
Extracting Prolog Programming Techniques�Wamberto Weber VasconcelosyDepartment of Arti�cial Intelligence, University of Edinburgh80 South Bridge, Edinburgh EH1 1HN | Scotland, Great Britain(wamb@aisb.ed.ac.uk)Research Paper 715AbstractWe present a method of extracting the programming techniques employed in Pro-log programs. Our method records the manner each subgoal has been used andemploys this, together with its syntax and other auxiliary information, to parti-tion the program into single-argument procedures possibly sharing variables. Atechnique is formally characterised as a sequence of such single-argument proce-dures.1 IntroductionIn this work we describe an automated approach to extracting the programming tech-niques of Prolog programs. A Prolog programming technique is viewed here as thesyntax of the program and the manner it has been used: the same constructions ina predicate give rise to di�erent techniques depending on how the predicate has beenused. The \usage" of a predicate will be depicted here as the instantiation status ofeach of its variables and how they change during conventional Prolog interpretation.In the program fragment below, for instance,p(: : : [] : : :).p(: : : [X|Xs] : : :):-p(: : : Xs : : :).the argument position shown may be either a technique to build a list or to decomposeit, depending on how the predicate is used. Prolog programming techniques are notdirectly expressed through speci�c syntactic primitives (e.g. \while" and \do-until"loops), but by the sophisticated use of the comparatively simple syntax of Prolog.These techniques can also involve di�erent argument positions: a program to sum theelements of a list employs in one argument position a technique to decompose a listand in another argument position another technique to perform the actual sum of theelements.We restrict our attention to programming techniques within a single procedure1.Initialisation calls and techniques spread across more than one predicate (e.g. mutually�This paper has been accepted for presentation and publication in the proceedings of the XI Brazil-ian Symposium on Arti�cial Intelligence, to be held in Cear�a, Brazil, October, 1994. An extendedversion of it is found in [Vas94a].yOn leave from State University of Cear�a, Cear�a, Brazil; sponsored by Brazilian National ResearchCouncil (CNPq), under grant no. 201340/91-7.1We shall employ Deville's [Dev90] de�nition of a logic procedure as the sequence of clauses withthe same predicate pn (predicate p with arity n) in the head of each of these clauses.1

recursive predicates) are outside the scope of this work, as well as any other techniquewhich spans more than one procedure.In the next subsection we explain the importance of the work presented here andhow it interrelates with other research areas. The following subsection describes thesyntactic constraints on those programs analysed and lays out some notation and con-ventions. The second section explains the three stages of the extraction method. Thethird section shows a manner of formally representing the extracted techniques. Thelast section summarises the work presented here and discusses its limitations.The Importance of Formalising Programming TechniquesBrna et al [BBD+91] informally describe programming techniques as the common codepatterns used by programmers in a systematic way, being independent of any partic-ular algorithm or problem domain. Programming techniques are, however, speci�c toa particular programming language, Prolog, in our case. The concept of Prolog pro-gramming techniques has been developed and applied in a variety of contexts, such astechniques-based editors [Rob91], program tracing [Gab92], program transformation[VVRV93], and automatic program analysis [Loo88, Ben94] (see [BRV+93] for a surveyon some of these research topics).All these applications, however, assume the techniques are somehow encoded andmade available, but no further details as to how this is done are provided. The prepa-ration of these techniques may require much labour and ingenuity, for no formalisationor methodology has been proposed as an aid. The person responsible for devising theset of available techniques chooses, after studying patterns frequently found in pro-grams and acclaimed techniques informally described in Prolog textbooks and papers,a number of techniques and manually encodes them so that the application(s) can use.In this report we propose a means of automatically extracting the programmingtechniques from working Prolog programs. The extracted techniques are formally rep-resented as single-argument procedures sharing variables across their clauses. Thenotation employed to represent the extracted techniques is based on the formalismproposed in [Vas94b]. The extracted techniques can be stored in a library and suppliedto each of the applications above.Syntax of Programs and Adopted NotationOnly pure Prolog programs, without cuts, disjunctions or if-then-else's, complying withthe Edinburgh Prolog syntax are our concern here. Moreover, no assert, retract,abolish or similar database-altering predicates can be used. The built-in predicatescurrently handled by our method are the operators =, =:=, =\=, ==, \==, >, >=, <, =<and =.. (denoted by \�"), the arithmetic operator is, the tests atom, atomic, float,integer, number, var and ground (denoted by \{"), the input predicates read andget (denoted by \=") and the output predicates write and display.We assume, without loss of generality, that the programs are in a normal form,with all uni�cations explicitly made via calls to = or =... This normal form allowsfor the homogeneous treatment of uni�cations in the head and in body goals, andtheir descriptions are similar. Moreover, programs in a normal form provide a detailedaccount of the computations taking place, splitting complex operations into a sequenceof simpler subgoals.In this work variables are denoted by u; v; w; x; y and z, possibly super- and sub-2

