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I IntroductionRange images have been attracting increasing attention from the machine vision community,as they directly provide shape descriptions often di�cult to compute from intensity images. Avariety of physical principles have been applied to the construction of range sensors: extensivereviews can be found in [2, 9, 10]. This paper describes a low-cost range sensor which usesstructured laser light to provide a high number of accurate surface measurements per frame.Attention is focused on calibration, data consistency and stripe detection; the application of thesensor in automatic model acquisition from multiple range views is also reported.The sensor acquires full images (as opposed to pro�les) by moving an object on a linear paththrough a static plane of laser light; the stripe created by the intersection of the object withthe laser plane is observed by two opposing cameras, and the pixel coordinates converted into3-D measurements. The sensor architecture and operation principles are described in Section II.Similar sensors have been reported by several researchers. Saint-Marc et al. [27] describe aPC-based scanner achieving an accuracy of 0.25mm (depth) with small objects placed at about0.5m from the sensor. The laser beam is static as in our case, but the object is moved on aturntable. Comparable arrangements are adopted in [28, 22, 37, 34]. An alternative designleading to more compact sensors can be based on a laser beam directed to sweep a workspaceby a system of oscillating and rotating mirrors. Archibald [1] describes the design of such 1-and 2-axis range sensors, which can be small and light enough to be mounted on a robot wrist,and their applications in welding, inspection and NC machining. Compact range cameras havealso been used for automatic CAD model acquisition [6], volumetric model reconstruction and1



visual exploration [36]. Unfortunately the commercial availability of small, light, 2-axis rangecameras is still limited. Yet another architecture involving a laser stripe sweeping a scene isproposed by Kanade et al. [23]: smart pixels in a fast VLSI sensor record the instant at whichthe highest intensity caused by a sweeping laser stripe is detected; time measures are convertedsubsequently into distances.In the panorama of comparable range sensors, the main contributions of this paper focuson calibration, stripe detection and measurement consistency. We also sketch an advancedapplication illustrating the use of range images, namely 3-D model acquisition from multiplerange views.The commonly adopted model-based calibration estimates the parameters of the geometrictransformation that back-projects any points of the image plane of each camera onto the laserplane [2, 9, 27]. This requires a valid closed-form model of the sensor components and basicphenomena, including at least the position, orientation and intrinsic parameters of the cameras,and the position of the light plane. The higher the measurement accuracy required, however,the more phenomena the model must include (e.g. lens distortion, image center, scale factor),thus becoming signi�cantly complicated; some phenomena may always remain elusive. As aconsequence, model-based calibration may become unstable and tedious in practice. After someexperience with model-based calibration, we devised an alternative method called direct cali-bration, reminiscent of the \black-box" inverse calibration of robotic manipulators [29]. Themethod starts by measuring the image coordinates of a grid of many known 3-D workspacepoints, then it builds lookup tables by interpolation, linking pixels to 3-D points. An immediate2



advantage is that there is no need to model any phenomena, since all phenomena are implicitlyaccounted for. The overall accuracy of the method is therefore limited only by the repeatabilityof the equipment and of the stripe detection algorithm, not by shortcomings of the model. Wehave designed a simple, fast and automatic procedure implementing direct calibration on ourrange sensor. The procedure is described in Section III.In a structured-light triangulation system, the accuracy of 3-D measurements depends onthe accuracy of the stripe location in the image. Several methods can be used to achieve highaccuracy in stripe location, depending on the accuracy demanded by the application, the typeof laser source used, the CCD sensors available and so on. The laser stripe used by Saint-Marcet al. [27] is generated using the popular and inexpensive combination of a HeNe laser sourceand a cylindrical lens, resulting in a Gaussian pro�le across the stripe. Their observed stripeis wider than 3 pixels; the peak's position is estimated by locating the maximum of a second-order polynomial �tted to the pixel-resolution peak and the two adjacent pixels. Aiming at anaccuracy of 1/3,000 over �elds of view of 1-30cm depth, with similar depth of �eld and stand-o�distances, Harding [22] uses a diode laser source to generate a \top-hat" stripe pro�le with sharpedges. In the sensor proposed by Kanade et al. [23], individual smart pixels record the instant atwhich a peak intensity was detected (i.e. the stripe sweeping the scene was imaged) and converttime measurements into distances. Blais and Rioux [5] discuss several peak detection methodsfor real-time applications, including centre of mass, curve �tting and signal �ltering, and proposea FIR �lter achieving experimental accuracies of about 0.3 pixel (standard deviation of RMSerror). In Section IV we analyse the problem of determining the image position of the peak of3



