
Is Computer Vision Still AI?Robert B. FisherDepartment of Arti�cial IntelligenceUniversity of EdinburghAbstractRecent general AI conferences show a decline in both the number andthe quality of vision papers, whereas there is a great growth and special-ization of computer vision conferences. Hence, one might conclude thatCV is parting, or has parted, company from AI. This essay proposes thatthe divorce of CV and AI suggested above is actually an \open marriage",and while CV is developing through its own research agenda, there aremany shared areas of interest and many of its key goals, assumptions, andcharacteristics are also clearly found in AI.Keywords: Computer Vision, Image Processing, sub�elds of AIIt is not easy to infer the relationship between the �eld of Computer Vision(hereafter abbreviated CV) and Arti�cial Intelligence (hereafter abbreviated AI)from the external appearances of both �elds. Recent general AI conferences showa decline in both the number and the quality of vision papers, whereas thereis a great growth and specialization of CV conferences. Some CV or roboticsresearchers even claim that AI is unnecessary or irrelevant { special purpose,dedicated, well-engineered, mathematics based, processes will lead to success.Alternatively, we could consider the interests and directions of the two �elds:an examination of many recent CV conferences and journals shows a markedinclination, especially in the more theoretical papers, towards complex mathe-matics (e.g. geometric invariance, di�erential geometry, functional analysis, con-trol theory), models of the physics of light, color, shape, motion appearance,texture, etc., statistical models of the scene and other properties (e.g. fractal,Markov random �elds, Bayesian), and non-symbolic image{to{image transforma-tions. Most successful practical vision systems are well-engineered combinationsof special purpose sensors, hardware, and algorithms, tailored to solve speci�cvisual problems (and are generally more successful in proportion to the narrow-ness of the task). Some texts (e.g. [Batchelor 1985]) don't even mention AI norit's methods. Example practical applications include assembly-line robot welding1



guidance, inspection of computer keyboards and integrated circuits, counting ofteabags, tomato grading, optical tracking systems, etc.We can contrast this with the outward appearance of AI, which has spentmuch time investigating more general methods, such as search controlled bydomain{dependent constraints, models of (formal) logical and non{logical rea-soning, heuristic and uncertain reasoning, representation of general physical andworld knowledge (e.g. surface shape, elasticity, gravity) and human knowledge(e.g. conceptual, belief), and learning (i.e. inference of new relationships, self{organization).Hence, one might conclude that CV is parting, or has parted, company fromAI. This phenomenon is a more general problem of AI, and most sub�elds arespecializing to the point that wasteful duplication is occurring and loss of sightthe grand goal of re-integration of the di�erent aspects of intelligence is evident.But, though there are many specializations of AI (e.g. planning, natural languageunderstanding, knowledge representation, etc.), no one questions the separate-ness of these �elds from AI. However, the technology of most CV research is sonon-mainstream AI (i.e. it looks more like manufacturing engineering or appliedphysics) that the connection is no longer obvious.Phrased in these terms, the di�erences seem extreme; however, I claim thedi�erences are largely illusory and that CV still has and will continue to havea strong relation to AI. CV's specialization and unique preoccupations de�ne itas a �eld of study, but no more exclude it from the community of AI than dothe distinctive formalisms of natural language grammars, the logics underpin-ning theorem proving and formal reasoning or the numerical calculus of neuralnetworks (and its learning algorithms) exclude their sub�elds.This essay proposes that the divorce of CV and AI suggested above is actuallyan \open marriage", and while CV is developing through its own research agenda,there are many shared areas of interest and many of its key goals, assumptions,and characteristics are also clearly found in AI. We will take several views on thisquestion, not from insecurity, but because many strands of connection imply aclose coupling in the space of cross-disciplinary linkages | as contrasted with asparser coupling (in the sense of few links between concepts) between CV and, forexample, architecture (coupled mainly through issues of shape, appearance, andvisual aesthetics). I hope to convince the reader that the relation will becomeeven stronger in the future.1 AI and CV Share Methodological ApproachesThere are many eloquent and intelligent discussions of the nature of AI [Boden1988, Haugeland 1985] (and if it can even exist [Penrose 1989]), but lately mostarguments seem to center on the How of AI, not the What. That is, whether trueAI is realizable through classical methods (i.e. logic, representation, and search),2



