Extracting Prolog Programming Techniques*

Wamberto Weber Vasconcelos®
Department of Artificial Intelligence, University of Edinburgh
80 South Bridge, Edinburgh EH1 1HN — Scotland, Great Britain
(wamb@aisb.ed.ac.uk)

Research Paper 715

Abstract

We present a method of extracting the programming techniques employed in Pro-
log programs. Our method records the manner each subgoal has been used and
employs this, together with its syntax and other auxiliary information, to parti-
tion the program into single-argument procedures possibly sharing variables. A
technique is formally characterised as a sequence of such single-argument proce-
dures.

1 Introduction

In this work we describe an automated approach to extracting the programming tech-
niques of Prolog programs. A Prolog programming technique is viewed here as the
syntax of the program and the manner it has been used: the same constructions in
a predicate give rise to different techniques depending on how the predicate has been
used. The “usage” of a predicate will be depicted here as the instantiation status of
each of its variables and how they change during conventional Prolog interpretation.
In the program fragment below, for instance,

pC... 00 ..0.
pC... [XIXs] ..):-
pC... Xs ..).

the argument position shown may be either a technique to build a list or to decompose
it, depending on how the predicate is used. Prolog programming techniques are not
directly expressed through specific syntactic primitives (e.g. “while” and “do-until”
loops), but by the sophisticated use of the comparatively simple syntax of Prolog.
These techniques can also involve different argument positions: a program to sum the
elements of a list employs in one argument position a technique to decompose a list
and in another argument position another technique to perform the actual sum of the
elements.

We restrict our attention to programming techniques within a single procedure!.
Initialisation calls and techniques spread across more than one predicate (e.g. mutually

*This paper has been accepted for presentation and publication in the proceedings of the XI Brazil-
ian Symposium on Artificial Intelligence, to be held in Ceara, Brazil, October, 1994. An extended
version of it is found in [Vas94a].

TOn leave from State University of Ceara, Ceara, Brazil; sponsored by Brazilian National Research
Council (CNPq), under grant no. 201340/91-7.

'We shall employ Deville’s [Dev90] definition of a logic procedure as the sequence of clauses with
the same predicate p™ (predicate p with arity n) in the head of each of these clauses.

recursive predicates) are outside the scope of this work, as well as any other technique
which spans more than one procedure.

In the next subsection we explain the importance of the work presented here and
how it interrelates with other research areas. The following subsection describes the
syntactic constraints on those programs analysed and lays out some notation and con-
ventions. The second section explains the three stages of the extraction method. The
third section shows a manner of formally representing the extracted techniques. The
last section summarises the work presented here and discusses its limitations.

The Importance of Formalising Programming Techniques

Brna et al [BBD*91] informally describe programming techniques as the common code
patterns used by programmers in a systematic way, being independent of any partic-
ular algorithm or problem domain. Programming techniques are, however, specific to
a particular programming language, Prolog, in our case. The concept of Prolog pro-
gramming techniques has been developed and applied in a variety of contexts, such as
techniques-based editors [Rob91], program tracing [Gab92], program transformation
[VVRV93], and automatic program analysis [Loo88, Ben94] (see [BRV193] for a survey
on some of these research topics).

All these applications, however, assume the techniques are somehow encoded and
made available, but no further details as to how this is done are provided. The prepa-
ration of these techniques may require much labour and ingenuity, for no formalisation
or methodology has been proposed as an aid. The person responsible for devising the
set of available techniques chooses, after studying patterns frequently found in pro-
grams and acclaimed techniques informally described in Prolog textbooks and papers,
a number of techniques and manually encodes them so that the application(s) can use.

In this report we propose a means of automatically extracting the programming
techniques from working Prolog programs. The extracted techniques are formally rep-
resented as single-argument procedures sharing variables across their clauses. The
notation employed to represent the extracted techniques is based on the formalism
proposed in [Vas94b]. The extracted techniques can be stored in a library and supplied
to each of the applications above.

Syntax of Programs and Adopted Notation

Only pure Prolog programs, without cuts, disjunctions or if-then-else’s, complying with
the Edinburgh Prolog syntax are our concern here. Moreover, no assert, retract,
abolish or similar database-altering predicates can be used. The built-in predicates
currently handled by our method are the operators =, =:=, =\=, == \==, > >= <, =<
and =.. (denoted by “¢”), the arithmetic operator is, the tests atom, atomic, float,
integer, number, var and ground (denoted by “q”), the input predicates read and
get (denoted by “I”) and the output predicates write and display.

We assume, without loss of generality, that the programs are in a normal form,
with all unifications explicitly made via calls to = or =... This normal form allows
for the homogeneous treatment of unifications in the head and in body goals, and
their descriptions are similar. Moreover, programs in a normal form provide a detailed
account of the computations taking place, splitting complex operations into a sequence
of simpler subgoals.

In this work variables are denoted by u,v,w,x,y and z, possibly super- and sub-

scripted; constants are denoted by a, b and ¢, possibly super- and subscripted; function
symbols are denoted by f,¢ and &, possibly super- and subscripted, the superscript
standing for the arity of the function symbol — f? also stands for a constant; predi-
cate symbols are denoted by p, ¢ and r, possibly super- and subscripted, the superscript
standing for the arity of the predicate symbol. These are meta-symbols by which Pro-
log constructs can be generically referred to. The construction x = y stands for a test
in which the actual Prolog variable symbol abstractly represented by x is the same
variable symbol as that represented by y. Specific Prolog constructions will be in this
kind of font.