scripted; constants are denoted by a; b and c, possibly super- and subscripted; functionsymbols are denoted by f; g and h, possibly super- and subscripted, the superscriptstanding for the arity of the function symbol | f0i also stands for a constant; predi-cate symbols are denoted by p; q and r, possibly super- and subscripted, the superscriptstanding for the arity of the predicate symbol. These are meta-symbols by which Pro-log constructs can be generically referred to. The construction x = y stands for a testin which the actual Prolog variable symbol abstractly represented by x is the samevariable symbol as that represented by y. Speci�c Prolog constructions will be in thiskind of font.2 Extraction of Prolog Programming TechniquesGiven a working Prolog program complying with the syntactic restrictions above, ourmethod extracts those programming techniques used in it. The method carries out theanalysis and extraction of the techniques of a procedure with respect to a query, whichde�nes how the predicate is to be used. In the �rst stage of our method, the procedureP of arity n, consisting of clauses C1; : : : ; Cm, is analysed with respect to a queryQ andannotated with tokens describing the instantiation status of its variables before andafter the execution of each subgoal. The outcome of this stage is the mode-annotatedversion of procedure P (wrt Q) denoted by eP , as shown in Figure 1.PC1...Cm 1�! ePeC1...eCm 2�! eP1eC[1;1]...eC[m;1] ; : : : ; ePneC[1;n]...eC[m;n] 3�! beP 1beC [1;1]...beC [m;1] ; : : : ; bePnbeC[1;n]...beC[m;n]Figure 1: Stages of the Extraction Method and their Intermediate Results: 1 { Mode-Annotation; 2 { Argument Slicing; 3 { Clause-AnnotationIn the second stage eP is partitioned into a sequence h eP1; : : : ; ePni of single-argumentprocedures, its argument slices. Each argument position in the head goal of a clausehas an argument slice consisting of those subgoals relevant to the argument position.The notion of relevance of a subgoal with respect to an argument slice is one of thecontributions of this work.The last stage of the method inserts clause-annotations, place holders for variablesreferred to across clauses of di�erent argument slices, into the clauses of the mode-annotated argument slices, yielding the sequence hbeP 1; : : : ; beP ni. Clause-annotationsstate the required and o�ered resources (in the form of variables) of each clause ofan argument slice. A technique is formally characterised as a sequence of argumentslices sharing variables.2.1 Mode-Annotation of ProceduresThe �rst stage carries out the mode-annotation of the procedure with the instantiationstatus of the variables in each subgoal. The mode-annotation collects informationabout the use of each variable during the execution of a procedure. This can be3

achieved by the concrete (actual) or the abstract interpretation of the procedure beinganalysed. Both alternatives have been implemented and each one has its advantagesand disadvantages.A mode-annotated procedure consists of those clauses whose head goal matchesthe query annotated with tokens associated with the variables of each subgoal. Thesetokens convey information on the instantiation status of the variable, i.e. if the variableis free, instantiated, ground, etc., as will be seen below. The mode-annotated clausesare obtained by inserting a simpli�ed form of substitution after the head goal uni�cationand before and after each subgoal in the body of the clause. A mode-annotated clauseis of the form H :- �0 �1 S1 �01; : : : ; �n Sn �0n where H and Si are subgoals and the �j and�0i are simpli�ed substitutions in which the actual values associated with variables arereplaced by tokens representing their instantiation status. The simpli�ed substitutionscontain all the variables of the clause, and their associated tokens change to reect howthe execution of each subgoal alters their instantiation status. The mode-annotation�0 contains the status of the variables immediately after the head goal is matched. It isclear that �0 = �1 and �0i = �i+1, but this replication is made necessary because duringthe argument slicing stage (subsection 2.2) mode-annotated subgoals can be removedand the lack of substitutions would render the mode-annotated clause inaccurate.During the mode-annotation, the tokens \f" (associated with free variables), \g"(associated with ground variables, i.e. variables bound to constants or composed termswith ground subterms only), \i" (associated with instantiated variables, i.e. variablesnot free) and \?" (associated with variables whose status is unknown) are available.We need token \i" to represent the instantiation mode of variables bound to composedtermswith at least one free variable, that is, \partially ground/partially free" structures(e.g. a list with a free variable as its tail). Neither \f" nor \g" would accuratelydescribe this partially ground/partially free status. Due to limitations inherent inabstract interpretation techniques, the token \?" has to be included. Having thetoken \?" assigned to a variable means that the variable may be free, instantiated orground, but nothing more speci�c can be said.Mode-Annotation via Concrete InterpretationA very simple approach to mode-annotate a clause is by concrete interpretation: runthe program (say, by using an enhanced Prolog meta-interpreter) with the initial query,and collect information before and after the execution of each subgoal. The concreteinterpretation of a program may use the same clause many times, obtaining the samemode-annotated version. Repeated clauses, however, are not relevant to the adoptedview of techniques: they will be discarded, and only one mode-annotated version ofthe clause will actually be employed.The mode-annotation of a procedure using an enhanced meta-interpreter provides anaccurate account of a particular execution of that procedure: the instantiation statusof each variable is always known and either \f", \i" or \g" is assigned to it. However,because we are actually running a program while mode-annotations are collected, ifthe program does not terminate neither does the mode-annotation. Another problemis that there might be clauses which are not used in the execution of the procedureand hence will not have their mode-annotated versions collected.The non-termination might not be an important issue: the extraction process relieson the participation of a user whose initiative in choosing the program and the query4