a laser stripe with subpixel accuracy. Since various phenomena contribute to distort the idealGaussian cross-section of the stripe used in our sensor, it is worth comparing the theoreticaland practical characteristics of various subpixel interpolation techniques with those of a fastGaussian-�tting algorithm.Another important issue in laser-based range sensing is measurement consistency. Manypotential applications of range �nders are in industrial settings, where objects surfaces areoften made of polished metal or plastic. Such surfaces have a specular component, so thatnoisy reections of the laser stripe may appear in the images observed by the cameras. Thesereections can be mistaken for the primary signal and give rise to false range measurements.For instance, as illustrated in Section V, range images of shiny surfaces with holes may containspurious peaks or whole surfaces protruding from the holes. In such cases, the data can proveunusable. To obviate this problem, some users of industrial scanners simply coat surfaces witha matte white substance, e.g. tempera paint, which can rinse clean from most parts [39]. Thismay however be unacceptable, e.g. whenever high accuracies (100�m or less) are required.Section V presents some consistency tests based on two-camera geometry that eliminate mostof the spurious range values. The key observation is that specular reections produce rangevalues depending on camera position. Hence, the range values obtained from each camera canbe compared, and points leading to inconsistent range values eliminated.Our range sensor has been built in the framework of the IMAGINE research project [15, 17,19], which addresses recognition of complex 3-D objects from range data. In this context, thesensor supports reliable, data-driven surface segmentation and description [32, 33] by providing4



accurate images even if built with low-cost, o�-the-shelf components (a feature of major interestin itself). Indeed the accuracy and repeatibility of our system are currently in the order of0.15mm (Section VI), a very good result for such a low-cost system (cf. for instance the similarsensor described in [27], with a reported accuracy of 0.25mm).Experiments and tests are reported and discussed in Section VI. Finally, Section VII sketchesthe use of the sensor within a recent development of the IMAGINE project aimed at automaticmodel acquisition from multiple range views [4, 17].II Sensor architectureThe architecture of our range sensor is sketched in Figure 1. The object to be scanned sitson a platform moved on a linear rail by microstepper motors under computer (Sun3) controlthrough a Compumotor CX interface with in-built RS-232C interface. One microstep is 6:6�m,and the nominal positioning accuracy and repeatability is 2�steps. Objects must be containedin a parallelepipedal workspace about 15cm each side.The object is moved through a plane of laser light (output power 2mW at 632.8nm) obtainedusing a HeNe source, mirrors and a cylindrical lens. The laser light is a beam of circularcross-section with Gaussian intensity pro�le before passing through the cylindrical lens, whichspreads the beam into a thin plane, so that the intensity pro�le in the workspace of the sensor ispractically constant along the stripe and still Gaussian across the stripe. The latter fact is usedfor determining the position of the stripe in the image with subpixel resolution (Section IV). Inpractice, the cross-section of the stripe as observed by the cameras is not a perfect Gaussian,as each pixel integrates light over its �eld of view, the physical sensor pads of the solid-state5



cameras have gaps between them, the sensor pads have internal structure that a�ects theirsensitivity, and not all sensor pads are equally sensitive.The planar curve (stripe) resulting from the intersection of the plane of laser light with theobject surface is observed by two opposing cameras (o�-the-shelf 577x581 Panasonic BL200/B)mounted about one meter from the platform. This camera arrangement limits the occlusionproblem and is essential for some of our measurement consistency constraints. The acquiredimages are stored in a Datacube as 512x512 frames. One millimeter in the vertical directioncorresponds to less than one pixel in the images. Several parameters can be controlled bythe user, including image scaling factors, depth quantization, image resolution, and the depthinterval to be scanned.III Direct calibrationOur direct calibration method is based on a simple idea. If the camera coordinates of a su�-ciently dense grid of workspace points (called calibration grid) can be measured accurately, thenthe position of any point in the workspace can be obtained by inverting the resulting world-to-camera maps and interpolating between surrounding points. thus avoiding the need to modelany system component. We have implemented this idea in a two-stage procedure.A Stage 1: building the calibration gridsIn the �rst step, a calibration grid is built for each camera. We have designed and built acalibration block (Figure 2) consisting of 145 steps, each 2mm in length and 1mm in height. Inorder to detect calibration points in the Y direction (refer to Figure 1) the block is formed by6



