
Position re�nement for a navigating robot using motion informationbased on honey bee strategiesErik Wolfart, Dept. of Engineering Science, University of OxfordRobert B. Fisher, Dept. of Arti�cial Intelligence, University of EdinburghAshley Walker, Dept. of Arti�cial Intelligence, University of EdinburghAbstractThis paper summarises an algorithm for the position re�nement of a robot using visual information.The algorithm was inspired by techniques used by navigating honey bees and is based on separatingclose and distant landmarks in a scene using their di�erent optical 
ow. We also use the optical 
ow toconstruct a map of the close landmarks representing their 2D layout in the scene. Upon the agent's returnto the vicinity of a previously remembered position, the algorithm compares the information immediatelyperceivable with the remembered data. Using the information about the distant landmarks to correctthe orientation under which the scene is observed, it is then possible to utilise spatial cues o�ered byclose landmarks to calculate a vector pointing to the target position. A few iterations of the movementto the estimated target position allows repositioning within a few centimetres of the original position.The algorithm was implemented and tested using a mobile sensor.1 IntroductionIt is known that the honey bee, like many other insects, combines two methods for its navigation: deadreckoning and global localisation. Dead reckoning is used as a coarse-grained navigation method whichallows the bee to return to the vicinity of a previously visited and remembered location. During the globallocalisation process the bee re�nes its position and thus eliminates the error introduced by dead reckoning. Toaccomplish this task the bee compares the visual information extracted from the current nearby landmarkswith the remembered information of the landmarks as seen from the target position. From this comparison,the bee can calculate motion vectors, which steer it precisely to the target position. By combining these twomethods, dead reckoning and global localisation, and applying them recursively, the bee is able to forageover distances up to 35 km and �nd the way back to its hive.The limited computational power of insects does not allow them to perform complicated object recognitionor 3D reasoning. Therefore they have to use an e�cient method to navigate through their environment,applying only a rather low level of processing to the visual data. However, it is still an open question whatkind of information is extracted and how it is used for the position re�nement.The most cited work on this subject was performed by Cartwright and Collet[2]. They undertook variousexperiments with honey bees to investigate how nearby landmarks are used to guide the way to a knownfood source. From analysing the search behaviour of the bees Cartwright and Collet created a model ofhow the bee uses a remembered image to localise itself precisely. In the model, landmarks are extractedby segmenting the image into dark and light areas. Each landmark in the current image is matched tothe closest landmark in the remembered image. The model bee uses the apparent size of the landmarks toestimate the radial error to the target position and the bearing of the landmarks to calculate the tangentialerror. These calculations yield, for each landmark, a correction value which is then averaged into a resultingvector. The model assumes a mechanism which allows the bee to observe the scene always under the sameorientation as it did when memorising the scene and uses only static snapshots of the scene. Using thismodel Cartwright and Collet simulated the bees behaviour on a computer and for many constellations oflandmarks and food sources, the results proved to be similar to the observed behaviour of the real bees.However, an implementation of a global localisation algorithm on a mobile robot based on the above modelshowed that the information gained from static images is not enough to perform the position re�nement in areal environment [4]. Since a static snapshot shows only a tiny temporal fraction of the world it is di�cult tocope with physical problems, e.g.shadows and occlusion, or to gain any information about the 3D structureof the world.