2 Extraction of Prolog Programming Techniques

Given a working Prolog program complying with the syntactic restrictions above, our
method extracts those programming techniques used in it. The method carries out the
analysis and extraction of the techniques of a procedure with respect to a query, which
defines how the predicate is to be used. In the first stage of our method, the procedure
P of arity n, consisting of clauses Cy,...,C,,, is analysed with respect to a query () and
annotated with tokens describing the instantiation status of its variables before and
after the execution of each subgoal. The outcome of this stage is the mode-annotated
version of procedure P (wrt)) denoted by]5, as shown in Figure 1.

P]3 ﬁl]Ajn Py Pr
! 1 & 2 O Cli,n] 3 Ol Cl1,n]
- . - . [N} . - . PR .
Cm 5 C . C . = 2
= L.l Lozl Cpm1] Clom.n)

Figure 1: Stages of the Extraction Method and their Intermediate Results: 1 — Mode-
Annotation; 2 — Argument Slicing; 3 — Clause-Annotation

In the second stage P is partitioned into a sequence <]51, ey]Sn> of single-argument
procedures, its argument slices. Each argument position in the head goal of a clause
has an argument slice consisting of those subgoals relevant to the argument position.
The notion of relevance of a subgoal with respect to an argument slice is one of the
contributions of this work.

The last stage of the method inserts clause-annotations, place holders for variables
referred to across clauses of different argument slices, into the clauses of the mode-

annotated argument slices, yielding the sequence <]51,...,]5n>. Clause-annotations
state the required and offered resources (in the form of variables) of each clause of
an argument slice. A technique is formally characterised as a sequence of argument
slices sharing variables.

2.1 Mode-Annotation of Procedures

The first stage carries out the mode-annotation of the procedure with the instantiation
status of the variables in each subgoal. The mode-annotation collects information
about the use of each variable during the execution of a procedure. This can be

achieved by the concrete (actual) or the abstract interpretation of the procedure being
analysed. Both alternatives have been implemented and each one has its advantages
and disadvantages.

A mode-annotated procedure consists of those clauses whose head goal matches
the query annotated with tokens associated with the variables of each subgoal. These
tokens convey information on the instantiation status of the variable, i.e. if the variable
is free, instantiated, ground, etc., as will be seen below. The mode-annotated clauses
are obtained by inserting a simplified form of substitution after the head goal unification
and before and after each subgoal in the body of the clause. A mode-annotated clause
is of the form H :-60, 6, 5, 01,...,0, 5,0, where H and S; are subgoals and the §; and
0! are simplified substitutions in which the actual values associated with variables are
replaced by tokens representing their instantiation status. The simplified substitutions
contain all the variables of the clause, and their associated tokens change to reflect how
the execution of each subgoal alters their instantiation status. The mode-annotation
0y contains the status of the variables immediately after the head goal is matched. It is
clear that 6y = 6y and 6! = 6,4, but this replication is made necessary because during
the argument slicing stage (subsection 2.2) mode-annotated subgoals can be removed
and the lack of substitutions would render the mode-annotated clause inaccurate.

During the mode-annotation, the tokens “f” (associated with free variables), “g”
(associated with ground variables, i.e. variables bound to constants or composed terms
with ground subterms only), “1i” (associated with instantiated variables, i.e. variables
not free) and “?”7 (associated with variables whose status is unknown) are available.
We need token “i” to represent the instantiation mode of variables bound to composed
terms with at least one free variable, that is, “partially ground/partially free” structures
(e.g. a list with a free variable as its tail). Neither “£” nor “g” would accurately
describe this partially ground/partially free status. Due to limitations inherent in
abstract interpretation techniques, the token “?” has to be included. Having the
token “?” assigned to a variable means that the variable may be free, instantiated or

ground, but nothing more specific can be said.

Mode-Annotation via Concrete Interpretation

A very simple approach to mode-annotate a clause is by concrete interpretation: run
the program (say, by using an enhanced Prolog meta-interpreter) with the initial query,
and collect information before and after the execution of each subgoal. The concrete
interpretation of a program may use the same clause many times, obtaining the same
mode-annotated version. Repeated clauses, however, are not relevant to the adopted
view of techniques: they will be discarded, and only one mode-annotated version of
the clause will actually be employed.

The mode-annotation of a procedure using an enhanced meta-interpreter provides an
accurate account of a particular execution of that procedure: the instantiation status
of each variable is always known and either “£7, “i” or “g” is assigned to it. However,
because we are actually running a program while mode-annotations are collected, if
the program does not terminate neither does the mode-annotation. Another problem
is that there might be clauses which are not used in the execution of the procedure
and hence will not have their mode-annotated versions collected.

The non-termination might not be an important issue: the extraction process relies
on the participation of a user whose initiative in choosing the program and the query

is essential — it would be expected that the user had chosen the program because it
computed (hence terminated) some interesting result. The incompleteness issue can be
circumvented by again relying on the user’s choice of an appropriate query: if a clause
is left out of the mode-annotation the user would be warned about it and another query
would be asked.