20 parallel slices spaced regularly. The only operator intervention required is to place the blockon the striper's platform so that the laser stripe falls entirely on the top surface of the lowerstep. The block is then advanced automatically 2mm at a time, so that the stripe is observedby both cameras on each of the 145 steps. For each position, the stripe appears as a linearsequence of segments (corresponding to the top surfaces of the step's slices), and the positionof the segments' centers is detected to subpixel accuracy [25] and recorded. The block's size isdesigned so that every observable point in the stripe plane lies no farther than 1mm in range(Z axis) and 4mm along the stripe (Y axis) from the nearest calibrated point. The slope of theblock allows simultaneous calibration of both cameras. First the y camera coordinate of thecentre is located by an adaptive algorithm as the weighted centre of the segment's points. Thenthe peak of the stripe (x camera coordinate) is obtained using three-pixel Gaussian interpolation(Section IV). An example of the resulting grid of calibration points for the right camera (145height levels) is shown in Figure 3. The x axis shows the image position of the calibration points,which depends on the height of the block level on which the stripe impinges. The y axis showsthe points' image y position. The slight irregularity in the x direction, largely compensated forby second stage 2 (interpolation), is due to irregular changes in the shape of the stripe pro�leas the stripe sweeps the CCD sensor (addressed in Section C).B Stage 2: building image-world mapsIn the second stage, the calibration grids are inverted and interpolated to obtain a completelook-up table for each camera. Using least-square linear interpolation with 5 or more calibratedpoints, each integer image pixel is associated with a 3-D point within the calibrated workspace.7



The purpose of this conversion is threefold. First, the calibration process does not producecalibrated points for every possible observed stripe position. Second, it is too time-consumingto interpolate the neighbouring calibrated points during run-time acquisition. Third, it requirestoo much storage to record more than the (X; Y; Z) coordinates (as oating point numbers) formore than integer-coordinate pixels. During data acquisition, subpixel values are re-interpolatedfor intermediate values.Our direct calibration procedure is simple, automatic and e�cient (currently about 15 min-utes for 140 height levels with software not optimised for speed).C Data acquisitionThe direct calibration method suggests an e�cient algorithm for image acquisition. Once thesensor has been calibrated, a known one-to-one correspondence exists between a 3-D point Pon the stripe and its image in each camera, as P is constrained to lie in the plane of laserlight. Therefore it is possible to associate unambiguously each stripe point (x; y), in subpixel-precision image coordinates, to a 3-D point (X; Y; Z). This is done simply by using (x; y) toindex in the 2-D lookup tables built by the direct calibration. However, as the subpixel imagecoordinates do not, in general, correspond to the integer table indexes, (X; Y; Z) is obtained bylinear interpolation. The dense sampling of the calibrated image space (i.e. the close entries inthe lookup tables) supports very good accuracy throughout the sensor's workspace.Whenever a point is observed by both cameras, two independent measurements (i.e. 3-Dpoints (X1; Y1; Z1) and (X2; Y2; Z2)) are obtained and must be combined into a �nal measure.First the measurements are checked for consistency as illustrated in Section V. If the measure-8



ments are declared compatible, their average is taken as the �nal measure (which provides, ofcourse, the best a-priori estimate in the absence of further statistical information about themeasures). If a point on the object surface is visible to one camera only, the �nal measure isthe one obtained from that camera. Surface areas invisible to both cameras are limited by thetwo-camera arrangement.Although speed was not a research objective, the acquisition rate can reach a few stripes persecond, not a despicable one given the equipment used. Speed could be greatly improved withthe use of a synch generator and analogue stripe detection hardware (with a limit of 25x512points per stripe per second at full video rate). Figure 4 shows a few examples of range imagesof a well-known casting, acquired by our striper.IV Locating the stripe with subpixel accuracyThis section compares �ve algorithms for determining the image position of the peak of thelaser stripe to subpixel accuracy, obtained by �tting a 1-D curve to a few pixels around themaximum of the stripe cross-section, which should in theory be Gaussian. In practice, owingto the behaviour of the CCD sensors and to imperfections in the stripe generation equipment,the observed cross-section of the stripe is not Gaussian. Moreover, only a few pixels aroundthe stripe peak are used as support for the �t. For these reasons it is reasonable to ask oneselfwhether a non-Gaussian �t might result in better performances than �tting a Gaussian one.The algorithms were compared in terms of accuracy, robustness and computational speed. Inaddition to empirical testing, a theoretical comparison was also devised to provide a frameworkfor analysis of the empirical results, further details of which can be found in [25].9