Other recent papers suggest that insects use motion information in a more sophisticated way than itwas previously assumed. Franceschini [3], for example, successfully implemented a robot navigation systeminspired by the visual behaviour of a house
y. His results con�rm that insects may use the visual processingof motion to construct a rough layout of the 3D environment. Experiments undertaken by Srinivasan [8]show that bees use optical 
ow to enable them to land on contrasting edges, to distinguish an object frombackground or objects at di�erent distances. He also suggests that the bee uses optical 
ow for its navigation[7]. Based on these �ndings Santos-Victor et al. successfully developed a robotic bee employing two divergentcameras. It uses the di�erence in the optical 
ow of the left and the right camera to �nd its way along acorridor and navigate around obstacles [5, 6].Hence, the idea emerged to develop a more dynamic algorithm, using the optical 
ow on the observer'sretina induced by its own motion. In doing so, we hoped to gain information about the distance of landmarksto the agent and that the algorithm would be more resistant to the problems faced in the real world.The project described here devised and implemented an algorithm for the position re�nement of a robotusing visual information of the surrounding scene. Although the algorithm was inspired by techniquesbelieved to be applied by a honey bee for its �ne-scale navigation, the technical details of the algorithmwere often determined by the engineering constraints and the desire to develop a localisation algorithm fora robot. It is hoped that the project will yield some new insight into ways in which honey bees may employdynamic navigatory strategies, but developing a techniques for robot navigation is the primary objective.2 Summary of the devised algorithmWe devised a position re�nement algorithm which exploits motion information and tested its performanceusing a moving sensor.The algorithm is based on separating the distant and close landmarks of the scene based on the optical
ow pattern they induce on the observer's retina. We compare the resulting images of the distant landmarksobtained from the agent's immediate position and a remembered target position to correct the orientationunder which the scene is observed. Assuming a constant orientation, we can correct the positional errorusing the optical 
ow and the bearing of the close landmarks.In the setup for the initial experiments, the camera was placed at one end of the lab with an object(i.e.nearby landmark) placed in front of it. Moving the camera vertically across the scene, a series of imageswas taken. An example image can be seen in Figure 1.
Figure 1: This image is one out of the series taken as input for the experiments. It shows the lab, with thewall in the background at 5:7m away from the camera. The stool in the middle is about half way and thebar in the foreground, serving as the nearby landmark, is 37 cm from the camera. In this scene, motion isvertical, although honeybee motion is normally in a horizontal plane.2.1 Extracting the distant landmarksIn the �rst step of the processing, we have to decide how to extract and represent the landmarks in theimage. As opposed to Cartwright and Collet, who segmented the image into dark and light areas, we detectthe edges in each image and assume that each edge point originates from a landmark. The advantages ofedges are that they are easy to extract from the image, they are local (as compared to regions, which require



a global aggregation) and that they are well suited for the further optical 
ow processing.Since the camera is only moved along one axis of the image plane, it is possible to detect only theedges perpendicular to the movement. This is accomplished by convolving the image with a [-1,0,0,0,1] edgedetection mask, followed by non-maximum suppression and a thresholding [1]. To simplify the edge trackingwe also introduced a minimum distance between two edges.The edge detection is performed for each image. Between two successive images, each of the edge pixelsmoves in the opposite direction to the camera movement by an amount depending on the distance of thecorresponding landmark to the camera. The number of pixels �i moved between two images is given by�i(z) = �y( zf � 1)� ' f �y� z (1)where � and f are the pixel width and the focal length of the camera, �y is the distance by which the camerais moved between two images and z is the distance to the scene edge from the camera. The parameters werechosen so that �i < 1 for all but nearby edges.In the next step, we apply an IIR (In�nite Impulse Response) low-pass �lter to the time signal of theimage edge strength at each pixel. The �lter output value of each pixel in an image k is given byyij(k) = A!z xij(k) + (1� !z) yij(k � 1) (2)with A and !z being the DC-ampli�cation and the cut-o� frequency of the �lter. xij(k) is the value of thisparticular pixel in the kth edge image and is, since the edge image is thresholded, either 0 or 1.The maximum value which an edge can produce in the �ltered image yij(k) depends on the speed withwhich the corresponding edge pixel moves over the image. Since distant edges move slower over the image,the corresponding pixels will have a higher �lter output than an edge pixel corresponding to a close landmark.An example of �ltering 20 successive images can be seen in Figure 2. It shows that the edges correspondingto features at the distant wall appear thin with a high intensity whereas the edge corresponding to the objectplaced in front of the camera is rather blurred and low in intensity.