pattern classi�cation (e.g. case and frame uni�cation), behaviorist methods (i.e.an organized conglomeration of individual goal{pursuing/achieving behaviors),classical emergent-behavior methods (i.e. global, epiphenomenal, behavior aris-ing from the aggregation of distributed actions of separate agents), or neural net-works (i.e. distributed, fault{tolerant, connectionist, emergent, numerical com-putations).Loosely speaking, CV mirrors the methodological division of AI | there arecertainly classical symbol manipulation [Brooks 1981], statistical pattern classi-�cation, distributed competence, and connectionist [Hinton 1981] paradigms. Inaddition, there are at least two other paradigms. The �rst is the numerical pro-cessing of images, where algorithms are linked to the geometric structure of theimage, and are constrained by underlying theories of the physical processes thatgave rise to the sense data (as in a theory of surface shading [Horn 1975]). Theimage-to-image transformations typical of this class of processes are not \intelli-gent" in themselves (i.e. they usually only do a limited amount of interpretation,as in suggesting possible edges). However, they can be considered a product ofAI [Schank 1991]. The processes may have originally been intelligent | i.e. oc-curred as a result of explicit rule-based reasoning, but were later were \compiled"into pure algorithmic form, or they may have never been such, but the actions ofthe algorithms may be controlled by higher-level control inputs (such as focus ofattention).The second paradigm is that of active perception [Aloimonos 1989], whereinthe observer manipulates or maneuvers within the environment in order to pro-duce perceptual e�ects, such as the kinetic-depth process.CV also encompasses a large amount of special purpose applications processes,dedicated to extracting a single, perhaps obscure, piece of information from a spe-cialized type of image (e.g. the parametric shape of a range image surface, theaverage inter-cellular distance in a particular tissue section or the postal code ona letter). These specializations do not �t clearly into the \general vision archi-tecture", in the same way that an expert chess player is not generally considereda component of a general AI program. Even so, the class of transformation thatthese represent does not di�er signi�cantly from the class of competences ex-pected to be found in a general vision system | such as an optical 
ow fromintensity data computation.2 AI and CV Share Domain AssumptionsBroadly speaking, the following assumptions underpin AI and CV perspectives.This list is undoubtedly incomplete, but I have tried to elucidate beliefs thatunderlie most research in the general sense | not the individual research areas,but rather the themes that they share. I have listed the key topics from an AIperspective and then discuss how CV �ts within this perspective.3



As will be seen, part of what in
uences the distinctiveness of CV is the natureof raw sense data, which is often under-constrained, is always shaped by sensorcharacteristics and is corrupted by noise. It has a regular geometric structure(e.g. images) that is closely linked to with the geometric ordering in the senseddomain. This does not imply isomorphism, as 2D images arise from the projectionof the 3D world. In fact, the relationship may be obscure (as in a holographicimage), or inexact, as in a cartoon sketch.1. Knowledge Representation:(a) Representable: Knowledge is representable, usable, and communi-cable, although the details of how are unresolved as yet.CV programs embody knowledge (e.g. about shape, re
ectance, appar-ent structure), and increasingly make the knowledge explicit in termsof geometric object model-bases and rule bases for how to recognizeobjects, or when to apply various operators.(b) Representation schemas: Symbols can be used to represent someconcepts and the manipulation of some symbols can be used for mod-eling or reasoning about a domain.Most high-level vision programs manipulate symbolic representationsof model and data features, usually attempting some form of searchfor a correspondence between the two. Intermediate level image inter-pretation processes more often have numerical image data as inputs,but produce symbolic descriptions as their outputs.