
Multi-Variate Cross-Correlation andImage MatchingR. B. Fisher and P. OliverDepartment of Arti�cial IntelligenceUniversity of EdinburghAbstractThis paper introduces the use of a multi-variate correlation functionfor region-based image matching and extends it to a modi�ed cross-correlation function that works well when matching image areas arerequired have the same intensity contrast. It also shows that the multi-variate case is a straightforward generalisation of the monochrome im-age case. Experiments with both MRI and RGB colour imagery areshown, along with comparisons with the Euclidean, Manhatten andL1 matching metrics.1 IntroductionWith the increase in available computing power, both through fast microproces-sors and also through special purpose VLSI and board-level products, vision re-searchers have been again investigating image region-based matching processes.For example, research projects have investigated area-based stereo [3, 8], Ugariticcharacter stroke location [2], general template matching [1, 5, 10], MRI image cor-respondence determination over time [11], corner detection [6] and face recognition.What characterises all of these examples is the use of small image windows from a�rst (or model) image as templates for matching neighbourhoods in a second im-age. For example, the stereo matching processes attempt to match many regionsin the �rst image to corresponding points in the second image (as an alternativeto feature-based matching).Many alternative image match evaluation functions have been considered:� pP(xi � yi)2 (i.e. Euclidean metric),� P j xi � yi j (i.e. Manhatten or L1 metric) and� maxi(j xi � yi j) (i.e. L1 metric)where: i indexes over N paired signal samples xi and yi. In our opinion, thestandard statistical correlation function (1) is more well-suited as the measure ofimage similarity, because, when attempting to match image regions, one must con-sider the likely distortions between the images being matched. If we assume onlysmall rotations (a few degrees) and small non-Euclidean (e.g. shear or projection)distortions, then the geometry of a small region does not change appreciably be-tween images. However, what can change easily is the translation (due to changes



British Machine Vision Conferencein camera position or target motion), and the intensity distribution. A standardmodel for the intensity di�erences between two images is:Bi = �Aj + �where i and j index corresponding pixels. (A and B are the intensity levels of thepixels, � is the gain di�erence and � is the o�set di�erence). Causes for this sort oflinear intensity relationship might be: digitiser base level di�erences, digitiser gaindi�erences, illumination intensity di�erences, shadows, changes in light direction(of distance light sources), etc. When images satisfy this model, then the threematching functions mentioned above do not perform well, as they assume thatthe images being matched have the same intensity distributions. However, thestandard statistical correlation function can cope with this model.The �nal thread in the introduction to this paper is the topic of multi-spectralimages. With the increase in computing power, and the relatively recent com-monplace availability of multi-spectral imagery (e.g. MRI proton density anddi�erence, R/G/B video, multi-channel satellite remote sensing, registered rangeand intensity or reectance data), one might now consider how best to matchimages whose pixels are vectors, rather than scalars.2 Multi-Variate Cross-CorrelationFrom elementary statistics, the standard statistical cross-correlation function be-tween two signals fxig and fyig is de�ned as:� = 1N NXi=1 (xi � �x)(yi � �y)�x�y (1)where: �x and �y are the means and �x and �y are the standard deviations of theN xi and yi. The function � takes values from [-1,+1], where values near +1mean good correlation (i.e. when one function increases, the other also does inproportion), values near 0 mean uncorrelated (i.e. there is no relation betweenchanges in one function and the other) and values near -1 mean anti-correlated(i.e. when one function increases, the other decreases in proportion).In the case of matching image data, xi and yi are corresponding image pixelsand i indexes over pixels in a neighbourhood geometry. As we are expecting to �ndregions that match, here the closer the value of � is to +1, the better the match.Note that subtracting the mean is useful in image matching, as it corrects fordi�erences in digitisation base-level. Dividing by the standard-deviation is usefulbecause it corrects for multiplicative e�ects, such as change in average illuminationand digitisation contrast.In the case of multi-dimensional image data, one might expect that this case isdiscussed in standard texts on multi-variate statistics. Indeed, there are correlationfunctions from one variable to vectors, and between components of vectors, holdingother components �xed. However, an examination of over 30 texts on multi-variatestatistics revealed only one page on vector correlation [7], which we believe wasactually incorrectly formulated (see discussion below). Geiss et. al. [4] proposed