To illustrate the incompleteness issue, we shall consider a normal form of the col-
lect/2 procedure which holds if its first argument is a list whose integer elements (if
any) are to be found, in the same order, in the list comprising the second argument. Its
(concrete) mode-annotated version wrt query collect ([fool,fo02,f003,fo04],L) is
shown in the left-hand side of Figure 2: the second clause of collect/2 (in which the
elements satisfying integer/2 are used to build the list comprising the second argu-
ment) was left out. For the sake of brevity, in Figure 2 we have omitted repeated
mode-annotations, #y being reused as #; and 0. as 6;;:

collect(A,B):- {a/g,B/f} collect(A,B):- {a/g,B/f}
A=10, {a/g,B/t} A=11, {a/g,B/t}
B =[]. {a/g,B/g} B=1[]. {a/g,B/g}
collect(A,B):- {A/g,B/f,X/f,Xs/£,Ys/E}
A = [X|Xs], {A/g,B/f,X/g,Xs/g,Ys/E}
B = [X|¥s], {A/g,B/i,X/g,Xs/g,Ys/E}
integer(X), {A/g,B/i,X/g,Xs/g,Ys/E}
collect(Xs,¥s). {A/g,B/i,X/g,Xs/g,¥Ys/i}
collect(A,B):- {A/g,B/f,X/f,Xs/E} collect(A,B):- {A/g,B/f X/ ,Xs/E}
A = [X]|Xs], {A/g,B/t,X/g,Xs/g} A = [X|Xs], {A/g,B/f ,X/g,Xs/g}
collect(Xs,B). {A/g,B/g,X/g,Xs/g} collect(Xs,B). {A/g,B/i,X/g,Xs/g}

Figure 2: Concrete (Left) and Abstract (Right) Mode-Annotated Versions of procedure
collect /2 with respect to query collect([fool,f002,f003,fo04],L)

Mode-Annotation via Abstract Interpretation

An alternative approach to mode-annotate a procedure is to use abstract interpretation
[CC92, KK8T], and to simulate the actual computations of Prolog in terms of the
tokens describing the instantiation of each variable. The mode-annotation based on
abstract interpretation eventually terminates, even for non-terminating programs. The
program has its execution simulated by having each clause separately interpreted, but
no potentially non-terminating flow of control is actually established. Furthermore,
if the same query is supplied to both concrete and abstract interpreters, there is a
guarantee that the clauses obtained in the latter form a superset of those obtained in
the former.

These features overcome the disadvantages of the concrete interpretation pointed out
previously: the system does not need to rely on the user’s appropriate choice of a query
to produce good quality mode-annotated procedures, since here the process always
stops and supplies a mode-annotated version of every reachable clause in conventional
Prolog execution.

A major deficiency of abstract interpretation in comparison with concrete interpre-
tation is the lower quality of its mode-annotations themselves. During the abstract
interpretation the sharing of variables within terms is not recorded and changes in
their instantiation status are not propagated. This causes the inaccuracy of the mode-
annotations given by the abstract interpreter. We show in the right-hand side of

Figure 2 the mode-annotated version of procedure collect/2 obtained via abstract in-
terpretation, with respect to the same query used in the concrete interpretation — the
last annotation of the third clause is of less quality: B ends up associated with “i”
rather than with “g”, as in the right-hand side version, but all three clauses of the
procedure are considered.

2.2 Argument-Slicing of Mode-Annotated Procedures

In this stage the mode-annotated procedure obtained previously is partitioned into a
sequence of distinct argument slices, i.e. single-argument mode-annotated procedures
comprising the “building blocks” of more complex programming techniques. Fach
argument position in the head goal of a mode-annotated clause has an argument slice
consisting of those subgoals relevant to the clause. This notion of relevance is formally
stated in this section.

The analysis performed takes into account relationships between the variables of the
subgoal and the changes in their modes. The mode-annotations play an essential role
in the definition of the conditions a subgoal must fulfil to be included in an argument
slice. Different mode-annotations in a procedure may yield different argument slices
and hence different techniques. The outcome of this analysis is highly dependent on the
quality of the mode-annotations: the more accurate these are, the better the outcome
is. The more tokens “i” or “?” in the mode-annotations, the less accurate is the
argument slicing.

In the definitions of this section C stands for a mode-annotated clause of the form
(1, .. 2,) 1= So g p(xp0a]s - - -5 Tlon)) o8’ Sy...S, or () s Tpa]) 07 St
where 5}, 0 < < r+41, are possibly empty vectors of non-recursive mode-annotated
subgoals, each of the form 6 ¢(... y1 ... ym ...) 6, and denoted by S. Mode-annotated

subgoals will sometimes be shown enclosed in boxes to facilitate their visualisation.

Recursive subgoals are sliced simply by restricting their arguments to the variable
x[;,q occupying position ¢ in the j-th recursive call. The head goal is sliced by re-
stricting its variables to z;, occupying position . The variables z;, z), ..., 7[,; of the
argument-sliced head and recursive subgoals also play an important role in the analysis
of relevance of a subgoal: if the subgoal does not affect (either directly or indirectly)
these variables then it should be considered irrelevant. A subgoal affects these vari-
ables if it a) changes the content of a variable (either by assigning a value to it or by
instantiating parts of it) employed, directly or not, to change the contents of one of the
variables x;, [0, . . ., ¥[,i], or b) lests a variable whose value was obtained, directly or
not, from one of the variables x;, z[o, ..., Z[,;. This notion of relevance uses Prolog’s
own execution model as a criterion: if a subgoal neither interferes with nor contributes
to the argument slice, then the subgoal is not relevant and should not be included in
the argument slice.