(c) Multiple descriptions: The characterization of real domains (orenvironments) requires many di�erent descriptors and points of view,and multiple levels of representation.The CV community has believed for at least a decade that the descrip-tion of the visual world requires multiple descriptions, particularlythrough the concept of \sketches" [Marr 1982] and intrinsic images[Barrow and Tenenbaum 1978]. These are focused, special-purposerepresentations of the world from the viewer's perspective that de-scribes how it is moving, how it is illuminated, where its signi�cantfeatures lie, etc.(d) Underlying theories: Mathematical theories underlie some aspectsof knowledge and some domains (e.g. theory of mechanics, physics,dynamics of a steam engine, etc.). The theories can be used to modeland test hypotheses, interpret sense data or predict e�ects.Mathematical theories of surface shape, motion and image 
ow, ge-ometry and geometric invariance, image formation, noise processes,combinatorics, and physical theories of shading, mutual illumination,4



color, and texture underlie much of the successful recent vision re-search. On the other hand, these theories tend to be \autonomous",that is, require no insight, feedback or control from later, or other,stages of the vision system. Expressing the complexities of algorithmsthat allow these external interactions in mathematical form may bequite di�cult.(e) Common sense: Large amounts of common sense knowledge arerequired for intelligent and e�ective behavior in the real world.A machine that can see as we see the world will require a visual memoryof thousands of objects and fragmentary shapes. To exploit this mem-ory, a CV system will need to be able to reason about how appearancecan vary by position and illumination, depth ordering, interaction be-tween various objects in a scene, how the members of a class of shapescan appear and deform (e.g. clothing, trees, etc.).2. Reasoning:(a) Mechanizable: Reasoning can be mechanized, modeled, replicated,and experimented with, particularly through the use of computer sys-tems.Any working CV system exempli�es the mechanization of visual rea-soning, in that it is clearly an algorithm implemented on a computersystem (in the broad sense { allowing dedicated or hard-wired elec-tronic implementations) [Brooks 1991, Rosenschein 1986].(b) Complexity: Reasoning is complex, and may require non-deterministicdecisions.Because of the di�culty of interpreting data (due to noise, low resolu-tion or under-constrainedness), most real image interpretation systems(i.e. systems that label image features) embody some form of expertsystem reasoner [Draper et al 1988] that pursues alternative hypothe-ses and quanti�es the degree of veri�cation.(c) Heuristics: Heuristics are often required to: a) model incompletelyunderstood phenomena, b) simplify computationally intractable algo-rithms, or c) provide a simple and reliable tool when exact methodsare unnecessary or expensive.Most object recognition is still in the heuristic stage, except for simplegeometric solids (e.g. polyhedra). Even most edge detectors are basedon the heuristic that all edges are intensity step edges, and most usesof the edge information assume that image edges correspond to ob-ject edges (ignoring lighting, shadows, specularities, and changes inre
ectance). 5



(d) Uncertainty: Reasoning involves uncertainty by virtue of incompleteknowledge, perceptual \noise" and imperfect heuristics.Uncertain reasoning is needed to quantify the belief in a sensor mea-surement, and to characterize the certainty of a hypothesis [Durrant-Whyte 1987]. Recently, much CV research has been using statisticalmethods to represent measurement and hypothesis uncertainty, par-ticularly through the use of the Kalman �lter.3. Behavior:(a) Humans: Human and other animal behavior is studyable and isunderpinned by intelligible, but as yet unknown, computational pro-cesses.Results in visual neurophysiology over the last 40 years have shownthat a large number of neural structures exist for the purpose of ex-tracting visual information, and testable theories for some of thesehave been developed [Marr 1982].As we are only well-informed regarding the complexity of the humanvisual perception, we cannot be sure of the sophistication of other intel-ligent systems. However, there is no doubting the visual intelligence ofhumans through observing our arts | particularly the abstract, surrealor cartoon forms. Through these we move from a literal description ofshape and re
