy,in respect of some particular heuristic X. The simple heuris-tics we will refer to in this paper are the following eight. Ineach case, the set of possible operations to choose from arethose in the `current job'. This `current job' is that repre-sented (via the circular list of uncompleted jobs) by the allelein the chromosome which is being interpreted at this step.LPT: choose the operation with largest processing time,breaking ties according to an a priori ordering over theoperations.SPT: choose the operation with shortest processing time,breaking ties according to an a priori ordering over theoperations.EF-LPT: Let t be the earliest time at which an operationcan be scheduled, and let S be the set of operations thatcan be scheduled at t. Simply apply LPT to the operationsin S.EF-SPT: As above, but using SPT instead of LPT.EF-BTR: As above, but simply choosing randomly from theset S.SG-LPT: Let G be the set of operations that can be placedin a gap in the schedule; that is, those operations which �tinbetween two already scheduled operations on the samemachine. Apply LPT to the operations in G. If G is empty,proceed as with LPT.LRG: Choose the operation from G which leaves the longestamount of time in its gap, breaking ties randomly. If G isempty, then simply use PT.SRG: Choose the operation fromG which leaves the shortestamount of time in its gap, breaking ties randomly. If G isempty, then simply use LPT.For example, in later experiments using FH(LPT), thisrefers to the �xed-heuristic hybrid method, with LPT beingthe heuristic used in this case.3.4 Evolving heuristic choiceFinally, note that there is no good reason to rely on a �xedheuristic for each choice of operation while building a sched-ule. Indeed, it is quite easy to see that varying the choice ofheuristic according to the particular job being processed, andalso according to the particular stage in the schedule buildingprocess, may make more sense. It is hard to �nd some prin-cipled a priori method for making these varied choices, butwe can implement a simple adaptive strategy by extendingour basic chromosome representation as follows. A chromo-some abcd � � � now means: \use the a-th heuristic to choose anoperation from the b-th uncompleted job, and place it in theearliest place where it will �t in the developing schedule, usethe c-th heuristic to choose an operation from the d-th uncom-pleted job, and place it in : : : ", and so on. We dub this method`EHC', for `Evolving Heuristic Choice'. Alleles of genes whichare interpreted as heuristic choices (eg: odd-numbered genesin the above example) range through the number of availableheuristics; in the experiments described later, the set of pos-sible choices are the eight described earlier. We have foundit bene�cial for these alleles to be preferentially set to one inparticular of these choices (LPT for most problems) in theinitial generation, thereafter being allowed to vary via muta-tion and recombination. In the next section then, when we

refer to the use of a particular heuristic in association withehc, we simply mean that the initial generation of chrom-somes have their heuristic choice alleles set to this heuristic,but are allowed to vary from then on.4 EXPERIMENTS AND RESULTSWe tested each approach on six benchmark OSSPs of sizes4�4, 5�5, 7�7, 10�10, 15�15, and 20�20. In each case, theGA used �tness-proportionate selection based on the objec-tive function makespan - lower bound, lower bounds beingprovided in [12]. Elitist generational reproduction was used;uniform crossover was used, applied adaptively. That is, thecrossover rate began at 0.8, and was reduced by 0.0005 aftereach generation down to a minimum of 0.3. Two children wereproduced from each crossover; these children, or the parents(when crossover was not applied) were each mutated with a�xed probability of 0.5; mutation involved swapping two ran-domly chosen genes. In each case, the results report the aver-age of the best makespan found from each of ten trial runs of amaximum of 1000 generations, and the best makespan foundoverall. Convergence typically occured very quickly (some-times in the initial generation) on the 4�4 problem; on largerproblems, convergence ranged from an average of around 30generations for the 5� 5 problem to an average of 350 gener-ations for the 20 � 20 problem. The population size was 200in each case.Table 2 shows results for the smaller three benchmarks. The`Previous Best' row gives the best previously known solution.In the 4 � 4 and 5 � 5 cases, these are known to be globaloptima. Table 2. Results on small benchmark OSSPsBenchmark OSSP (jobs � machines)4 � 4 5 � 5 7 � 7Previous Best 193 300 438JOB+OPMean 194.4 308.5 454.1Best 193 302 441Fixed HeuristicMean (EF-SPT) 193.4 303.9 449.7Best (EF-SPT) 193 301 445Mean (EF-LPT) 211.0 312.2 449.8Best (EF-LPT) 211 305 443Mean (EF-BTR) 195.6 305.6 448.9Best (EF-BTR) 195 301 436Evolving Heuristic ChoiceMean (EF-SPT) 193.0 305.0 449.7Best (EF-SPT) 193 300 441Mean (EF-LPT) 194.3 307.6 444.9Best (EF-LPT) 193 305 435Mean (EF-BTR) 194.1 305.3 449.8Best (EF-BTR) 193 300 435The most striking aspect of these results was that EHCyielded a better result, 435, than any previously found (thatwe know of) on Taillard's 7 � 7 benchmark ; the previousbest for this was reached by tabu search [12]. Note also thatFH(EF-BTR) also improved on this previous best. More gen-erally, it appears that the methods incorporating SPT (asPlanning, Scheduling and Reasoning about Actions 592 H. Fang and P. Ross and D. Corne