Relationships between Variables

In order to decide whether or not a subgoal is relevant we must find out which compu-
tations take place in each subgoal and how important each subgoal is for its variables.
This is done by studying the mode-annotations before and after each subgoal, and
deciding which variables had their contents changed and which variables were simply
used in the subgoal execution, without having their contents altered.

The actual content of a variable is abstracted as a token and this has to be considered

during the analysis of this stage. If a variable has associated tokens “f” (or “g”)
before and after a subgoal it is correct to assume that the content of the variable did
not change. If a variable has tokens “f” and “g” (or “f” and “i”) associated with
it respectively before and after the subgoal execution, it is correct to assume that
its actual content did change. However, for tokens such as “i” and “?”, representing
supersets of values of other tokens, it is not possible to say with accuracy when changes
take place.

We define three relationships, fized, change and unknown, of a variable x with respect
to a mode-annotated subgoal, which hold if it is safe to assume that the content of z,
abstracted by its tokens in 6 and ', has remained fixed, has changed or is unknown,

respectively:

Definition 2.1 fized(x,0,0") holds if x/T € 0,2/T" € ¢/, T =T",T € {g, £}.
Definition 2.2 change(x,0,0') holds if /T € 0,2/T" € 0/, T = £,T" € {g,1}.
Definition 2.3 unknown(x,,6") holds if =fized(x,0,6") and —~change(x,0,6").

Variables whose associated tokens satisfy the fized relation will be called fized variables.
Variables whose associated tokens satisfy the change relation will be called changing
variables.

The mode-annotated subgoals provide us with the description of the relations be-
tween their variables: those fixed variables supply their values to compute the changes
in the contents of the changing variables. To formalise these relationships, we define
the possibly empty set of pairs of <1-related variables of a subgoal: a variable z is
d-related to y, = < y, if its content may have been changed employing the content of
y. There might be more than one such pair for each subgoal and hence a set has been
employed to store them:

Definition 2.4 The set py of <-related pairs (or simply <I-pairs) of S is comprised
of elements of the form y; < y; such that i) change(y;,0,0) and fized(y;,0,0"), or
i) unknown(y;,0,0") and fized(y;,0,0"), or iii) change(y;,0,0") and unknown(y;,0,8),
or iv) unknown(y;,0,0") and unknown(y;,0,0"). If S is of the form 0z = y 0 where
v/f € 0,y/f € 0 and x/f € 0',y/f € ', a special set pz of <-pairs is defined as
ps =tz <dy,y<ax}

We are proposing a manner of representing the relationships between variables using
their modes and how they change or remain constant during the clause execution.
Subgoals of the form = = y, where the modes of the variables remain unchanged as
“£7, deserve special attention for, in spite of the contents of and y not having changed,
the variables were definitely related to each other by means of the subgoal, this relation
being useful in the relevance analysis explained below.

A variable may be indirectly related, via an intermediate subgoal, to another vari-
able. To deal with these situations, we extend the definition of <1-pair sets to cover
whole clauses. The set of <I-pairs of a clause is built in a piecemeal fashion, each
non-recursive subgoal at a time. g, a vector of mode-annotated subgoals, has its set

pg of <I-pairs defined as the union of the sets of <1-pairs of its constituent subgoals:

Definition 2.5 The set pg of <I-pairs of S = Sos.... S, is ps=UJ p3 -

=0
The set of <d-pairs of a mode-annotated clause is the union of the sets of <I-pairs of
each vector of non-recursive mode-annotated subgoals — recursive subgoals are not

considered in this analysis:

N r+1
Definition 2.6 The set py of <I-pairs of C'is p5 = UJ g

1=0
The set of <-pairs provides an account of the dependency between the variables of a
clause and can be seen as a dependency graph: any indirect relationship between two
variables can be found by analysing the paths defined by the pairs (edges).

Example: The second clause C' of the right-hand side program of Figure 2 yields
pg ={X<1AXs<1ABUX,BdVs}

The analysis carried out in the slicing of a mode-annotated procedure may involve
indirect <-relationships. A variable y is (possibly indirectly) related to x via a set of
<J-pairs if there is a sequence of pairs such that the first pair is of the form x; <1y, any
two consecutive elements of the sequence are of the form z; < z;, 2; < zj and the last
element is of the form =z < z,:

Definition 2.7 Given a set p of <d-related pairs and two variables x and y, the relation
z <%y holds if i)z <y € p,orii) <Ay €pand x ;2.

The relation @ <17 y conveys the idea that the content of x may have been changed
employing (possibly indirectly) the content of y. The problem of finding out whether
x <y is similar to that of deciding if two nodes in a graph are connected — standard
search algorithms, such as breadth-first or depth-first, can be employed here. The
definition of <17 above can be extended to cope with sets of variables V;:

Definition 2.8 V; <%V, holds if there is at least one variable x € V; and at least one
variable y € V5 such that @ <17 y holds.