ectance to a reductionist symbolic representation of theworld expressed in a functionally useful concepts and then to a culturaldialogue, in which the form and content of the image (or sculpture) isas much a response to current historical, social, and artistic context asa description of a possible reality. As for accessibility, we know a littleabout human perception from observers' reports and agnosia [Farah1990] studies; about other species we know almost nothing. For theearly stages of animal vision, the knowledge of the active neurologyin other species may be greater because of the information obtainedfrom live animal experiments.(b) Complex behavior: Complex, intelligent behavior is a consequenceof the complexity of the domain in which that behavior occurs (i.e.the richness of human experience and imagination generates linguisticcomplexity).The complexity of visual behavior is re
ected in the complexity of theprograms that implement that behavior. Almost any vision systemthat does anything of consequence has thousands of lines of code ata minimum. Systems that aspire to even limited degrees of \general-purpose" capability [Draper et al 1988] have more like hundreds ofthousands of lines of code and often involve the use of complex rea-6



soning mechanisms, such as blackboards. Even extracting simple in-formation from a real image (e.g. counting cells in a microscope slideview) is complex because of the detail and variability of the real world(e.g. di�erent cell sizes, optical constraints, placements, debris, adja-cencies, variations in boundary appearance and shape, etc).(c) Intelligent perception: Intelligent perception requires integratingmany di�erent sources of information, plus the use of knowledge aboutwhat is being perceived.Intelligent vision particularly requires integrating many di�erent sourcesof visual information, as generating a full understanding of complexscenes seems to require di�erent representations of shape, position,color, motion, etc. For example, while stereo gives information aboutdistance to and shape of regions containing a lot of visual texture, ex-tending the understanding to nearby non-textured regions needs otherinformation, from, e.g. the shading. We can also actively use knowl-edge about the nature of the world, as in when we reason about howa pile of books that partly hides a water glass a�ects the appearanceof that glass, and how the optics of the light passing through the glassa�ects what we see through the glass itself.(d) Multiple theories: No single theory explains all intelligent behav-iors, and an agent may utilize di�erent behaviors as is appropriate.CV is a perfect example of where multiple types of behaviors areneeded, as much low-level image work is very data-driven, whereasmost high-level systems embody both data and model driven reason-ing. Most low-level programs (i.e. image-to-image processing) are nu-meric, whereas most high-level are purely symbolic. Classical symbolmanipulation high-level vision systems can interface to neural networklow-end modules. Active or multi-camera vision systems can some-times acquire data far more easily or reliably than passive monocularvision systems.(e) Multiple skills: Truly intelligent systems are capable of: percep-tion, communication, memory, learning, self-analysis, self-knowledge,decision making, acting, planning, attention focusing, and undoubt-edly other skills (in varying degrees). These skills will needed to beintegrated into a cohesive system to be generally useful.In CV, perceptual results need to be encoded for use, the shape andappearance of objects must be known and those of new objects must belearned; a vision system that can move to obtain a better viewpoint ismore e�ective; knowing what results can be trusted can guide when toproceed; knowing how well a set of CV processes works when appliedto di�erent domains can guide the selection of which to apply.7



(f) Learning: Learning is required, because: a) the amount of knowledgeavailable is too immense for explicit encoding by human designers, b)domains change over time, c) new concepts enter discourse, and d)agents enter new domains.Model-based vision needs models; mostly these are constructed byhumans and, for complex objects, rather slowly. Self-acquisition isthe only possibility for acquiring the description of large numbers ofobjects that must be known by competent active agents. Visual de-scriptions must change over time| as a consequence of seasons, aging,wear, growth or encountering new objects.Some models might be learned using classical structural learning meth-ods, adapted for visual representations. However, experience withmedical imaging suggests that there are patterns (e.g. biological) thatare too complex for compact description | and hence the communica-tion of these patterns by other than example will be nearly impossible.And so, much as a medical specialist learns to interpret a class of im-age data by repeated exposure over six months, so too will machinevision systems learn, perhaps in a connectionist manner.3 AI and CV Share Share GoalsThe main goals of AI research are:1. To characterize intelligence and intelligent behavior in general. This willinclude theories of the architectures for integrating the various intelligentskills into single autonomous agents and cooperating systems of agents.2. To understand human competences and computational processes, in partby providing a methodology for developing testable theories.3. To develop tools that need less human attention, embody greater capabilityand compiled experience, and extend human control over our environment(i.e. \environment" in the sense of our social, biological, physical and intel-lectual context). The \intelligence" of the tools is in part a consequence oftheir complexity and reactive 