�xed in fh, or initially �xed in ehc) are best on the twosmallest problems while LPT shines through on the largerproblem. We �nd that this reliably extends to problems largerthan 7� 7, and hence only incorporate LPT (as the �xed orinitially �xed choice) in the experiments to follow. All of thefh and ehc methods improved on the job+op trials, showinga clear bene�t for some form of hybridisation.In table 3, we compare job+op,FH(LPT), and EHC(LPT)for the three larger benchmarks. Note that in this case theprevious best results are known to be global optima for the15� 15 and 20� 20 cases [12].Table 3. Results on large benchmark OSSPsBenchmark OSSP (jobs � machines)10 � 10 15 � 15 20 � 20Previous Best 645 937 1155JOB+OPMean 690.7 968.9 1244.5Best 668 951 1224Fixed Heuristic (LPT)Mean 662.7 942.9 1163.7Best 646 937 1155Evolving Heuristic ChoiceMean 660.1 940.1 1167.7Best 641 937 1156The most striking result in this case is the discovery ofa new best result for the 10 � 10 benchmark, which againwas obtained using the ehc method. Note also that these re-sults further underline the quality of a hybrid approach ascompared to that of the `pure GA' job+op method. Beyondthese observations we cannot really discern any clear indica-tions as to the relative quality of fh and ehc on the two largerbenchmarks.5 DISCUSSIONThe approach we describe provides excellent results on di�-cult benchmark problems. Although this is no guarantee thatthe approach will generalise successfully to real problems,and/or perform just as well on di�erent and larger bench-marks, it is clearly a promising enough basis for continuedresearch along these lines.It is particularly encouraging that even the best resultswere achieved with an essentially simple technique, improve-ments on which can be readily imagined. This augments acontinuing theme in GA research literature, which shows thatGAs begin to compete closely with or outperform other knownmethods on some problems when successfully hybridised [10,11, 8]. Further work is under way to study more sophisticatedheuristics and hybridisation strategies.In the context of the interplay between the GA and theheuristics, these results appear counter to �ndings like thoseof [1], which suggest that the more search done by the GAat the expense of the heuristic, the better in terms of �nalsolution quality, though probably at the expense of time. Ourresults, and those of other authors in other applications, tendto show the opposite: better quality results arrive through hy-bridisation with a heuristic, with little extra time cost. Recon-

ciliation of such counter observations are readily found how-ever, by recognising that most generalisations we make fromnecessarily small forays into the space of possible experimentsare at the mercy of being overturned by further such inves-tigation. Better solution quality may well have arrived herethrough a `pure' GA approach (such as JOB+OP) but only ata rather extreme cost in time; eg: for JOB+OP to compete interms of solution quality with EHC may well be possible, butperhaps only if we use far larger population sizes and conse-quently wait far longer for convergence. Bagchi et al's notionmakes intuitive sense if we consider that it allows the GA fullrein over the space of possible solutions, rather than search-ing a contracted space as is e�ectively done in most hybridmethods. However, this `expansion' of the space that we allowthe GA to survey carries with it the need for more extensivesampling and hence much larger population sizes. A hybridGA/heuristic method thus tends to seem the better practicalchoice, o�ering a better tradeo� in terms of speed vs qualityon most problems.5.1 Extension to more `real' OSSPsThe more general statement of a jobshop problem is morecomplex than that described here in two main ways. First, anoperation has a collection of alternative process plans (it canbe done on di�erent machines), rather than the single processplan of being speci�ed to be done on a particular machine.Let each job ji have pi alternative process plans. Each suchplan is a distinct set of machines and associated processingtimes, each representing an alternative way of discharging thejob. We might extend our representation to incorporate suchalternatives as