Relevance of Subgoals Changing the Contents of Variables

Subgoals which change the contents of a variable are important to our notion of a
programming technique because they define the computations through which values
are obtained. These values may help in defining the flow of control of the program or
may be the final values computed by the programming technique. The definition below
lists those cases when we can infer, by means of the syntax and mode-annotations of
the subgoal S, that a value is possibly being assigned to variable x:

Definition 2.9 A variable & has its content possibly changed in subgoal S, change(z, g),
if, and only if, one of the cases below holds:

L §=[0r 0 #loc (==} ~fired(r.0,0)

2§00 alloc (== .} fived(,0.0');
3. 8 =03(x) 0|, ~fived(z,0,0');
4. 5’ =|0xis fZ](.) o 7—|ﬁxed(x,(9,(9/);

5.8 = Op(...x...)0 | —system(p(...x...)), ~fized(x,6,0").
In this definition, a variable is considered to have its content possibly changed in S if it
appears in one of the subgoals depicted above and does not remain fixed: it can either
satisfy the change or the unknown relationships. The fourth case above, for instance,

considers those subgoals making use of is, such that the variable x on its left-hand
side is not fixed, to be changing the content of x.

A subgoal is considered a relevant computation if one of its variables with non-fixed
tokens is related to the variables x;, z[o, ..., Z[,, of the i-th argument slice:

Definition 2.10 If a subgoal S in C has a variable = with its content (possibly) being
changed, change(:z;,g), then it is c-relevant to argument slice ¢, relevantc(g C~'), if i)
x € {xi, T, - - - T}, or 1) one of the variables x;, xjg 4, . . . ,:zj[m is <1-related to each
variable y<l —related to x, that is, y <A« € pz, {2, 2y - -+ Trg] }<lp~{y}

The first Condltlon depicts those subgoals potentially Changmg the content of one of
the variables x;, z[0, ..., . Such subgoals may be providing a technique with its
final result or computing the value of its recursive calls. The second condition de-
scribes those subgoals computing intermediate values employed to change the value

of x;, [0, ...,2),. These intermediate values are relevant to the argument slice if
they are employed by z;, [0, ..., 2. In other words, the variables y to which z
“donates” its value, on their turn, “donate” their value to x;, x4, ..., T,

Relevance of Tests

Test subgoals are important to our notion of a programming technique because they
help to establish the flow of control of a procedure, or alternatively, they have the
potential to interfere with it. It is not too difficult a task to verify if a system predicate
is a test. However, finding out if a user-defined procedure may fail, possibly interfering
with the flow of control, is a complex issue, harder than checking if the execution of
a procedure terminates. We employ a shallow analysis in which the definition of user-
defined predicates is not taken into account. Instead, the user should provide all those
non-system predicates (and their call modes) which might fail. Only these predicates
(with the specified modes) will be considered to be user-defined tests. If a mode-
annotated subgoal satisfies the relation user-test then it is considered a user-defined
test. The cases below provide a precise characterisation of those subgoals which may
have been used as tests, potentially changing the flow of control of the procedure:

Definition 2.11 A variable & (possibly) has its content tested in subgoal S, test(x, g),
if, and only if, one of the cases below holds:

LS=l0ro...0lod{==.})

2. §=[0...0x0]og{==.};

3. S=|0z o fi(..)0]oc{==..},~change(z,0,0');

4. §=0 v oyt oc{==..},~change(z,0,0'), ~change(y,0,0');

5. 8=10 youat|oe{==..},change(x,0,0"), ~change(y,0,0') (same as above,
but z is now on the right-hand side of the operator);

6. S=09x)0}

7. 8 =|03(x) 0|, ~change(x, 0., 0');

8. S=|0xis fI(...)0 | ~change(x,0,0');

9. S =0y is f/(...x...) 0|, ~change(x,0,0") (same as above, but here z is one of

the variables in the expression);

10. S = Op(...,x,...)0 | user-test(S), ~change(x,8,0").

Inaccurate mode-annotations satisfy the —change relationship, and thus may introduce
their imprecision into the slicing stage. The list of cases above helps us find out which
variables in a subgoal are being tested. For instance, the third case above represents
those subgoals making use of = to carry out a data structure decomposition: if the
variable x on its left-hand side does not change then the subgoal is testing the content
of x against the pattern f/(...). When the content of a variable # may cause a test
subgoal to fail then, according to our view of a programming technique, this subgoal
is relevant to those argument slices providing the value for x or employing x in their

computations:

Definition 2.12 A subgoal Sin C testing a variable x, test(:z;,g), is t-relevant to
argument slice 7, relevantf(g, C~'), if i) x € {x;, 20,4, ...,)5 or ii) one of the variables
Ti, Tlog]s - - - Tfrg] 18 dzg—related to each variable y <-related to z, that is, y d = €
PEs 1T Lo, - - :1:[T7Z']}<l;g{y}; or i11) all the variables y providing values to x are <l;g—
related to x;, 20, ..., %[, that is, d y € PEs yd;g{xi, T[0,]s- - :1;[7072']}.