is essential | it would be expected that the user had chosen the program because itcomputed (hence terminated) some interesting result. The incompleteness issue can becircumvented by again relying on the user's choice of an appropriate query: if a clauseis left out of the mode-annotation the user would be warned about it and another querywould be asked.To illustrate the incompleteness issue, we shall consider a normal form of the col-lect/2 procedure which holds if its �rst argument is a list whose integer elements (ifany) are to be found, in the same order, in the list comprising the second argument. Its(concrete) mode-annotated version wrt query collect([foo1,foo2,foo3,foo4],L) isshown in the left-hand side of Figure 2: the second clause of collect/2 (in which theelements satisfying integer/2 are used to build the list comprising the second argu-ment) was left out. For the sake of brevity, in Figure 2 we have omitted repeatedmode-annotations, �0 being reused as �1 and �0i as �i+1:collect(A,B):- fA/g,B/fg collect(A,B):- fA/g,B/fgA = [], fA/g,B/fg A = [], fA/g,B/fgB = []. fA/g,B/gg B = []. fA/g,B/ggcollect(A,B):- fA=g;B=f;X=f;Xs=f;Ys=fgA = [X|Xs], fA=g;B=f;X=g;Xs=g;Ys=fgB = [X|Ys], fA=g;B=i;X=g;Xs=g;Ys=fginteger(X), fA=g;B=i;X=g;Xs=g;Ys=fgcollect(Xs,Ys). fA=g;B=i;X=g;Xs=g;Ys=igcollect(A,B):- fA/g,B/f,X/f,Xs/fg collect(A,B):- fA/g,B/f,X/f,Xs/fgA = [X|Xs], fA/g,B/f,X/g,Xs/gg A = [X|Xs], fA/g,B/f,X/g,Xs/ggcollect(Xs,B). fA/g,B/g,X/g,Xs/gg collect(Xs,B). fA/g,B/i,X/g,Xs/ggFigure 2: Concrete (Left) and Abstract (Right) Mode-Annotated Versions of procedurecollect/2 with respect to query collect([foo1,foo2,foo3,foo4],L)Mode-Annotation via Abstract InterpretationAn alternative approach to mode-annotate a procedure is to use abstract interpretation[CC92, KK87], and to simulate the actual computations of Prolog in terms of thetokens describing the instantiation of each variable. The mode-annotation based onabstract interpretation eventually terminates, even for non-terminating programs. Theprogram has its execution simulated by having each clause separately interpreted, butno potentially non-terminating ow of control is actually established. Furthermore,if the same query is supplied to both concrete and abstract interpreters, there is aguarantee that the clauses obtained in the latter form a superset of those obtained inthe former.These features overcome the disadvantages of the concrete interpretation pointed outpreviously: the system does not need to rely on the user's appropriate choice of a queryto produce good quality mode-annotated procedures, since here the process alwaysstops and supplies a mode-annotated version of every reachable clause in conventionalProlog execution.A major de�ciency of abstract interpretation in comparison with concrete interpre-tation is the lower quality of its mode-annotations themselves. During the abstractinterpretation the sharing of variables within terms is not recorded and changes intheir instantiation status are not propagated. This causes the inaccuracy of the mode-annotations given by the abstract interpreter. We show in the right-hand side of5

Figure 2 the mode-annotated version of procedure collect/2 obtained via abstract in-terpretation, with respect to the same query used in the concrete interpretation | thelast annotation of the third clause is of less quality: B ends up associated with \i"rather than with \g", as in the right-hand side version, but all three clauses of theprocedure are considered.2.2 Argument-Slicing of Mode-Annotated ProceduresIn this stage the mode-annotated procedure obtained previously is partitioned into asequence of distinct argument slices, i.e. single-argument mode-annotated procedurescomprising the \building blocks" of more complex programming techniques. Eachargument position in the head goal of a mode-annotated clause has an argument sliceconsisting of those subgoals relevant to the clause. This notion of relevance is formallystated in this section.The analysis performed takes into account relationships between the variables of thesubgoal and the changes in their modes. The mode-annotations play an essential rolein the de�nition of the conditions a subgoal must ful�l to be included in an argumentslice. Di�erent mode-annotations in a procedure may yield di�erent argument slicesand hence di�erent techniques. The outcome of this analysis is highly dependent on thequality of the mode-annotations: the more accurate these are, the better the outcomeis. The more tokens \i" or \?" in the mode-annotations, the less accurate is theargument slicing.In the de�nitions of this section eC stands for a mode-annotated clause of the formp(x1; : : : ; xn) :- ~S0 �p0 p(x[0;1]; : : : ; x[0;n]) �p0 0 ~S1 : : : ~Sr �pr p(x[r;1]; : : : ; x[r;n]) �pr 0 ~Sr+1where ~Si; 0 � i � r + 1; are possibly empty vectors of non-recursive mode-annotatedsubgoals, each of the form � q(: : : y1 : : : ym : : :) �0, and denoted by eS. Mode-annotatedsubgoals will sometimes be shown enclosed in boxes to facilitate their