exibility; however, the real breakthrough isin the embedding of intent into the tool.4. To develop epistemologies suitable for representing di�erent knowledge do-mains.5. To develop tools for advanced computer science and engineering (e.g. dis-tributed processing, programming languages, correctness proving, auto-matic programming). 8



6. To extend the philosophical view of humanness in order to reconcile thephysical operation of the brain and its computational structure with theconcept of the mind and the mental universe (e.g. [Dennett 1992]).The goals of CV are:1. To understand the human and other biological vision systems through build-ing testable models. This must also include understanding the purposes ofvision [Gibson 1979, Sloman 1989], which consists of multiple informationextraction modules, providing visual control (e.g. motion) feedback as wellas information extraction.2. To provide machines that extend human perceptual abilities into new do-mains or heighten it in normal domains.3. To provide tools that embody autonomous information extraction abilities(e.g. need not employ a human).4. To determine the key representations needed for a visual and spatial de-scription of the real world, and to discover computational processes thatcan reliably infer them.Hence, it can be seen that CV's goals are largely specializations of AI's goals.(CV's goal 1 is a specialization of AI's goal 2, CV's goals 2 and 3 are specializa-tions of AI's goal 3, and CV's goal 4 is a specialization of AI's goal 4.)4 AI and CV Share Share a Common Intellec-tual ContextWe also consider the relation of AI and CV from the perspective of three aspectsof their shared intellectual context.4.1 Philosophical SupportThere is no issue more central to AI than that of world representation, and per-ception, through its direct external input from the world, provides the basis forconstructing those �rst, basic representations. The philosophy of perception andmind shows strong connections between AI and CV, through the attempts tounderstand the relationship between a physical reality and our perceived under-standing of that world. Fundamental to the perceptual view is that what weembody is not a literal description of the world as it is, but an internalized andabstracted representation of that world, encoded into terms forming part of theinternal states of the agent. Without such an encoding the description would be9



of no use - we would still need to analyze the new description to extract useful in-formation [Sloman 1989]. The full nature of the actual representations is unclearand is perhaps incompletely communicable between di�erent humans. What isclear is that it is a \representation", as compared to the \real thing" and henceimpoverished.These abstractions are necessarily interpretations. As sensors are tuned tosense particular modalities, then the results they report are biased by what theyexpect to see. A sensor that detects \green" must decide what is or is not green,whereas the physical spectrum is dense and the light coming o� objects usuallyhas components at all frequencies. This complication is particularly acute withthe color \brown", whose perception is a�ected by the relative lightness of thesurrounding colors. Hence any conceptual representation of the world must havea relation to the world, but is not the world.Where AI has its strongest linkage with CV is in those aspects of vision thatare distinctly human. This is the symbolic partitioning of our environment intoconceptual, named entities. For example, an apple on a table is a relativelydistinct entity, yet when still attached to a tree it is part of a larger entity. Wedecide which piece is the apple. Considering some subset of the world a distinctnameable entity is often simply a human convention and thus suitable for AI. Ofcourse, not all entities are de�ned purely by convention, as biological and physicalprocesses clearly play a major role in physically de�ning the world.Conceptual entities need not be simply objects, but also actions (e.g. whendoes a jog become a run or a sprint) and attributes (blue versus cyan), etc.And, of course, names are linked to function | so one physical object may bereferenced