follows: a schedule abcd � � � means: \choose anuntackled operation from the the a-th uncompleted job, us-ing the b-th valid process plan for this job, and place it intothe earliest place where it will �t in the developing schedule,: : : ", and so on. Here, when the schedule builder identi�es thejob currently referred to in the chromosome (via the heuris-tic choice), earlier choices in the schedule constrain the setof valid alternative process plans that are still `live' for thisjob. The valid set is treated as circular, and chosen from asdirected by the chromosome. There are of course several otherpossibilities. For example, we could use essentially the samerepresentation as used for the simpler OSSP, but change theinterpretation to: \heuristically choose a valid process planfrom the a-th uncompleted job and then heuristically choosean operation from this plan, and place it into the earliest placewhere it will �t in the developing schedule, : : : ", and so on.This involves the addition of a heuristic to choose the pro-cess plan as well as choose an operation. Possibilities for theheuristic which chooses the process plan are easily imagined.For example, we might choose the plan for which the totalprocessing time remaining is smallest.The second important di�erence is that jobs have due dateswhich need to be considered, and also relative precedence.This can be dealt with in our approach simply by incorporat-ing these considerations into the �tness function. That is, the�tness measure is a combination of the makespan of the sched-ule and the extents to which job precedences are honoured anddue dates are met. Alternatively, preference and due date in-formation may be readily incorporated into a heuristic. Forexample, instead of a heuristic which chooses the job withPlanning, Scheduling and Reasoning about Actions 593 H. Fang and P. Ross and D. Corne



the largest processing time, we might choose the job whichmaximises some function of processing time and the extent towhich its due date is met.Hence, various possibilities are apparent for extending theapproach to deal with more general problems. Such has beenreported, for example, in the context of highly generalisedmanufacturing scheduling problems [7], although this did notreport on the hybridisation of the GA with simple heuris-tics (chromosomes were much more direct representations ofschedules). Our main point here is to show how our approachreadily allows for extensions which will allow it to cope withproblems of the fully general kind found in real machine shopenvironments, while still retaining its basic avour, and henceretaining the presumed source of its success. It may not beimmediately apparent that the success we demonstrate onsimpli�ed benchmark OSSPs will carry over to e�ective per-formance on more complex problems in an extended approach,but there is no apparent reason to be too skeptical of this pos-sibility. Further work along these lines will be reported in duecourse.5.2 ConclusionWe have presented an approach to the OSSP which performsvery promisingly on benchmark OSSPs, twice outperformingprevious reported attempts. We discussed how the approachmay be extended to deal with more realistic problems; thesimplicity of the approach, its apparent success, and the evi-dent potential for much further improvement and extension,seem to render it a promising method warranting further re-search. Ultimately, of course, comparisons with other AI- orOR- based methods will be instructive. Also, the approachas presented fails to meet some possible needs which sched-ule managers may have in machine shop environments; eg:there is no clear way in which rescheduling can be addressed,other than by rede�ning the problem as necessary and runningthe GA from scratch; a more sophisticated technique howeverwould be one which made use of information gained duringformation of the previous schedule, which makes reschedulinga potentially very speedy process.Finally, it should be noted that the GA con�guration usedin the experiments here is not optimal. Continuing GA re-search reveals variants and techniques that GA application re-searchers will �nd rewarding to heed. For example, [2, 3] bothdescribe spatially-oriented selection strategies which seem toconsistently outperform others, while [4] describes, amongother things, reinitialisation strategies which can enhance over-all robustness and reliability.5.3 NotesThe benchmarks used here can be obtained via [9]. The ORlibrary referred to in [9] is an electronic library of benchmarksfor a wide range of OR problems. Researchers wishing to com-pare with our results will need to know that the problemsreferred to here are each the problem No. 1 of their speci�edsize and kind. Alternatively, problem data may be obtaineddirectly from the authors, as can the details of the schedulesfound here which improve on previous best known results.