Figure 2: Output of the IIR �ltering the edge detections of 20 sequential images, each taken from �y =0:9mm apart from each other. Note the blurred region in the middle of the image arising from nearby edges.Figure 2 suggests that we can apply a distance related threshold to the �lter output thus receiving animage containing only the edges of the distant landmarks. The relation between the maximum output andthe distance to the landmark can be estimated withfmax(z) = y( 1�i ) = A (e�!z 1�i � 1) = A (e�!z � zf �y � 1) (3)The threshold is simply given by Equation ( 3), where the threshold �0 corresponding to a distance z0 isfmax(z0). Figure 3 shows an example where a threshold corresponding to a distance z0 = 0:9m was appliedto the above �lter output.2.2 Obtaining the close edgesSo far we managed to extract the distant objects from the current scene (and we will use them to correct forthe orientation error introduced by dead reckoning). To do the position correction, we will need to extract



Figure 3: Output of IIR �lter (see Figure 2) thresholded with � = 20, which selects features further thanz0 = 0:9m.the edges corresponding to the close objects.The idea is simple: at each camera position, the algorithm has extracted two images:1. one image with all edges of the current scene.2. another image with the edges of the distant objects only (Figure 3).If we now take the �rst one and suppress all edge points which also appear in the second, we get, as a result,an image where only the edges corresponding to the close objects remain.Due to noise, not all edge pixels in the image of close landmarks to actually correspond to close edges.In order to remove those pixels we had to take several measures:� The detected distant edge image is dilated in the horizontal and vertical direction before it is usedto suppress the distant objects in the current edge image. This corrects for small errors in the edgepositions and also for the delay of the �lter output.� Single isolated pixels in the resulting image containing the close edges are suppressed, since they arenot likely to correspond to any landmarks in the scene.� The edge detecting process used to obtain all edges from the current image position is made lesssensitive than the one used to detect the edges for the �lter input. This means that there are moredistant objects in the image used to suppress than in the one from which edges are removed.As can be seen in Figure 4, all remaining pixels in the image of the close edges do actually originate fromthe landmark placed in front of the camera.
Figure 4: The IIR �lter output in Figure 2 was used for suppression. It was previously thresholded with� = 15 (corresponds to z0 = 72 cm) and extended in 3 pixels in the vertical and horizontal directions.



2.3 Calculating correction vectorsThe deviation from the remembered site introduced by dead reckoning consists of two parts: an error inorientation and an error in position. Since we divided the scene in nearby and distant landmarks we nowmay correct for these two errors separately. This has the following advantages:� The orientation can easily be corrected using the distant landmarks.� The distant landmarks don't provide any information about the local positional error. Removing themfrom the image simpli�es the information from which we have to extract the positional correctionvector.� Correcting the position error is further simpli�ed since we can assume a constant orientation.2.3.1 Orientation errorTo estimate the sensor's current orientation error, the distant landmarks of the current scene are comparedwith the distant landmarks as seen at the target position. Since we can assume that the observer is in thevicinity of the target position, any di�erence in the two images of the distant landmarks can only originatefrom a di�erence in the observer orientation.To obtain the error, we �rst project the 2D edge images into one dimension perpendicular to the directionof image motion. This yields a 1D function (for each the target and the current position) in which localmaxima correspond to distant landmarks in the scene. The two functions are then correlated and the positiongiving the maximum value of the resulting correlation function corresponds to the orientation error betweenthe current and the target position. By projecting the image into one dimension we lose some informationand also increase the risk for a mismatch. However, since the introduced error changes the orientation onlywithin a plane the 1D correlation function provides enough information. Test have also shown that for thistask the results obtained from the 1D correlation are accurate and reliable enough. The advantage of the1D correlation over a 2D is the faster processing time.The equation used to obtain the correlation function from the 2D images is given byC(k) = 1N NX�=0 ( 1M MXm=0 d(m; �) s(� � k) ) (4)where d(m; �) is the distant edge image, � is the direction of motion, m is the orthogonal direction and s(�)is the stored image formed by projecting the distant edge image in the m direction, as is done in (4). Aconversion factor (determined by the camera parameters) transforms the maximum of C(k) into the actualangle.2.3.2 Position errorThe orientation error induces the same shift into the image of the close edges as it does into the image ofthe distant edges. Since we now know this shift, we can correct the image of the close edges by shifting it bythe appropriate amount. Once we correct for the orientation, we can assume that a di�erence in the bearingof the nearby landmarks between the current and the remembered scene results from a positional error.We estimate the optical 
ow of the close edges by tracking them as the sensor moves. The correspondingproblem is quite restricted, since we know the direction of movement and we introduced a minimum distancebetween the edges. We also assume a minimum distance of the landmark to the camera (i.e. landmarkswhich are too close won't be detected). This leaves us with a well-de�ned area in which to search for thematching edge pixel. To obtain a reliable value for the optical 
ow, we calculate the edge position in sub-pixel accuracy and use the di�erence of the positions in two successive images as input into a low pass �lter.Thus we obtain, at the output of the �lter, a smoothed value of the optical 
ow.Using the optical 
ow of the edges, we are able to estimate the distance of the corresponding landmarksand together with their bearing we can construct a map of the two-dimensional layout of the nearby scene.Correlating the maps calculated at the current and the remembered position yields a 2D correlation function.Its maximum value indicates the best overlay of the two maps and hence the position of the maximum valuecorresponds to the shift between the current and the remembered position. By multiplying the shift with aconversion factor, we obtain a correction vector pointing from the current to the target position.