The image is scanned perpendicularly to the width of the observed stripe, i.e. along the ximage axis. In the following, when we refer to the subpixel position of the peak of the stripe,we are discussing the x coordinate of the pixel. It is also assumed that the background intensitylevel (usually about 10) is subtracted from all intensity values before stripe location. The �vesubpixel algorithms compared are the following.1. Gaussian approximation. This method �ts a Gaussian pro�le to the three highest, contiguousintensity values around the observed peak of the stripe. If a, b and c are the intensity valuesobserved at pixel positions i � 1, i and i + 1 respectively, b being the highest value, then thesubpixel location (X̂) of the peak is given by :X̂ = i� 12 � ln (c)� ln (a)ln (a) + ln (c)� 2 ln (b)�where i is the x pixel coordinate of the centre of the pixel with intensity value b. As a, b and care integers in the range 0-255, the logarithm can be performed by table lookup. We have notfound any previous references to this form of peak detector in the literature.2. Centre of Mass. The centre-of-mass algorithm computes the location of the peak by weightedaverage: X̂ = a(i� 1) + bi+ c(i+ 1)a+ b+ c = i+ c� aa+ b+ cWe have considered this algorithm using 3, 5 and 7 points, denoted CoM3, CoM5 and CoM7henceforth. The extension of the algorithm for the latter two cases is obvious and is omitted.Algorithms using all points along the stripe also exist [38].3. Linear Interpolation. This method assumes that a simple, linear relationship de�nes the10



spread of intensity values across the stripe. Thus, if the three highest intensity values areidenti�ed as before: X̂ = 8<: x� (a�c)2(b�a) c > ax� (a�c)2(b�c) otherwise4. Parabolic EstimatorAnother peak �nder can be derived by Taylor series expansion of the �rst derivative of thesignal intensity near the peak. Let the peak be at f(i+ �) and assume we observe the signal atf(i); then f 0(i+ �) = 0 = f 0(i) + �f 00(i) +O(�2)Hence, neglecting the higher order terms, � � � f 0(i)f 00(i)And introducing �nite di�erence derivatives:� = � f(i+ 1)� f(i� 1)2(f(i+ 1)� 2f(i) + f(i� 1))As the same peak �nder can be found by �tting a parabola to the points f(i � 1), f(i) andf(i+ 1), we call this algorithm parabolic estimator.5. Blais and Rioux DetectorsBlais and Rioux [5] introduced fourth and eighth order linear �lters:g4(i) = f(i� 2) + f(i� 1)� f(i+ 1)� f(i+ 2)g8(i) = f(i� 4) + f(i� 3) + f(i� 2) + f(i� 1)�f(i+ 1)� f(i+ 2)� f(i+ 3)� f(i+ 4)11



to which we also add a second order �lter:g2(i) = f(i� 1)� f(i+ 1)These operators act like a form of numerical derivative operator. The estimated peak positionis given by � = g(i)g(i)� g(i+ 1)The results of Blais and Rioux showed that the fourth order operator had better performancethan the eight order operator over the stripe widths that we are interested in here, so we onlyanalyze it (called BR4 below) and the simpli�ed second order operator (called BR2 below). Theeighth order operator has better performance for stripe widths with Gaussian width parameterlarger than 2 pixels. Note that this operator is only applied in the given form for f(i + 1) >f(i� 1). If f(i+ 1) < f(i� 1), then:� = g(i� 1)g(i� 1)� g(i) � 1A Maximum Theoretical Error of EstimatorsAssume that the true stripe pro�le is Gaussian and modeled by (up to a multiplicative constant)f(n) = e� (n��)22�2where �12 � � � 12 is the true peak position and f is sampled at n = -2, -1, 0, 1, 2. We wantto determine the relationship between estimated and true peak positions (i.e. o�set) for eachof the peak detectors above. We ignore the problem of pixels integrating their inputs over theirspatial extent, as well as any shaping functions the camera and digitizer may apply.12



In order to estimate the maximum deviation j � � �̂ j over the range �12 � � � 12 for eachestimator, we calculated �̂ for synthetic stripe pro�les with � similar to the one of our sensor'sreal stripe. Then we realised that weighting the estimator (�̂0 = �estimator�̂) could, for a given�, reduce the maximum error by one order of magnitude by spreading the error across the fullrange. In practice, � must be chosen to maximally reduce the error for a desired �. The smallestmaximum errors achieved for three values of � and their respective � are given in Table 1. Theoptimal � for one � is not necessarily optimal for di�erent �, and Table 1 shows that only theGaussian, COM7, BR2 and BR4 algorithms are reasonably insensitive to changes of �.B Bias of EstimatorsIn order to determine the bias of the peak estimators, we derived �rst-order relations linking theestimated peak o�set �̂ to the real o�set �. The relations are summarized in Table 2. Details ofthe derivation for the Gaussian and linear estimators can be found in Appendix 1. As expected,the Gaussian estimator has ideal form for small �. When � = 1:0, as approximately in oursensor, and making use of � (Section A), the resulting �̂ is shown below. The conclusion is that,in the ideal, noise-free case, all but the linear and BR2 estimators are reasonably unbiased.Estimator Gauss CoM3 CoM5 CoM7 Linear Parabolic BR2 BR4�̂ 1:00� 1:01� 1:00� 1:00� 1:40� 0:83� 1:33� 1:17�C Errors in the Presence of NoiseIn line with the experiments of Blais and Rioux [5], we investigated how additive noise corruptingthe stripe a�ects the estimated stripe position. We generated synthetic stripes with di�erentwidths and peaks o�set about exact pixel positions by small, random amounts; we then addeduniform noise (following the model of Blais and Rioux):13