by di�erent names according to the use that the object has (e.g. as abowl, cup, ashtray, paper clip holder, etc.). It is clear that one must also knowa lot about human society and its conceptual structures in order to interpret themeaning of the visual input at any level deeper than a largely empirical, physicaldescription.4.2 Biological and Psychological SupportVision is often naively considered a monolithic sense, whereas there are actu-ally many di�erent information extraction and interpretation processes involved.Neurophysiologists have identi�ed separate regions of the visual cortex that ap-pear to extract shape, motion, color and edges from our visual input. Altogether,about 9+ (including the retina) distinct regions of visual processing have beenidenti�ed, many with several processing layers | so something like 20+ di�erent,but as yet unknown, representations of the world may be extracted. The neuralconnectivity of some regions in the early stages of the processing are broadlyknown [Hubel 1988, Zeki 1993], but on the whole, their function is not. Some ac-tivities are fully autonomous (e.g. processing the full visual �eld input), whereasothers involve input from other centers of the brain | e.g. attention focusing.10



Outputs of visual processing are used in many places | for helping maintainbalance, tracking moving objects, or stabilizing our representation of the worldwhile in motion, ducking or blinking when danger approaches, making local mapsof our environment, discriminating between alternatives, as well as the obviouslabeling of the world.From this list of visual functions, it is clear that there are many biologicalvisual processes that contribute to and de�ne the behavior of intelligent beings.The linkage also goes the reverse direction, in that intelligent processes are neededto select what to attend to, to record and extract visual memories, to providethe motion needed for active vision (e.g. through motion parallax), to do spatialreasoning, to make visual aesthetic judgements, etc.4.3 Shared Computational MethodologyThe foundation behind the experimental methodology of both AI and CV isthe computer. However, many �elds use computers, so we must look deeper tothe more fundamental notion of the computer as a tool for theory testing, as atool for empirical explorations and as a vehicle for embodying theories to createusable artifacts (as compared to more conventional numerical calculating, textprocessing and database transaction machines). While theories of mechanics orenergy 
ow, for example, lie behind the function of other machines, the theoryof computational information processing lies behind machines built for AI andCV [Marr 1982]. This entails internal representations, reasoning based on andtransformations between representations, constructions of those representationsand actions based on them.The use of the computer is so pervasive in AI and CV (and now in most other�elds) that it is taken for granted. What is more important are the many sharedtools and techniques that exploit the computer capabilities to achieve both AI andCV. A non-exhaustive list must include: frame representation techniques [Brooks1982], expert systems machinery [Matsuyama 1990], probabilistic and uncertainreasoning, search tree exploration [Grimson 1990], generate and test algorithms,constraint satisfaction systems [Brooks 1982, Waltz 1975], hierarchical represen-tations and reasoning methods [Fisher 1989], both symbolic and neural network[Hinton 1981] perspectives, and the embedding of much domain speci�c knowl-edge. These shared techniques are used mostly for what is loosely called \highlevel vision", which is preoccupied with \symbol-to-symbol" transformations.Also shared by both domains is the methodology of experimental program-ming, in that the computer is the ideal tool for performing experiments to validateor explore intelligent information processing processes.11



5 ConclusionIt was notable how easily the more general characteristics of AI relate to themore speci�c characteristics of CV. Such a straightforward characterization surelysuggests that there is still a strong relationship. The largely shared goals, plusthe additional support of the shared interests in philosophical underpinnings andneurophysiological mechanisms and processes also strengthen the conclusion.To complete this essay, I look at a few aspects of CV that are intertwinedwith some of the central issues of AI. To start with we consider nameability.CV, at the highest levels, addresses recognition of objects and actions. Sincethese entities are not distinguishable merely by appearance, this activity necessar-ily links into other areas of AI, such as natural language for naming conventions,common sense reasoning, and robotics (behavior). As the