This pixel by pixel method is opposed to Cartwright and Collet's model, which extracts the landmarksfrom the image and tries to match each landmark from the current scene to a landmark in the rememberedscene. However, even from a biological perspective, we feel justi�ed in taking this method because the corre-lation approach could more obviously be implemented in neural structures than could a symbolic algorithmsuch as that used by Cartwright and Collet.As we now calculate an error for the position and orientation we can correct them by physically movingthe sensor. Since the algorithm gets more accurate the closer the current position is to the rememberedposition the whole algorithm is applied iteratively. Thus we start o� with a rough estimate for the initialerror and tune our position with further iterations.3 ResultsFor the �nal experiments the algorithm was implemented on a stationary robot holding a camera in itsgripper. Features in the background of the lab were used as distant landmarks. Rods were placed in frontof the camera to be used as nearby landmarks. In order to memorise the target position, the camera takes aseries of 20 images whilst being moved parallel to the ground and perpendicular to its optical axis. At thispoint, the error was introduced by moving and rotating the camera in the plane parallel to the ground. Theperformance was tested under various con�gurations of nearby landmarks, for a positional error up to 25 cmand an angular error up to 10�.3.1 Separating distant and close landmarksAs can be seen in Figure 3 and Figure 4 the algorithm manages quite well to separate between close anddistant landmarks. Similar results were obtained from the implementation on the robot. Problems mightoccur when the number of close landmarks is increased. In such a case, distant landmarks might be occludedin many images in a series, thus prohibiting the necessary �lter output to be classi�ed as distant. On theother hand, if the edge of a close landmark projects to the same image position as a distant landmark, thenit will be suppressed from the image of the close landmarks. However, since we use a �lter to track the closeedges along the image series, we can cope with an edge missing in some of the images.3.2 Orientation correctionThe algorithm estimates the correct orientation well using the distant landmarks of the scene. No mismatchesoccurred in the case of one close landmark and, at the end of the iterations, the orientational error was reducedto an average value of 0:1�. If an error of �10� is introduced it usually takes 2 to 3 iterations to correct thiserror.Due to the problems described in the previous section, a mismatch might occur if several close landmarkswere in the scene. However, provided the error after the mismatch was not larger than the maximum errorwe can cope with, the algorithm managed to correct the orientational error in the next iteration.The maximum error which we can correct for mainly depends on the �eld of view of the camera. Reliableresults were obtained, if half of the scene, as seen from the target position, could still be seen from thecurrent position, so that the maximum error is approximately half of the �eld of view of the camera.3.3 Position correctionProvided all landmarks could be seen from the error position, the algorithm always managed to �nd thevicinity of the target position. The remaining error to the target position di�ered in radial and tangentialdirection and depended on the distance of the target position to the landmarks. The average remainingerror was in the radial direction less than 2 cm and in tangential direction less than 1 cm. The reason forthe higher accuracy in the tangential direction is that we obtain a more accurate measure for the bearing ofthe landmarks than their distance as estimated from the optical 
ow.The accuracy decreases as the target position moves further away from the landmarks. The reason beingthat then the same amount of positional error results in a smaller di�erence in the bearing and optical 
owbetween the target and the error position. On the other hand, if we move too close to the landmarks, we have