s(m; x; �; �) = e� (m�x)22�2 + �nwhere m 2 f�3;�2;�1; 0; 1; 2; 3g is the peak position at pixel resolution, x 2 [�0:5;+0:5] is thepeak o�set, � 2 [0:8; 1:8] is the stripe width, n 2 [0; 1] is a random variable of uniform density,� 2 f0:0; 0:1; 0:25g is the maximum noise magnitude. Values for � were chosen after observationof noise in our sensor, where the noise is about 1-5% of the peak intensity. We measured the RMSerror p 1N P(xi � x̂i)2 and the maximum deviation max j xi� x̂i j as functions of � for N = 10; 000samples. Figure 5 is a plot of the RMS error as a function of � for � = 0; 0:1; 0:25 respectively.Figure 6 show the maximum error for the same values of �.The results indicate that CoM3 and CoM5 perform signi�cantly worse than other estimators.The error of the CoM7 estimator at low stripe widths is caused by stripe intensities fallingquickly as one moves away from the peak, so that the noise becomes quickly predominant.We also summed the RMS error for � = 0:8 � 1:8 (by 0.05) for the three values of �. Theresults are summarized in Table 3. The �gures suggest good performance over a range of � and� for BR2 and BR4, which is also clear in Figure 5 (� = 0:1; 0:25). However, the Gaussianestimator has obvious bene�ts as the noise level or stripe width decreases.V Checking data consistencyFigure 7 illustrates the possible e�ect of spurious reections of the laser light being mistakenfor the true stripe. Two range images of a polished-aluminium block with holes are shown. Theimages were acquired using two opposing cameras independently (see Section II). Obviously false14



peaks appear instead of holes. How do reections from specular surfaces cause such spuriousrange values?Figure 8 shows the cross-section of a rectangular or cylindrical hole, taken perpendicularlyto the light plane. Suppose that the light stripe is observed after reection from the specularsurface of the hole: the specular reection at point F is observed rather than the true point T .The false point might be chosen because it is brighter (often possible on specular surfaces) orbecause the true point is hidden. Since all observed points must lie in the plane of laser light,the height of point Y is incorrectly recorded.The false range surfaces shown in Figure 7 resulted from this phenomenon occurring at manypositions along each of many stripes. The tilting false surface arises because, as the stripe movesaway from the wall, the triangulated false position moves further away from the true surface.This simple false-surface pattern arises from the simple rectangular hole geometry; more complexholes or combinations of specular surfaces produce more complex artifacts.The rejection of false range values is based on the constraints described below. Any pointsthat do not satisfy the constraints are eliminated.Illumination direction constraint. Assuming that the stripe plane illumination projects from�xed directions (either orthographically or perspectively), it is not possible for a beam oflight to intersect the surface twice. Mathematically, each such beam of light projects ontoa curve (usually a line) in the the sensor's projection plane. Therefore, the light stripeshould intersect this curve in at most one point. When more than one point is observed, allpoints are eliminated as it is not possible to tell easily which is the correct point (brightness15



is no guarantee on specular surfaces). Figure 9 illustrates this constraint.Observable surface constraint. Adjacent stripe positions often lead to nearby noisy pointsforming spurious range surfaces (Figure 7 shows an example). One constraint that elimi-nates many such surfaces is the requirement that the visible surface portions must face theobserving sensor (otherwise the surface could not have been seen). Figure 10 illustratesthis constraint. Hence, any local surface point ~P�(t) whose normal ~n�(t) satis�es~n�(t) � ( ~P�(t)� ~O�) > 0where ~O� is the origin of the camera reference frame, should be rejected. This constraintis independent of the number of cameras used.Consistent surface constraint. If a true point is observed by both cameras, then the rangevalues ZL(t) and ZR(t) from both cameras should be the same. If the following conditionoccurs: j ZL(t)� ZR(t) j> �dthen the point has been corrupted by spurious reections and must be rejected. �d ischosen based on the noise statistics of true range images.In addition to having the same Z position, the surface normals of the surfaces observedfrom the left and right sensors should be the same. Let ~nL(t) and ~nR(t) be the localsurface normals for the left and right camera data. Then, if the inner product of thenormals satis�es ~nL(t) � ~nR(t) < �n16