visualisation.Recursive subgoals are sliced simply by restricting their arguments to the variablex[j;i] occupying position i in the j-th recursive call. The head goal is sliced by re-stricting its variables to xi, occupying position i. The variables xi; x[0;i]; : : : ; x[r;i] of theargument-sliced head and recursive subgoals also play an important role in the analysisof relevance of a subgoal: if the subgoal does not a�ect (either directly or indirectly)these variables then it should be considered irrelevant. A subgoal a�ects these vari-ables if it a) changes the content of a variable (either by assigning a value to it or byinstantiating parts of it) employed, directly or not, to change the contents of one of thevariables xi; x[0;i]; : : : ; x[r;i], or b) tests a variable whose value was obtained, directly ornot, from one of the variables xi; x[0;i]; : : : ; x[r;i]. This notion of relevance uses Prolog'sown execution model as a criterion: if a subgoal neither interferes with nor contributesto the argument slice, then the subgoal is not relevant and should not be included inthe argument slice.Relationships between VariablesIn order to decide whether or not a subgoal is relevant we must �nd out which compu-tations take place in each subgoal and how important each subgoal is for its variables.This is done by studying the mode-annotations before and after each subgoal, anddeciding which variables had their contents changed and which variables were simplyused in the subgoal execution, without having their contents altered.The actual content of a variable is abstracted as a token and this has to be considered6

during the analysis of this stage. If a variable has associated tokens \f" (or \g")before and after a subgoal it is correct to assume that the content of the variable didnot change. If a variable has tokens \f" and \g" (or \f" and \i") associated withit respectively before and after the subgoal execution, it is correct to assume thatits actual content did change. However, for tokens such as \i" and \?", representingsupersets of values of other tokens, it is not possible to say with accuracy when changestake place.We de�ne three relationships, �xed, change and unknown, of a variable x with respectto a mode-annotated subgoal, which hold if it is safe to assume that the content of x,abstracted by its tokens in � and �0, has remained �xed, has changed or is unknown,respectively:De�nition 2.1 �xed (x; �; �0) holds if x=T 2 �; x=T 0 2 �0; T = T 0; T 2 fg; fg.De�nition 2.2 change(x; �; �0) holds if x=T 2 �; x=T 0 2 �0; T = f; T 0 2 fg; ig.De�nition 2.3 unknown (x; �; �0) holds if :�xed (x; �; �0) and :change(x; �; �0).Variables whose associated tokens satisfy the �xed relation will be called �xed variables.Variables whose associated tokens satisfy the change relation will be called changingvariables.The mode-annotated subgoals provide us with the description of the relations be-tween their variables: those �xed variables supply their values to compute the changesin the contents of the changing variables. To formalise these relationships, we de�nethe possibly empty set of pairs of < -related variables of a subgoal: a variable x is< -related to y, x < y, if its content may have been changed employing the content ofy. There might be more than one such pair for each subgoal and hence a set has beenemployed to store them:De�nition 2.4 The set �eS of < -related pairs (or simply < -pairs) of eS is comprisedof elements of the form yi < yj such that i) change(yi; �; �0) and �xed (yj; �; �0), orii) unknown (yi; �; �0) and �xed (yj; �; �0), or iii) change(yi; �; �0) and unknown(yj; �; �0),or iv) unknown (yi; �; �0) and unknown (yj; �; �0). If eS is of the form � x = y �0 wherex=f 2 �; y=f 2 � and x=f 2 �0; y=f 2 �0, a special set �eS of < -pairs is de�ned as�eS = fx < y; y < xg.We are proposing a manner of representing the relationships between variables usingtheir modes and how they change or remain constant during the clause execution.Subgoals of the form x = y, where the modes of the variables remain unchanged as\f", deserve special attention for, in spite of the contents of x and y not having changed,the variables were de�nitely related to each other by means of the subgoal, this relationbeing useful in the relevance analysis explained below.A variable may be indirectly related, via an intermediate subgoal, to another vari-able. To deal with these situations, we extend the de�nition of < -pair sets to coverwhole clauses. The set of < -pairs of a clause is built in a piecemeal fashion, eachnon-recursive subgoal at a time. ~S, a vector of mode-annotated subgoals, has its set�~S of < -pairs de�ned as the union of the sets of < -pairs of its constituent subgoals:De�nition 2.5 The set �~S of < -pairs of ~S = eS0; : : : ; eSn is �~S = n[i=0 �eSi .The set of < -pairs of a mode-annotated clause is the union of the sets of < -pairs ofeach vector of non-recursive mode-annotated subgoals | recursive subgoals are notconsidered in this analysis: 7