the problem that the apparent size of the landmarks increases and hence it occludes more of the background.Good results were obtained for the distance between target position and landmarks ranging from 30 cm and90 cm.The algorithm was unreliable when one or more of the landmarks moved out of the �eld of view. Forexample, if two landmarks could be seen from the target position, but only one from the current position,it was ambiguous to which of the two initial landmarks the remaining one should be matched and hence awrong correction vector might result.This problem is also the limiting factor for the maximum positional error we can cope with. The maximumerror in the tangential direction is set by the requirement that all of the close landmarks remain in the �eld ofview. Hence, it is determined by the �eld of view of the camera, the distance to the landmark and also on theorientational error. In the radial direction the range is limited by the distance which we use to classify closelandmarks. In the �nal experiments all landmarks closer than 1:5m were classi�ed as nearby landmarks,hence if the error position is further away than this distance, the algorithm will lose the landmark and won't�nd its way back to the target position.The average number of iterations was less than 4 when only a positional error was introduced and about2 more if there was also an error in the orientation.The average results for some test runs using 1 landmark at di�erent distances with and without angularerror can be seen in Table 1 and Table 2. They show that the angular error is very well corrected after thelast iteration and also that the re�nement performs better in tangential then in radial direction. The resultsare best when the landmark is 60 cm from the remembered position and decreases when the distance getssmaller or larger.Distance Average remaining error Average numberto after 1. iteration after last iteration of iterationslandmark radial tangential Angle radial tangential Angle45 cm 3:3 cm 0:8 cm 0:6� 2:0 cm 0:3 cm 0:0� 3:785 cm 7:0 cm 1:5 cm 0:8� 2:3 cm 1:6 cm 0:1� 3:8Table 1: This table shows the average error of eight runs for both distances, 45 cm and 85 cm. The initial errorposition was about 20 cm to 30 cm away from the remembered position, no angular error was introduced.Distance Average remaining error Average numberto after 1. iteration after last iteration of iterationslandmark radial tangential Angle radial tangential Angle60 cm 4:2 cm 4:2 cm 3:3� 0:5 cm 0:3 cm 0:1� 5:1Table 2: Average errors of 6 runs with the landmark being 60 cm from the target position. The orientationerror before the �rst iteration was �10�, the positional error about 20 cm to 30 cm.A graph showing a typical search way of the algorithm can be seen in Figure 5. It shows a test run using1 close landmark at a distance of 45 cm from the remembered position and no orientational error. In the�rst iteration, the error is reduced to 45% of the initial value and after the last iteration the remaining erroris 0:3 cm in the tangential and 0:2 cm in the radial direction.4 ConclusionsThe project presented in this article devised and implemented an algorithm which a navigating agent canuse to re�ne a previously remembered position using visual data. The algorithm employs the optical 
owinduced by the sensor's motion to segment the scene into close and distant landmarks and to gain informationabout the layout of the close landmarks in the 3D scene. The information of the distant landmarks obtainedfrom the remembered and the current position are used to correct the orientational error, whereas the closelandmarks are used to correct the positional error.
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target positionFigure 5: The recorded path of the robot re�ning its position in 3 iterations.Our techniques are similar to the one used by Santos et al. [5, 6], although employed for a di�erentpurpose. Santos et al. also use spatial and temporal derivatives to compute the optical 
ow in a series ofimages, then employing the average optical 
ow as a qualitative measure for the distance from the camera toan object. By comparing the results obtained from two divergent cameras, their algorithm enables a robotto navigate along a narrow corridor and avoiding obstacles in its way. This shows that the devised strategiesmight be employed by the honeybee for several purposes, for example during dead reckoning, as shown bySantos et al, and during the global localisation, as in our project. The performance of our algorithm wouldeven improve when using two divergent cameras similar to Santos et al, since the output of the two camerascould be combined into one image yielding a wider �eld of view.Although the project was inspired by the bee literature, the technical details of the algorithm wereoften determined by the engineering constraints. However, using optical 
ow allowed us to gain importantinformation about the 3D character of the scene. We were able to use a simple technique to keep theobserver's orientation constant. Cartwright and Collet also required an orientation correction technique,however, in their model, they assumed it as being given [2]. We could signi�cantly improve the performancecompared to an algorithm using only static images [4].Hence our results con�rm the hypothesis that optical 
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