then the point is rejected as corrupted by spurious reections. �n is chosen based on thenoise statistics of true range images; however, it may need to be set carefully, since surfacenormals are related to the �rst-order derivatives of the data and thus are more a�ected bynoise. Figure 11 illustrates this constraint.Unobscured-once-viewed constraint. An additional constraint can be derived when twocameras are used. If a point was visible by only one camera, there must be a valid pointseen by the other camera that obscures the �rst point. Hence, any points that are visibleto one camera and are not obscured relative to the other camera, yet were not observed,are likely to be spurious and are removed. Figure 12 illustrates this constraint.VI Experimental assessmentThis section reports some of the tests performed in the experimental assessment of our rangestriper, namely regarding Z accuracy, the e�ect of the consistency tests, and the experimentalevaluation of the peak detector algorithms.A AccuracyTable 4 gives the avour of the accuracy of our striper using direct calibration. The table givesthe quantization step �z (using 256 levels), the mean error, e, its standard deviation, �e, themean absolute error, ea, and its standard deviation, �ea , all in mm, measured using both camerasand accurately known planes of di�erent materials and placed at di�erent heights (material andheight, in mm, are speci�ed in the leftmost column). Comparable accuracies were obtainedusing each camera individually. We also noticed that the error magnitude remains constant17



throughout the �eld of view, whereas it increased towards the periphery with our previousmodel-based calibration.B Data consistencyFigure 13 shows a range image, with consistency tests enforced, of the polished aluminiumblock with holes which caused the spurious surfaces in Figure 7. The larger holes' diameter is18mm, the smaller ones' 14mm; depths varied between 9 and 13mm. The dramatic rejectionof spurious range values is evident. Some of the true range points have also been eliminated,which has caused a slightly more ragged appearance to the object surface; notice however thatthe height of the remaining range points has been correctly estimated. In spite of the strongreections, there are also enough data to estimate the real depth of all holes.C Evaluating the peak detectorsIn order to assess experimentally the accuracy and comparative performance of the various peakdetectors, we acquired range images of accurately known planar surfaces, and compared theaccuracies of the measurements obtained using the various estimators. Each image consisted of100 stripes. A small micro-stepper step size (0.2mm) was used to achieve high data density. Thedepth resolution was kept much smaller than the average expected error (0.1mm) to minimisethe e�ect of quantisation. The best �tting plane (using least-squares) was computed for eachsurface data set, and the resulting deviations recorded.In summary, the tests showed that only CoM3 and COM5 perform signi�cantly worse than theother estimators. Any di�erence between the other algorithms was dominated, in our equipment,by the magnitude of the periodic oscillation shown in Figure 14. This was due to variations in18



the CCD sensor geometry and to the di�erent sampling frequencies of the CCD sensor and theframe bu�er used. Consequently, the spatial frequency of the oscillation depended on the slopeof the plane observed with respect to the camera viewing direction (Figure 14). Notice that thisoscillation make the calibration grids slightly irregular, and this phenomenon can be observedin the example shown in Figure 3; however, the interpolation involved by the direct calibrationseems to compensate satisfactorily for this irregularity.Having no control on the above parameters with our equipment, we limited the e�ect of theoscillation by using the Gaussian peak detector with samples spaced by 2 pixels (i.e. consideringgi�2; gi; gi+2 instead of gi�1; gi; gi+1, where i is the position of the stripe maximum at pixelprecision). This reduced consistently the spatial frequency of the oscillation (more than 50%),and was the algorithm �nally adopted in our sensor. The Gaussian estimator introduces alsobene�ts as the noise level or stripe width decreases. Making the sensor achieve higher accuracieswould require a closer look at the CCD geometry as well as sampling frequencies.VII Range-based 3-D model acquisitionWe conclude this paper with an example of how full-frame range images can be used in aautomatic model acquisition system, i.e. a system capable of generating automatically a CAD-like model of an object from a number of images acquired from di�erent viewpoints in space.There is an increasing interest of researchers for this technology [7, 8, 12, 24, 26, 30, 31] asthe bene�ts reliable model acquisition are expected in diverse areas, e.g. reverse engineering,product styling, exible NC machining, classi�cation, recognition and inspection [39].The two essential issues that any model acquisition system must address are model represen-19