De�nition 2.6 The set �eC of < -pairs of eC is �eC = r+1[i=0 �~Si.The set of < -pairs provides an account of the dependency between the variables of aclause and can be seen as a dependency graph: any indirect relationship between twovariables can be found by analysing the paths de�ned by the pairs (edges).Example: The second clause eC of the right-hand side program of Figure 2 yields�eC = fX< A; Xs< A; B< X; B< YsgThe analysis carried out in the slicing of a mode-annotated procedure may involveindirect < -relationships. A variable y is (possibly indirectly) related to x via a set of< -pairs if there is a sequence of pairs such that the �rst pair is of the form x1< y, anytwo consecutive elements of the sequence are of the form xi < xj; xj < xk and the lastelement is of the form x < xn:De�nition 2.7 Given a set � of < -related pairs and two variables x and y, the relationx < �� y holds if i) x < y 2 �, or ii) z < y 2 � and x <�� z.The relation x < �� y conveys the idea that the content of x may have been changedemploying (possibly indirectly) the content of y. The problem of �nding out whetherx<�� y is similar to that of deciding if two nodes in a graph are connected | standardsearch algorithms, such as breadth-�rst or depth-�rst, can be employed here. Thede�nition of < �� above can be extended to cope with sets of variables Vi:De�nition 2.8 V1 < �� V2 holds if there is at least one variable x 2 V1 and at least onevariable y 2 V2 such that x < �� y holds.Relevance of Subgoals Changing the Contents of VariablesSubgoals which change the contents of a variable are important to our notion of aprogramming technique because they de�ne the computations through which valuesare obtained. These values may help in de�ning the ow of control of the program ormay be the �nal values computed by the programming technique. The de�nition belowlists those cases when we can infer, by means of the syntax and mode-annotations ofthe subgoal eS, that a value is possibly being assigned to variable x:De�nition 2.9 A variable x has its content possibly changed in subgoal eS, change(x; eS),if, and only if, one of the cases below holds:1. eS = � x � : : : �0 ; � 2 f=; =..g;:�xed (x; �; �0);2. eS = � : : : � x �0 ; � 2 f=; =..g;:�xed (x; �; �0);3. eS = � =(x) �0 ;:�xed (x; �; �0);4. eS = � x is f ji (: : :) �0 ;:�xed (x; �; �0);5. eS = � p(: : : x : : :) �0 ;:system(p(: : : x : : :));:�xed (x; �; �0).In this de�nition, a variable is considered to have its content possibly changed in eS if itappears in one of the subgoals depicted above and does not remain �xed: it can eithersatisfy the change or the unknown relationships. The fourth case above, for instance,considers those subgoals making use of is, such that the variable x on its left-handside is not �xed, to be changing the content of x.A subgoal is considered a relevant computation if one of its variables with non-�xedtokens is related to the variables xi; x[0;i]; : : : ; x[r;i] of the i-th argument slice:8

De�nition 2.10 If a subgoal eS in eC has a variable x with its content (possibly) beingchanged, change (x; eS), then it is c-relevant to argument slice i, relevant ci (eS; eC), if i)x 2 fxi; x[0;i]; : : : ; x[r;i]g, or ii) one of the variables xi; x[0;i]; : : : ; x[r;i] is < -related to eachvariable y<��eC -related to x, that is, y < x 2 �eC ; fxi; x[0;i]; : : : ; x[r;i]g< ��eCfyg.The �rst condition depicts those subgoals potentially changing the content of one ofthe variables xi; x[0;i]; : : : ; x[r;i]. Such subgoals may be providing a technique with its�nal result or computing the value of its recursive calls. The second condition de-scribes those subgoals computing intermediate values x employed to change the valueof xi; x[0;i]; : : : ; x[r;i]. These intermediate values are relevant to the argument slice ifthey are employed by xi; x[0;i]; : : : ; x[r;i]. In other words, the variables y to which x\donates" its value, on their turn, \donate" their value to xi; x[0;i]; : : : ; x[r;i].Relevance of TestsTest subgoals are important to our notion of a programming technique because theyhelp to establish the ow of control of a procedure, or alternatively, they have thepotential to interfere with it. It is not too di�cult a task to verify if a system predicateis a test. However, �nding out if a user-de�ned procedure may fail, possibly interferingwith the ow of control, is a complex issue, harder than checking if the execution ofa procedure terminates. We employ a shallow analysis in which the de�nition of user-de�ned predicates is not taken into account. Instead, the user should provide all thosenon-system predicates (and their call modes) which might fail. Only these predicates(with the speci�ed modes) will be considered to be user-de�ned tests. If a mode-annotated subgoal satis�es the relation user-test then it is considered a user-de�nedtest. The cases below provide a precise characterisation of those subgoals which mayhave been used as tests, potentially changing the ow of control of the procedure:De�nition 2.11 A variable x (possibly) has its content tested in subgoal eS, test(x; eS),if, and only if, one of the cases below holds:1. eS = � x � : : : �0 ; � 62 f=; =..g;2. eS = � : : : � x �0 ; � 62 f=; =..g;3. eS = � x � f ji (: : :) �0 ; � 2 f=; =..g;:change(x; �; �0);4. eS = � x � y �0 ; � 2 f=; =..g;:change(x; �; �0);:change (y; �; �0);5. eS = � y � x �0 ; � 2 f=; =..g;:change(x; �; �0);:change (y; �; �0) (same as above,but x is now on the right-hand side of the operator);6. eS = � {(x) �0 ;7. eS = � =(x) �0 ;:change(x; �; �0);8. eS = � x is f ji (: : :) �0 ;:change(x; �; �0);9. eS = � y is f ji (: : : x : : :) �0 ;:change(x; �; �0) (same as above, but here x is one ofthe variables in the expression); 9

10. eS = � p(: : : ; x; : : :) �0 ; user-test(eS);:change(x; �; �0).Inaccurate mode-annotations satisfy the :change relationship, and thus may introducetheir imprecision into the slicing stage. The list of cases above helps us �nd out whichvariables in a subgoal are being tested. For instance, the third case above representsthose subgoals making use of = to carry out a data structure decomposition: if thevariable x on its left-hand side does not change then the subgoal is testing the contentof x against the pattern f ji (: : :). When the content of a variable x may cause a testsubgoal to fail then, according to our view of a programming technique, this subgoalis relevant to those argument slices providing the value for x or employing x in theircomputations:De�nition 2.12 A subgoal eS in eC testing a variable x, test(x; eS), is t-relevant toargument slice i, relevant ti(eS; eC), if i) x 2 