The first condition addresses those cases where the variables x;, x4, ...,z of the
t-th argument slice is actually being used to perform a test. The second case covers
the situation when z is being tested and it provides values for x;, zo, ..., z[]. The

third case covers the situation when all those variables which contributed to the value
of x had their values provided by z;, x4, ..., T

The two argument slices of the mode-annotated collect/2 (Figure 2) are shown in
Figure 3: the mode-annotations are shown before and after each subgoal, generically
represented as 0; and 0.

collect(A):- 11,01 collect(B):- 11,01
01,11 A=1]. 6’[’1 1 011,21 B =[]. !
) ,) [1,2]
collect(A):- 12,0] collect(B):- 12,0]
012,11 A= [XIXs], fp, g 012,2] B = [XIYs], 6,
012,31 integer(X), 6’['273] 012,31 integer(X), 6’['2 3]
012,41 collect(Xs). 9['274] 012,41 collect(¥s). 9['274]
collect(A):- 3,0] collect(B):- 3,0]
013,11 A = [X]|Xs], 0[’371] 013,21 collect(B). 0[’3 3
O[3 2] collect(Xs). 9['3 2] 7

Figure 3: Mode-Annotated Argument Slices of Procedure collect/2

Argument Slices of Mode-Annotated Procedures

A mode-annotated procedure with arity n yields a sequence of n argument slices. In
order to obtain argument slice ¢ each clause is analysed separately: first its set px
of <-pairs is prepared and then each subgoal is checked for relationships between its
variables and the argument slice ¢z being built. The slicing of mode-annotated recursive
subgoals is straightforward. A non-recursive subgoal may either be included or not be
included in argument slice ¢, depending on the properties its variables possess and the
set pg, as explained before.

The 2-th argument slice of a vector of mode-annotated subgoals is obtained by
checking the ¢ or t-relevance of each subgoal: if the subgoal is relevant, then it is put
into the argument slice; if it is not relevant a true subgoal replaces it:

10

Definition 2.13 Given a vector S = go, ey gn in C~', the vector 5; = 5[072»], ey Ongi]s
of subgoals relevant to argument slice ¢ is such that Sy = 5, if relevant;(S;,C') or
relevant((S;,C'); otherwise Sj;; = true.

The insertion of true predicates is due to a notational convenience. We shall assume
that these true predicates are eliminated.

Deﬁnitign 2.14 Given C~'Lits t-th mode-annotated argument slice, C., is of the form
p(xi) 1= Spo,q 05 p(@0,7) 05 St - - Speg 0F plap) 07" Speri--

Definition 2.15 Given a mode-annotated procedure P = (1, ..., C,, with arity n, its
t-th mode-annotated argument slice P27 1 <1 < n,is comprised of Clauses Cl P C[mﬂ]

Termination and Correctness of the Argument Slicing Stage

In order to obtain the i-th argument slice of P each mode-annotated subgoal must
be checked for its ¢ or t-relevance (Defs. 2.10 and 2.12, respectively). The ¢- and -
relevance checking relies on the <17 relationships between the variables of the subgoal
and those variables of the recursive calls and head goal of the argument slice. There
are search procedures which guarantee that this analysis always terminates for finite
sets ps and since we are dealing with a finite number of subgoals in each clause this
will always be the case here. The checking for a user-test is also clearly finite, given a
finite set of user-defined tests. Thus the argument slicing of a mode-annotated clause
always terminates, and since there is only a finite number of clauses in a procedure,
the argument slicing of a mode-annotated procedure always terminates.

The result of the relevance analysis of each subgoal is such that when a mode-
annotated subgoal is considered not ¢- or t-relevant then, in spite of the accuracy
of its mode-annotations, this result is correct in the sense that the subgoal does not
contribute to the argument slice (as explained in the beginning of this section). If,
however, the outcome of the relevance analysis is positive (S’ is ¢ or t-relevant) it
might be the case that, due to inaccurate mode-annotations and the policy adopted to
cope with them, the subgoal does not really contribute to the argument slice: if the
same analysis were performed with more accurate mode-annotations the subgoal would
not be considered relevant. The source of this imprecision is the third case of Def. 2.12
dealing with inaccurate mode-annotations (when unknown variables are considered to
be fixed). The other cases overlap with those cases of Def 2.10, and since an unknown
variable is either fixed or changing, no mistakes are introduced. However, if we assume
that an unknown variable of S is fixed and the third case of Def. 2.12 causes S to be
considered t-relevant, a mistake may be introduced.

2.3 Clause-Annotation of Mode-Annotated Argument Slices

Mode-annotated argument slices may have references to variables of other slices. This
variable sharing between different argument slices is also part of the programming
technique being extracted and must be explicitly represented. We employ, for this
purpose, place holders for variables referred to across clauses of different argument
slices, the clause-annotations. They are of the form “((required(V)))” stating that at
that point in the clause the variable symbols in the set V' are required to be instantiated
to variables of other argument slices, and of the form “((offer(V)))” indicating that from
that point in the clause onwards the set of variable symbols in V' is offered to be linked
to variables in other argument slices. Each subgoal of a mode-annotated argument

11

slice receives one annotation of each of the forms above: the required annotation before
it and the offer after it. In both cases V may be empty.

Clause-annotations provide explicit links between argument slices. The sharing of
variables between argument positions is another feature of a Prolog programming tech-
nique extracted and recorded during this stage. If a subgoal has inaccurate mode-
annotations then it gives rise to more than one clause-annotated version, the differ-
ent versions corresponding to distinct ways of viewing those variables with inaccurate
mode-annotations. Here we shall not distinguish between recursive and non-recursive
subgoals: C is of the form plx) - So, 5’ where each S is a mode-annotated sub-
goal, recursive or not. A variable may only appear once in the clause-annotations of a
clause.