tation and view registration. Several representations can be in principle adopted to express themodels: splines, surface patches, triangulations, volumetric descriptions and �nite element mod-els are examples of possible choices. The choice of a representation is in turn linked intimatelyto the problem of estimating the transformation registering two successive views of the object.In our system we use two complementary model representations, each of which implies adi�erent solution to the registration problem: a conventional, symbolic surface patch represen-tation [11, 14, 32] is combined with a B-spline model. An example of the two representations,obtained for a single view of the casting shown in Figure 4, is given in Figure 15 (left: patches,right: splines). The symbolic model allows fast indexing from a large database, quick poseestimation (due to the small number of corresponding features), and easy speci�cation of in-spection scripts (for example, the system can be instructed to \measure diameter of hole 2 inpatch B"). On the other hand, pose estimation is limited in accuracy by the small number ofcorrespondences and errors in the surface �tting, and provides only an incomplete surface cov-erage: only the most stable surface patches are retained in the model. This lack of completedata is undesirable for reverse engineering tasks, and is cured by the use of spline models. Usingthese models, initial pose estimates can be optimised (albeit expensively), and complete surfacemodels obtained. The following sections sketch the functionalities of our system.A Model construction from a single range viewFirst depth and orientation discontinuities are detected from the raw range data, and used as apriori weights for di�usion smoothing [32]. Mean and Gaussian curvatures are then calculatedfrom the smoothed image, and the data divided into homogeneous regions according to the20



sign of the curvatures. Each region is then approximated by a viewpoint-invariant biquadraticpatch [21] and �nally expanded to include neighboring pixels which are within 3� (� = 0:15mm)of the �tted surface. After this segmentation stage, the region boundaries are approximated bypolylines and conics, and adjacent regions are intersected to produce more consistent bound-aries. The resulting description is converted into a vision-oriented modeling representation, theSuggestive Modelling System or SMS [13, 20] for visualization and use in our model matchingmodule.The spline model is constructed by laying a regular grid of control points on the image and�tting a third-order B-spline to the data. Background and noise points are removed in advance.The density of the grid is currently determined by the required accuracy { a 50x50 samplingallows the object in Figure 15 (right) to be approximated to within a maximum error of 0.8mm.An obvious extension is to allocate the knot points more densely at regions of high curvature,as the curvature maps are available from the segmentation process. We plan to implement thisin the near future, and expect a signi�cance reduction in error.B Estimating the transform between viewsIn order to estimate the parameters of the rigid transformation which relates two views of anobject, we assume that the images overlap and start by applying the segmentation processdescribed above to each image, thus producing two lists of surface patches. From these, aninterpretation tree algorithm [16] �nds consistent sets of corresponding pairs of surfaces. Thepairs allows us to compute the 3-D pose of the object using least-squares techniques. Thepose is used as an initial estimate for an iterated extended Kalman �lter, which computes the21



uncertainty of the pose estimate [35].The accuracy of view registration is within about 1� of the noise on the range data if threeor more linearly independent planar surfaces can be extracted reliably from the object (Figure16). Failing that, biquadratic surfaces estimated about the patch centroids are used to constrainthe pose and then translation accuracy falls to about 5mm. If the pose needs to be constrainedby using paired centroids, the system is open to error due to occlusion. The rotational accuracyof registration is generally within 1 degree.C Re�ning the inter-view transformGiven an initial pose estimate from the symbolic model matcher, the spline model can be used tore�ne the estimate. The pose is optimized using the Iterated Closest Point (ICP) algorithm [3].Tests with 2-D examples suggest that the region of convergence occupies about 25% of the spaceof all possible poses. A less complete investigation with the object above indicates convergencewith up to 90 degrees of initial rotation error. The disadvantage of this technique is its compu-tational complexity: for each data point, we must locate the nearest point on the model surface,then calculate the registering transform. Locating the closest point is sped up by a combina-tion of multigridding and subsampling the basic gradient descent algorithm. The registrationaccuracy is \optimal" in the sense that the noise statistics of the residuals are symmetric andwhite. Non-convergence does occur however, and we are currently investigating ways of furthercorrecting for this. 22



D View registration and model postprocessingFinal processing on the models includes merging the single-view descriptions into a single ref-erence frame. This is done easily thanks to the SMS representation for surface patches, whichseparates patch descriptions into shape, extent and position. The spline models may be treatedsimilarly, by calculating a new �tting spline for the merged sets of range data. As an example ofthe results, Figure 17 shows three views of a (partial) SMS model, in object-centred coordinates,acquired automatically from several unregistered, overlapping range images of the metal castingshown in Figure 4, which shows that features not visible simultaneously are included and alignedcorrectly in the model.VIII ConclusionsWe have addressed several issues concerning the design of triangulation-based range sensors usingstructured illumination, namely a complete direct calibration procedure; consistency constraintsto improve the quality of measurements with reective objects; and a comparative analysis of�ve algorithms for detecting the peak of the laser stripe at subpixel accuracy. As an exampleof an advanced machine vision application based on our sensor, we have sketched a 3-D modelacquisition system developed in our laboratory. Although our sensor was built with o�-the-shelf, low-cost components, the performance achieved is very satisfactory and the applicationsupported adequately.We believe this paper o�ers the following contributions. First, calibrating complex sensors canbe complex for the designer and tedious for the user. Closed-form models on which calibration23