fxi; x[0;i]; : : : ; x[r;i]g; or ii) one of the variablesxi; x[0;i]; : : : ; x[r;i] is < ��eC -related to each variable y < -related to x, that is, y < x 2�eC; fxi; x[0;i]; : : : ; x[r;i]g< ��eCfyg; or iii) all the variables y providing values to x are < ��eC -related to xi; x[0;i]; : : : ; x[r;i], that is, x < y 2 �eC ; y<��eCfxi; x[0;i]; : : : ; x[r;i]g.The �rst condition addresses those cases where the variables xi; x[0;i]; : : : ; x[r;i] of thei-th argument slice is actually being used to perform a test. The second case coversthe situation when x is being tested and it provides values for xi; x[0;i]; : : : ; x[r;i]. Thethird case covers the situation when all those variables which contributed to the valueof x had their values provided by xi; x[0;i]; : : : ; x[r;i].The two argument slices of the mode-annotated collect/2 (Figure 2) are shown inFigure 3: the mode-annotations are shown before and after each subgoal, genericallyrepresented as �i and �0j.collect(A):- �[1;0]�[1;1] A = []. �0[1;1]collect(A):- �[2;0]�[2;1] A = [X|Xs], �0[2;1]�[2;3] integer(X), �0[2;3]�[2;4] collect(Xs). �0[2;4]collect(A):- �[3;0]�[3;1] A = [X|Xs], �0[3;1]�[3;2] collect(Xs). �0[3;2] collect(B):- �[1;0]�[1;2] B = []. �0[1;2]collect(B):- �[2;0]�[2;2] B = [X|Ys], �0[2;2]�[2;3] integer(X), �0[2;3]�[2;4] collect(Ys). �0[2;4]collect(B):- �[3;0]�[3;2] collect(B). �0[3;2]Figure 3: Mode-Annotated Argument Slices of Procedure collect/2Argument Slices of Mode-Annotated ProceduresA mode-annotated procedure with arity n yields a sequence of n argument slices. Inorder to obtain argument slice i each clause is analysed separately: �rst its set �eCof < -pairs is prepared and then each subgoal is checked for relationships between itsvariables and the argument slice i being built. The slicing of mode-annotated recursivesubgoals is straightforward. A non-recursive subgoal may either be included or not beincluded in argument slice i, depending on the properties its variables possess and theset �eC, as explained before.The i-th argument slice of a vector of mode-annotated subgoals is obtained bychecking the c- or t-relevance of each subgoal: if the subgoal is relevant, then it is putinto the argument slice; if it is not relevant a true subgoal replaces it:10

De�nition 2.13 Given a vector ~S = eS0; : : : ; eSn in eC, the vector ~Si = eS[0;i]; : : : ; eS[n;i],of subgoals relevant to argument slice i is such that eS[j;i] = eSj, if relevant ci (eSj; eC) orrelevant ti(eSj ; eC); otherwise eS[j;i] = true.The insertion of true predicates is due to a notational convenience. We shall assumethat these true predicates are eliminated.De�nition 2.14 Given eC, its i-th mode-annotated argument slice, eCi, is of the formp(xi) :- ~S[0;i] �p0 p(x[0;i]) �p00 ~S[1;i] : : : ~S[r;i] �pr p(x[r;i]) �pr 0 ~S[r+1;i]:.De�nition 2.15 Given a mode-annotated procedure eP = eC1; : : : ; eCm with arity n, itsi-th mode-annotated argument slice ePi; 1 � i � n, is comprised of clauses eC[1;i]; : : : ; eC[m;i].Termination and Correctness of the Argument Slicing StageIn order to obtain the i-th argument slice of eP each mode-annotated subgoal mustbe checked for its c- or t-relevance (Defs. 2.10 and 2.12, respectively). The c- and t-relevance checking relies on the <��eC -relationships between the variables of the subgoaland those variables of the recursive calls and head goal of the argument slice. Thereare search procedures which guarantee that this analysis always terminates for �nitesets �eC and since we are dealing with a �nite number of subgoals in each clause thiswill always be the case here. The checking for a user-test is also clearly �nite, given a�nite set of user-de�ned tests. Thus the argument slicing of a mode-annotated clausealways terminates, and since there is only a �nite number of clauses in a procedure,the argument slicing of a mode-annotated procedure always terminates.The result of the relevance analysis of each subgoal is such that when a mode-annotated subgoal is considered not c- or t-relevant then, in spite of the accuracyof its mode-annotations, this result is correct in the sense that the subgoal does notcontribute to the argument slice (as explained in the beginning of this section). If,however, the outcome of the relevance analysis is positive (eS is c- or t-relevant) itmight be the case that, due to inaccurate mode-annotations and the policy adopted tocope with them, the subgoal does not really contribute to the argument slice: if thesame analysis were performed with more accurate mode-annotations the subgoal wouldnot be considered relevant. The source of this imprecision is the third case of Def. 2.12dealing with inaccurate mode-annotations (when unknown variables are considered tobe �xed). The other cases overlap with those cases of Def 2.10, and since an unknownvariable is either �xed or changing, no mistakes are introduced. However, if we assumethat an unknown variable of eS is �xed and the third case of Def. 2.12 causes eS to beconsidered t-relevant, a mistake may be introduced.2.3 Clause-Annotation of Mode-Annotated Argument SlicesMode-annotated argument slices may have references to variables of other slices. Thisvariable sharing between di�erent argument slices is also part of the programmingtechnique being extracted and must be explicitly represented. We employ, for thispurpose, place holders for variables referred to across clauses of di�erent argumentslices, the clause-annotations. They are of the form \hhrequired(V)ii" stating that atthat point in the clause the variable symbols in the set V are required to be instantiatedto variables of other argument slices, and of the form \hho�er (V)ii" indicating that fromthat point in the clause onwards the set of variable symbols in V is o�ered to be linkedto variables in other argument slices. Each subgoal of a mode-annotated argument11