The clause-annotated version of a mode-annotated argument slice P is defined as
the clause-annotated version of each of its mode-annotated clauses. A clause-annotated
version of a mode-annotated clause is comprised of the clause-annotated version of each
subgoal, plus an initial offer annotation:

Definition 2.16 Given a mode-annotated clause C, its clause-annotated version, 5’,
is of the form p(x) : = 0y (offer(Ws))) So,...,5,, where Wy = {z} if —change(x, 6o, 0);
otherwise Wy = 0.

This clause-annotation offers the non-changing variable in the head goal: from that
point in the clause onwards = can be employed in the computations of other argument
slices; otherwise Wy is empty. When the mode-annotated clause €' is a fact of the
form p(x) @, that is, when there are no mode-annotated subgoals in its body?, its
clause-annotated version is of the form p(x) 6 {(offer({x}))).

Definition 2.17 Given a mode-annotated subgoal S its clause-annotated version S;
is of the form ((required(V;)) 0; q(....y1,. - Ym,...) 0 {offer(W,))), where y; € Vi,
—change(yi,0,,0,),y1 € Vi,yr € Wi, 0 < j < 4,0 <k <4,1 < p < mnjandy € W,
—fized (v, 0:,00), 0 & W;,0 <j <i,y1 ¢ V,0< k <.

The set V; of required variables of 5; is built by collecting all those variables whose
associated tokens do not satisfy the change relation in any subgoal of that clause, if
they are not already in a previous required or offer annotation. The set W; of offered
variables of S; is comprised of those variables whose associated tokens do not satisfy
the fized relation, and are not already in any previous clause-annotation including the
required annotation of S; itself.

An algorithm to obtain the clause-annotated version of a mode-annotated argument
sliceis given in [Vas94a]. In Figure 4 we show the clause-annotated versions of collect /2:
the clause-annotations with empty sets are not shown, nor are the clause-annotations
whose variables are not referred to in other argument slices.

3 Formalising Extracted Techniques

The clause-annotated argument slices obtained at the end of the previous stage are
the basic components of a programming technique. A programming technique is the
smallest sub-sequence of clause- and mode-annotated argument slices such that all
required variables appear in an offer annotation of some other argument slice in that

?This will only happen if the instantiation status of z does not change, otherwise the subgoal
performing the change would have appeared in the body.

12

collect(A):- collect(B):-
A=1I]. B =[].
collect(A):- collect(B):-
A = [XIXs], {offer ({X})) {required ({X})) B = [X|Ys],
collect(Xs). collect(Ys).
collect(A):- collect(B):-
A = [X]|Xs], collect(B).
collect(Xs).

Figure 4: Clause-Annotated Argument Slices of Procedure collect /2

sub-sequence. The definitions of this section require only that our constructs (subgoals,
clauses and procedures) be clause-annotated. The mode-annotations are not essential
in the formalisation proposed here. We shall denote this by dropping the “~” symbol
representing the mode-annotations. This should not be taken as a restriction: the
concepts shown here can be understood, without significant changes, as employing
clause- and mode-annotated constructs.

The definition below states that if there is a clause ék 4 1n]5 requesting a variable
(i.e. it has a required annotation with a non-empty set) which is offered by a clause
6'[k,j] 10 P then we say that P, requires P

Definition 3.1 P, requires pj, requires(PZ,P]), if there is a k,1 < k < m, such that
2) C;“ = Hpyy :- G[kﬂ]((required(‘/)»G’kZ and 1) Ck] = Hy, ;) - G <<0ﬁer()
G[k j> Ot Ck] = Hy, ;) 0 (offer(W))), and iii) VN W £

The symbols G; stand for a possibly empty sequence of subgoals. The second condition
shows two possible templates for the clause of ﬁj because when a clause offers variables
it can either have a non-empty body or be a fact.

Argument slices with empty sets of required variables are techniques on their own.

Our collect/2 procedure has two techniques: a technique 7; = <]51> corresponding
to the first argument slice alone (with no required variables) and another technique

T, = <]51,]52> involving both argument slices.
Example: The following procedure p//

p(A,Y,C,S):-
[x1xs],
Y,
0,
0.
p(A,Y,C,8):-
A = [XI|Xs],
X \==v,
p(Xs,Y,RC,RS),
C is RC + 1,
S is RS + X.

has the following sequence of clause-annotated argument slices (for the sake of brevity,

v Q ke

only those clause-annotations cross-referred to in other argument slices are shown) wrt
query p([1,3,end],end,C,S):

p(A):-
A= [XIxs], (offer({X}))
~ Urequired ({Y})) X =Y. ~ pCO). (offer({YH))
P = pA):- Py = | pm:i- {offer({v})
A= [XIXs], (offer({X})) p(Y).
{required ({Y})) X \==Y,
p(Xs).

13

p(C):- p(8):-
~ Cc =0. ~ S =0.
P3: p(C):- P4: p(8):-
p(RC), p(RS),
C is RC + 1. {required ({X})) S is RS + X.

The set of techniques 7 = {T, T2, T3, T4} is such that T; = <]31,]32> is a technique

defining the flow of the execution, decomposing a list until a certain element is found;

Ty = (FP2) is a technique carrying a value down the recursive call; T3 = <]33> is a
technique counting the number of iterations of a loop; and Ty = (P, P2, Py) is a

technique summing the elements provided by technique T;. Since the argument slices
share the same relative ordering of the original procedure, more complex techniques
(such as Ty and T4) may use other simpler techniques as part of their definitions.