is usually based may grow very complicated in order to include all phenomena. Our method fordirect calibration of small-workspace sensors is not limited by model inadequacies, and provessimple, practical, and capable of producing very good accuracy.Second, the consistency tests described can improve dramatically range measurements in thepresence of highly reective surfaces and holes, and eliminate most of the wrong measurementsarising from spurious reections. This problem is usually circumvented in applications by coatingreective objects with matte paint, but this is obviously not always possible. Our solution canbe of considerable interest for 3-D shape inspection applications.Third, given the increasing popularity of range image sensing, the results of our comparativeanalysis of subpixel stripe detectors can hopefully be of use to others.Fourth, we have illustrated the use of our range sensor for automatic model acquisition ofshape models from multiple range images, a topic of high applicative interest. Our feature-based SMS models are meant primarily for use in 3-D shape-based vision systems, but accuratereconstruction of surfaces for inspection purposes is also being pursued.
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Appendix 1: derivation of bias expressions for peak estimatorsConsider a �rst-order approximation of the Gaussian stripe model of Section IV, and assumethat j�j is small: f(n) = e� (n��)22�2 �= (1 + n��2 )e� n22�2Then, for the Gaussian estimator:�̂ = �12 log(f(�1))� log(f(1))log(f(�1))+ log(f(1))� 2log(f(0))�= �12 log(e� 12�2 (1� ��2 ))� log(e� 12�2 (1 + ��2 ))log(e� 12�2 (1� ��2 )) + log(e� 12�2 (1 + ��2 ))� 2log(1)= �12 log(1� ��2 )� log(1+ ��2 )2log(e� 12�2 ) + log(1� ��2 ) + log(1+ ��2 )where � is the weight introduced in Section IV. Then, using log(1� a) �= �a, we have�̂ �= �12 � ��2 � ��22(� 12�2 )� ��2 + ��2= �12�2 ��2� 1�2= ��For the Linear estimator:̂� = � f(1)� f(�1)2(f(0)� f(�1))�= �e� 12�2 (1 + ��2 )� e� 12�2 (1� ��2 )2(1� e� 12�2 (1� ��2 ))�= � e� 12�2 (2 ��2 )2(1� e� 12�2 )= � ��2 e� 12�2(1� e� 12�2 )28



� Gaussian CoM3 CoM5 CoM7 Linear Parabolic BR2 BR40.5 0.0 0.380 0.041 0.021 0.103 0.156 0.026 0.0231.0 0.0 0.005 0.002 0.000 0.030 0.029 0.024 0.0131.5 0.0 0.239 0.150 0.057 0.049 0.034 0.022 0.011� 1.0 1.85 1.093 1.006 0.93 1.08 0.95 0.975� Gaussian CoM3 CoM5 CoM7 Linear Parabolic BR2 BR40.00 0.00 3.71 1.36 0.31 0.87 0.49 0.39 0.240.10 1.07 3.90 1.86 1.32 1.36 1.23 0.93 0.770.25 2.49 4.25 2.67 2.63 2.62 2.61 2.12 1.86surface type �z e �e ea �eamatt black,50 0.0013 -0.160 0.095 0.167 0.095red paint,50 0.0043 0.126 0.106 0.154 0.061anodized black,100 0.0236 -0.096 0.079 0.100 0.074polished alum.,100 0.0029 0.066 0.147 0.132 0.093Estimator Local Estimate Estimator Local EstimateGaussian �� CoM3 � 2��2 e� 12�2(1+2e� 42�2 )Linear � ��2 e� 12�2(1�e� 12�2 ) CoM5 � 2��2 e� 12�2 +4e� 42�2(1+2e� 42�2 +2e� 42�2 )Parabolic � �2�2 e� 12�2(1�e� 12�2 ) CoM7 � 2��2 e� 12�2 +4e� 42�2 +9e� 92�2(1+2e� 12�2 +2e� 42�2 +2e� 92�2 )BR2 � 2��2 e� 12�2(1�e� 42�2 ) BR4 � 2��2 e� 12�2 +2e� 42�2(1+e� 12�2 �e� 42�2 �e� 92�2 )29