nameability of the hu-man world depends ultimately on the humans that inhabit it, CV must be basedon the modes of intelligence that provide the names.However, once we have names, we also need some way to invoke mental struc-tures connected with the names, that is, to select their model from the visualdescription base that potentially explains a set of visual data. The details ofhow this is done are not clear, but it is interesting that this selection processregularly appears in other sub�elds of AI, as in invoking schema for dialogueunderstanding, or cases in case-based reasoning or appropriate meta-level searchheuristics.CV also requires the ability to generalize and reason about similarity. Supposewe encounter a person that we have never seen before. We don't have to gosequentially: \Now, is this a house, or a dog, or an apple, or . . . ?". We candirectly generalize from the speci�c person's appearance to the general natureof humanness. We are not troubled (much) by new haircuts, or missing limbs.Somehow we abstract into a space that compares the generalizations.On the other hand, CV will need to explore more \case-based" and oppor-tunistic reasoning. It is well-known that people need a period of training beforethey can achieve expert-level performance at new, non-intuitive, visual interpre-tation tasks, such as x-ray interpretation, radar display interpretation, etc. It isalso clear that people sometimes use speci�c features for search or identi�cation,cues (e.g. color of a book, or a scar distinguishing \identical" twins). Somevisual learning seems to be largely iconic (e.g. alphabetic letters, word groups).These examples suggest the use of case methods, with problem speci�c, compiledprocesses rather than use of generic high-level visual processes. And, as it iswell-known that people can \compile" explicit reasoning into \intuitive" proce-dures, this suggests that future vision systems may have to apply their case-basedreasoning in both forms.Once our intelligent AI system is capable of performing, it will need to have alarge visual knowledge base (a specialization of the general knowledge-base search[Lenat and Feigenbaum 1991]). For general expert performance, a large corpus of12



\common sense" visual knowledge will be needed | about how classes of objectstypically appear, how to discriminate between speci�c classes, object's materialproperties, likely contexts and associations, etc. The vision system will need tobuild, extend and generalize the database from new examples. Models of time,causality, general physical principles and uncertainty will be needed to interpretthe observations.Through these themes, I am trying to second-guess the future directions forCV research. One common thread is that there will be a greater dependenceon the methods being developed for general AI systems: case/frame matching,case/frame invocation, truth-maintenance systems, generalization, learning, con-trol of combinatorial search, etc. Some form of self-understanding will be neededfor feedback on performance. Planning and focus of attention mechanisms willbe needed to focus computational resources. At the same time, CV will becomeessential for a truly intelligent autonomous AI machine, if only for the abilityto learn for itself (let alone the philosophical contention that an artifact cannotknow the world if it is incapable of acting in it, and hence sensing it). Hence,I must conclude that the connections can only grow stronger as the two �eldsdevelop.What is central to Computer Vision are issues of how to represent what isknown and observable, how to reason with this represented information and howto act on that knowledge (controlling both internal and external behavior). Asthese will always be three of the main foundations of Arti�cial Intelligence, thereis no chance that Computer Vision will ever drift far. In the past decade, muchComputer Vision research has concentrated on developing competences that re-liably extract useful low-level descriptions of the world. As this research phasematures, there will then be a major increase in research that relates those de-scriptions to stored representations of objects and situations, and this will againmake clear the association with Arti�cial Intelligence.AcknowledgementsI'd like to thank many people for their thoughts on this theme, but particularlyA. Bundy, H. Hughes, C. Malcolm, A. Sloman, M. Trucco and M. Uschold.Biographical SketchDr. Robert Fisher is a Senior Lecturer in the Department of Arti�cial Intelligenceat the University of Edinburgh (member of sta� since 1984). He received hisPhD from University of Edinburgh (1987) and has been researching 3D sceneunderstanding and other topics in computer vision for over 10 years.13
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