slice receives one annotation of each of the forms above: the required annotation beforeit and the o�er after it. In both cases V may be empty.Clause-annotations provide explicit links between argument slices. The sharing ofvariables between argument positions is another feature of a Prolog programming tech-nique extracted and recorded during this stage. If a subgoal has inaccurate mode-annotations then it gives rise to more than one clause-annotated version, the di�er-ent versions corresponding to distinct ways of viewing those variables with inaccuratemode-annotations. Here we shall not distinguish between recursive and non-recursivesubgoals: eC is of the form p(x) :- eS0; : : : ; eSn where each eSi is a mode-annotated sub-goal, recursive or not. A variable may only appear once in the clause-annotations of aclause.The clause-annotated version of a mode-annotated argument slice eP is de�ned asthe clause-annotated version of each of its mode-annotated clauses. A clause-annotatedversion of a mode-annotated clause is comprised of the clause-annotated version of eachsubgoal, plus an initial o�er annotation:De�nition 2.16 Given a mode-annotated clause eC, its clause-annotated version, beC,is of the form p(x) :- �0 hho�er(W0)ii beS0; : : : ; beSn, where W0 = fxg if :change (x; �0; �0n);otherwise W0 = ;.This clause-annotation o�ers the non-changing variable in the head goal: from thatpoint in the clause onwards x can be employed in the computations of other argumentslices; otherwise W0 is empty. When the mode-annotated clause eC is a fact of theform p(x) �, that is, when there are no mode-annotated subgoals in its body2, itsclause-annotated version is of the form p(x) � hho�er(fxg)ii.De�nition 2.17 Given a mode-annotated subgoal eS its clause-annotated version beSiis of the form hhrequired(Vi)ii �i q(: : : ; y1; : : : ; ym; : : :) �0i hho�er(Wi)ii, where yl 2 Vi;:change(yl; �p; �0p); yl 62 Vj ; yl 62 Wk; 0 < j < i; 0 � k < i; 1 � p � n; and yl 2 Wi;:�xed (yl; �i; �0i); yl 62 Wj ; 0 � j < i; yl 62 Vk; 0 < k � i.The set Vi of required variables of Si is built by collecting all those variables whoseassociated tokens do not satisfy the change relation in any subgoal of that clause, ifthey are not already in a previous required or o�er annotation. The set Wi of o�eredvariables of Si is comprised of those variables whose associated tokens do not satisfythe �xed relation, and are not already in any previous clause-annotation including therequired annotation of Si itself.An algorithm to obtain the clause-annotated version of a mode-annotated argumentslice is given in [Vas94a]. In Figure 4 we show the clause-annotated versions of collect/2:the clause-annotations with empty sets are not shown, nor are the clause-annotationswhose variables are not referred to in other argument slices.3 Formalising Extracted TechniquesThe clause-annotated argument slices obtained at the end of the previous stage arethe basic components of a programming technique. A programming technique is thesmallest sub-sequence of clause- and mode-annotated argument slices such that allrequired variables appear in an o�er annotation of some other argument slice in that2This will only happen if the instantiation status of x does not change, otherwise the subgoalperforming the change would have appeared in the body.12

collect(A):-A = [].collect(A):-A = [X|Xs], hho�er(fXg)iiinteger(X),collect(Xs).collect(A):-A = [X|Xs],collect(Xs). collect(B):-B = [].collect(B):-hhrequired (fXg)ii B = [X|Ys],integer(X),collect(Ys).collect(B):-collect(B).Figure 4: Clause-Annotated Argument Slices of Procedure collect/2sub-sequence. The de�nitions of this section require only that our constructs (subgoals,clauses and procedures) be clause-annotated. The mode-annotations are not essentialin the formalisation proposed here. We shall denote this by dropping the \e" symbolrepresenting the mode-annotations. This should not be taken as a restriction: theconcepts shown here can be understood, without signi�cant changes, as employingclause- and mode-annotated constructs.The de�nition below states that if there is a clause bC[k;i] in bPi requesting a variable(i.e. it has a required annotation with a non-empty set) which is o�ered by a clausebC[k;j] in bPj, then we say that bPi requires bPj :De�nition 3.1 bPi requires bPj , requires(bPi; bPj), if there is a k; 1 � k � m, such thati) bC[k;i] = H[k;i] :- ~G[k;i]hhrequired(V)ii~G0[k;i], and ii) bC[k;j] = H[k;j] :- ~G[k;j]hho�er(W)ii~G0[k;j], or bC[k;j] = H[k;j] � hho�er (W)ii, and iii) V \W 6= ;The symbols ~Gi stand for a possibly empty sequence of subgoals. The second conditionshows two possible templates for the clause of bPj because when a clause o�ers variablesit can either have a non-empty body or be a fact.Argument slices with empty sets of required variables are techniques on their own.Our collect/2 procedure has two techniques: a technique T1 = hbeP 1i correspondingto the �rst argument slice alone (with no required variables) and another techniqueT2 = hbeP 1; beP 2i involving both argument slices.Example: The following procedure p/4p(A,Y,C,S):-A = [X|Xs],X = Y,C = 0,S = 0.p(A,Y,C,S):-A = [X|Xs],X n== Y,p(Xs,Y,RC,RS),C is RC + 1,S is RS + X.has the following sequence of clause-annotated argument slices (for the sake of brevity,only those clause-annotations cross-referred to in other argument slices are shown) wrtquery p([1,3,end],end,C,S):bP1 = p(A):-A = [X|Xs], hho�er(fXg)iihhrequired (fYg)ii X = Y.p(A):-A = [X|Xs], hho�er(fXg)iihhrequired (fYg)ii X n== Y,p(Xs). bP2 = p(Y). hho�er(fYg)iip(Y):- hho�er(fYg)iip(Y).13