In [Vas94a] we define an algorithm to partition the sequence of all clause-annotated
argument slices of a procedure into a set of techniques. The algorithm works by collect-
ing the clause-annotated argument slices sharing variables, and assembling a sequence
which preserves the original ordering of the argument positions.

The predicate path/2 shown below, which holds if its second argument is a list
containing a path from the head element of the list in the first argument position to
a destination node, can be enhanced by the appropriate combination of the argument
slices comprising the techniques above. For instance, the combination of P and path/2
is straightforward, it only being necessary that the variables be renamed so as to avoid
name clashes. The combination of P4, on the other hand, demands the participation
of a human user to inform which value the required variable X in P; should be bound
to in the path/2 predicate: in the example below the user has chosen for this purpose
the cost C associated with each edge. The “.” symbol stands for a restricted form of a
program combination operator, employed by a Prolog Techniques Editor (such as the

one described in [Rob91]):

path(P,S,C1,81):-
P = [mWl1],
path(P,8):- destination(ll),
p = [m|], S =P,
destination(ll), Cci1 =0,
S =P. S1 = 0.
path(P,S):- . . _ path(P,S,C1,81):-
P=[Nl], Py Py= P=[Nl],
edge(W,M,C), edge(W,M,C),
\+ member(M,P), \+ member(M,P),
up = [M|P], up = [M|P],
path(NP,S). path(NP,S,C2,82),
C1 is €2 + 1,
S1 is S2 + C.

4 Conclusions

A method to extract programming techniques from Prolog programs is presented here.
Programming techniques are analysed and extracted with respect to a query. The
method employs information concerning the usage of the subgoal to complement its
syntax and to partition the procedure into a set of argument slices. The argument
slices comprise the building blocks of programming techniques. Some argument slices
are techniques on their own, but they may also be part of more complex constructs.
The sharing of variables between argument slices is recorded and considered as part of
the technique being extracted.

An inaccurate account of the changes in the instantiation status of the variables may
have serious negative effects. The syntactic part of a technique is completed with the

14

information concerning the changes in each of its variables. The proper identification
of a technique relies strongly on the quality of the information gathered in the first
stage, the mode-annotations. The other stages employ this information and will be
affected if inaccuracies are present.

Programming techniques, once extracted and formalised as shown here, can be used
as input to all those applications explained in the first section. The formalism proposed
can be enhanced with more elaborate forms of representation, such as the one proposed

in [Vas92].

Acknowledgements: Thanks are due to D. Robertson, J. Hesketh and A. Bowles for helpful discussions, to S. Simpson

for proof-reading earlier drafts of this paper, and to the anonymous referees for their comments.

References

[BBDT91] P. Brna, P. Bundy, T. Dodd, C. K. Eisenstadt, M. Looi, H. Pain, D. Robertson, B. Smith,
and M. Van Someren. Prolog Programming Techniques. Instructional Science, 20(2):111-

133, 1991.

[Ben94] D. Bental. Recognising the Design Decisions in Prolog Programs as a Prelude to Critiquing.
PhD thesis, Department of Artificial Intelligence, University of Edinburgh, 1994.

[BRVT93] A. W. Bowles, D. Robertson, W. W. Vasconcelos, M. Vargas-Vera, and D. Bental. Ap-
plying Prolog Programming Techniques. Research Paper 641, Department of Artificial
Intelligence, University of Edinburgh, 1993. To appear in the International Journal of
Human-Computer Studies.

[CCI2] P. Cousout and R. Cousout. Abstract Interpretation and Application to Logic Programs.
Journal of Logic Programming, 13(2-3):103-179, 1992.

[Dev90] Y. Devilles. Logic Programming: Systematic Program Development. Addison-Wesley, 1990.

[Gab92] D.S. Gabriel. TX: a Prolog Explanation System. Msc dissertation, Department of Artificial
Intelligence, University of Edinburgh, 1992.

[KK87] T. Kanamori and T. Kawamura. Analyzing Success Patterns of Logic Programs by Ab-
stract Interpretation. Technical Report 279, ICOT, June 1987.

[Loo88] C.-K. Looi. Automatic Program Analysis in a Prolog Intelligent Teaching System. PhD
thesis, Department of Artificial Intelligence, University of Edinburgh, 1988.

[Rob91] D. Robertson. A Simple Prolog Techniques Editor for Novice Users. In 3rd Annual
Conference on Logic Programming, Edinburgh, Scotland, April 1991. Springer-Verlag.

[Vas92] W. W. Vasconcelos. Formalising the Knowledge of a Prolog Techniques Editor. In 9th
Brazilian Symposium on Artificial Intelligence, Rio de Janeiro, Brazil, October 1992.

[Vas94a] W. W. Vasconcelos. A Method of Extracting Prolog Programming Techniques. Technical
Paper 27, Department of Artificial Intelligence, University of Edinburgh, 1994.

[Vas94b] W. W. Vasconcelos. Designing Prolog Programming Techniques. In Proceedings of the
Third International Workshop on Logic Program Synthesis and Transformation (LoP-
STr’93). Springer-Verlag, 1994.

[VVRV93] M. Vargas-Vera, D. Robertson, and W. W. Vasconcelos. Building Large-Scale Prolog
Programs using a Techniques Editing System. Research Paper 635, Department of Arti-
ficial Intelligence, University of Edinburgh, 1993. Presented as a poster at the ILPS’93,
Vancouver, Canada.

15