ACKNOWLEDGEMENTSWe are grateful to two anonymous referees for helpful and con-structive comments on an earlier version of this paper. Thankstoo to the UK Science and Engineering Research Council forsupport of Dave Corne via a grant with reference numberGR/J44513.REFERENCES[1] Sugato Bagchi, Serdar Uckun, Yutaka Miyabi, and KazuhikoKawamura, `Exploring problem-speci�c recombination oper-ators for job-shop scheduling', in Proceedings of the FourthInternational Conference on Genetic Algorithms", eds., R.K.Belew and L.B. Booker, pp. 10{17. San Mateo: Morgan Kauf-mann, (1991).[2] Robert J. Collins and David R. Je�erson, `Selection in mas-sively parallel genetic algorithms', in Proceedings of theFourth International Conference on Genetic Algorithms,eds., R.K. Belew and L.B. Booker, pp. 249{256. San Mateo:Morgan Kaufmann, (1991).[3] Yural Davidor, `A naturally occuring niche & species phe-nomenon: The model and �rst results', in Proceedings ofthe Fourth International Conference on Genetic Algorithms,eds., R.K. Belew and L.B. Booker, pp. 257{263. San Mateo:Morgan Kaufmann, (1991).[4] Larry J. Eshelman, `The chc adaptive search algorithm: Howto have safe search when engaging in nontraditional geneticrecombination', in Foundations of Genetic Algorithms, ed.,G. Rawlins, 265{283, Morgan Kaufmann, (1991).[5] Hsiao-Lan Fang, Peter Ross, and Dave Corne, `A promisinggenetic algorithm approach to job-shop scheduling, reschedul-ing, and open-shop schedulingproblems', inProceedings of theFifth International Conference on Genetic Algorithms, ed.,S. Forrest, 375{382, San Mateo: Morgan Kaufmann, (1993).[6] Teo�lo Gonzalez and Sartaj Sahni, `Open shop scheduling tominimize �nish time', Journal of the Association for Com-puting Machinery, 23(4), 665{679, (October 1976).[7] P. Husbands and F. Mill, `Simulatedco-evolutionas themech-anism for emergent planning and scheduling', in Proceed-ings of the Fourth International Conference on Genetic Al-gorithms, 264{270, San Mateo: Morgan Kaufmann, (1991).[8] Jr. James D. Kelly and Lawrence Davis, `Hybridizing the ge-netic algorithm and the k nearest neighbours classi�cationalgorithm', in Proceedings of the Fourth International Con-ference on Genetic Algorithms, eds., R.K. Belew and L.B.Booker, pp. 377{383. San Mateo: Morgan Kaufmann, (1991).[9] Beasley J.E., `OR-library: Distributing test problems by elec-tronic mail', Journal of the Operational Research Society, 41,1069{1072, (1990).[10] Si-Eng Ling, `Intergating genetic algorithms with a prologassignment problem as a hybrid solution for a polytechnictimetable problem', in Parallel Problem Solving from Nature,2, eds., R. Manner and B. Manderick, 321{329, Elsevier Sci-ence Publisher B.V., (1992).[11] Colin Reeves, `Hybrid genetic algorithms for bin-packing andrelated problems', Technical report, School of Mathematicaland Information Sciences, Coventry University, (1994). sub-mitted to Annals of OR.[12] E. Taillard, `Benchmarks for basic scheduling problems', Eu-ropean Journal of operations research, 64, 278{285, (1993).Planning, Scheduling and Reasoning about Actions 594 H. Fang and P. Ross and D. Corne