bP3 = p(C):-C = 0.p(C):-p(RC),C is RC + 1. bP4 = p(S):-S = 0.p(S):-p(RS),hhrequired (fXg)ii S is RS + X.The set of techniques T = fT1;T2;T3;T4g is such that T1 = h bP1; bP2i is a techniquede�ning the ow of the execution, decomposing a list until a certain element is found;T2 = h bP2i is a technique carrying a value down the recursive call; T3 = h bP3i is atechnique counting the number of iterations of a loop; and T4 = h bP1; bP2; bP4i is atechnique summing the elements provided by technique T1. Since the argument slicesshare the same relative ordering of the original procedure, more complex techniques(such as T1 and T4) may use other simpler techniques as part of their de�nitions.In [Vas94a] we de�ne an algorithm to partition the sequence of all clause-annotatedargument slices of a procedure into a set of techniques. The algorithm works by collect-ing the clause-annotated argument slices sharing variables, and assembling a sequencewhich preserves the original ordering of the argument positions.The predicate path/2 shown below, which holds if its second argument is a listcontaining a path from the head element of the list in the �rst argument position toa destination node, can be enhanced by the appropriate combination of the argumentslices comprising the techniques above. For instance, the combination of P3 and path/2is straightforward, it only being necessary that the variables be renamed so as to avoidname clashes. The combination of P4, on the other hand, demands the participationof a human user to inform which value the required variable X in P4 should be boundto in the path/2 predicate: in the example below the user has chosen for this purposethe cost C associated with each edge. The \�" symbol stands for a restricted form of aprogram combination operator, employed by a Prolog Techniques Editor (such as theone described in [Rob91]):path(P,S):-P = [N|],destination(N),S = P.path(P,S):-P = [N|],edge(N,M,C),n+ member(M,P),NP = [M|P],path(NP,S). � P3 � P4 = path(P,S,C1,S1):-P = [N|],destination(N),S = P,C1 = 0,S1 = 0.path(P,S,C1,S1):-P = [N|],edge(N,M,C),n+ member(M,P),NP = [M|P],path(NP,S,C2,S2),C1 is C2 + 1,S1 is S2 + C.4 ConclusionsA method to extract programming techniques from Prolog programs is presented here.Programming techniques are analysed and extracted with respect to a query. Themethod employs information concerning the usage of the subgoal to complement itssyntax and to partition the procedure into a set of argument slices. The argumentslices comprise the building blocks of programming techniques. Some argument slicesare techniques on their own, but they may also be part of more complex constructs.The sharing of variables between argument slices is recorded and considered as part ofthe technique being extracted.An inaccurate account of the changes in the instantiation status of the variables mayhave serious negative e�ects. The syntactic part of a technique is completed with the14

information concerning the changes in each of its variables. The proper identi�cationof a technique relies strongly on the quality of the information gathered in the �rststage, the mode-annotations. The other stages employ this information and will bea�ected if inaccuracies are present.Programming techniques, once extracted and formalised as shown here, can be usedas input to all those applications explained in the �rst section. The formalism proposedcan be enhanced with more elaborate forms of representation, such as the one proposedin [Vas92].Acknowledgements: Thanks are due to D. Robertson, J. Hesketh and A. Bowles for helpful discussions, to S. Simpsonfor proof-reading earlier drafts of this paper, and to the anonymous referees for their comments.References[BBD+91] P. Brna, P. Bundy, T. Dodd, C. K. Eisenstadt, M. Looi, H. Pain, D. Robertson, B. Smith,and M. Van Someren. Prolog Programming Techniques. Instructional Science, 20(2):111{133, 1991.[Ben94] D. Bental. Recognising the Design Decisions in Prolog Programs as a Prelude to Critiquing.PhD thesis, Department of Arti�cial Intelligence, University of Edinburgh, 1994.[BRV+93] A. W. Bowles, D. Robertson, W. W. Vasconcelos, M. Vargas-Vera, and D. Bental. Ap-plying Prolog Programming Techniques. Research Paper 641, Department of Arti�cialIntelligence, University of Edinburgh, 1993. To appear in the International Journal ofHuman-Computer Studies.[CC92] P. Cousout and R. Cousout. Abstract Interpretation and Application to Logic Programs.Journal of Logic Programming, 13(2{3):103{179, 1992.[Dev90] Y. Devilles. Logic Programming: Systematic Program Development. Addison-Wesley, 1990.[Gab92] D. S. Gabriel. TX: a Prolog Explanation System. Msc dissertation, Department of Arti�cialIntelligence, University of Edinburgh, 1992.[KK87] T. Kanamori and T. Kawamura. Analyzing Success Patterns of Logic Programs by Ab-stract Interpretation. Technical Report 279, ICOT, June 1987.[Loo88] C.-K. Looi. Automatic Program Analysis in a Prolog Intelligent Teaching System. PhDthesis, Department of Arti�cial Intelligence, University of Edinburgh, 1988.[Rob91] D. Robertson. A Simple Prolog Techniques Editor for Novice Users. In 3rd AnnualConference on Logic Programming, Edinburgh, Scotland, April 1991. Springer-Verlag.[Vas92] W. W. Vasconcelos. Formalising the Knowledge of a Prolog Techniques Editor. In 9thBrazilian Symposium on Arti�cial Intelligence, Rio de Janeiro, Brazil, October 1992.[Vas94a] W. W. Vasconcelos. A Method of Extracting Prolog Programming Techniques. TechnicalPaper 27, Department of Arti�cial Intelligence, University of Edinburgh, 1994.[Vas94b] W. W. Vasconcelos. Designing Prolog Programming Techniques. In Proceedings of theThird International Workshop on Logic Program Synthesis and Transformation (LoP-STr'93). Springer-Verlag, 1994.[VVRV93] M. Vargas-Vera, D. Robertson, and W. W. Vasconcelos. Building Large-Scale PrologPrograms using a Techniques Editing System. Research Paper 635, Department of Arti-�cial Intelligence, University of Edinburgh, 1993. Presented as a poster at the ILPS'93,Vancouver, Canada. 15