British Machine Vision Conferencea multi-variate cross-correlation function: De�ne the image samples to be ~xi and~yi, both of dimension M . As before, assume that there is a set of matched pixelsi = 1::N from some appropriate image neighbourhood. Then, the mean pixelvalues in the neighbourhood are: ~̂x = 1N NXi=1 ~xiand similarly for ~̂y. The covariance matrix for each neighbourhood is:�x = 1N � 1 NXi=1(~xi � ~̂x)(~xi � ~̂x)Tand similarly for �y.Now, Geiss et. al. de�ne their correlation measure as the sum of the positiveeigenvalues of the matrix: S = NXi=1 ~xi~yTiThis is not satisfactory, as (a) it is a measure that is sensitive to the absolutelevel and contrast of the data and (b) using only the positive eigenvalues does notallow reduction to the univariate case, and (c) using only the positive eigenvaluesignores the possibility of anti-correlation between the signals as might occur withrepeated texture (i.e. a bivariate signal that had one perfectly correlated and oneperfectly anticorrelated signal would be represented with an incorrect correlation).Therefore, we argue that one should use all of the eigenvalues.To normalise the correlation for signal contrast and gain, the uni-variate casesubtracts the mean and divides by the square-root, which suggests an obviousgeneralisation of subtracting the mean vector and pre-multiplying by the inverseof the square-root matrix: Q�1x (~xi � ~̂x)where �x = QxQxHowever, by de�nition: E[Q�1x ~xi~xTi Q�Tx ] = I(assuming ~̂x = 0 for simplicity). This pre-multiplication has the e�ect of \rotat-ing" the data into a new coordinate system where there is no covariance betweenthe components of the data. This leads to problems when considering the cross-correlation between two signals, each of which might have been \rotated" di�er-ently. This error also appears in another function for multivariate trace correlationdiscussed in [7]: 1M trace(��1y ST��1x S)We argue that a better approach is to instead use
 = 1N NXi=1D�1x (~xi � ~̂x)(~yi � ~̂y)TD�1y



British Machine Vision Conferencewhere D is a diagonal matrix with (Dx)jj = p(�x)jj . That is, we normalise bythe standard deviation of each component of the vector, after having subtractedthe mean vector. Note that this has a similar form to (1). Then, the multi-variatecross-correlation coe�cient is: � = 1M trace(
)A little algebraic simpli�cation of this sum reveals:� = 1M MXj=1( 1N NXi=1 (xij � x̂j)(Dx)jj (yij � ŷj)(Dy)jj ) (2)This is the mean of the cross-correlations between the individual channels.3 Application to Image MatchingThe most straight-forward application of the multi-variate correlation functiondescribed above is de�ned using a S � S window as the source of the N datasamples. Then, for each appropriate window f~xig in the �rst image, consider allappropriate windows f~yigk in the second image. (We use the term \appropriate"here because some aspect of the problem might limit the number of windows inthe original image, such as sub-sampling or only using windows whose standarddeviation was su�ciently large, or might limit the number of windows in the secondimage, such as only along an epipolar line, or in a bounded window.) For eachwindow pairing, compute the correlation �k and choose as the best match thewindow k that maximises �k.When using (2) for image matching, it is possible for image regions to matchthose that have very di�erent intensities and contrasts, but whose local imageintensity variations are very similar. If we have the constraint that contrast dif-ferences are small, i.e. if there are only small changes in scene illumination orsignal output, to allow this contrast correction is unhelpful. So, an alternativecontrast-constrained cross-correlation calculation is:� = 1M MXj=1( 1N NXi=1 (xij � x̂j)(yij � ŷj)(max((Dx)jj; (Dy)jj))2 ) (3)If the two image regions are slight variations of the same scene, then this heuris-tic change has little e�ect. On the other hand, if there is a large di�erence incontrast between the matched regions, then the modi�ed normalisation forces thecorrelation to zero (i.e. e�ectively uncorrelated).Finally, contrast normalisation allows matching with regions that are essen-tially uniform except for random or texture variations. Our experience suggeststhat matching should not be allowed between a pair of regions if the sum of vari-ances of either region is low. (This constraint is applied in the tests below).



British Machine Vision Conference4 Experiments4.1 MRI Image Section MatchingThe problem being investigated is how to identify and quantify plastic deforma-tions of the brain over time (e.g. as arising from AIDS, Alzeheimer's disease, etc.)[9]. One part of that research required pixel-wise matching of image regions be-tween two MRI brain image sections taken at di�erent times (assuming that thesame section had been selected for matching). The MRI scanner settings might bedi�erent, the patient might have moved, and the brain might have moved withinthe skull between measurement sessions. We assume that the brain has not rotatedor changed signi�cantly. Thus, the neighbourhood correlation method proposedabove can be used. Figure 1 (left) shows a typical MRI PD cross-section, (middle)shows the PD image taken at a later time. As well as there being a di�erence inthe position of the brain, there are also some changes in the brain itself. Figure1 (right) shows the registered initial T2 image (i.e. we have a 2-vector of data ateach pixel).
Figure 1: Measurements of a brain cross-section (left) PD data at the initial timeand (middle) PD at a later time and (right) T2 data at the initial time.Woodward [11] used the scalar correlation function to match a single channelMRI image. Figure 2 (left) show typical results of his process, with the vectors thatmap from pixels in the initial image to pixels in the second image. The pixel in thesecond image that has the maximum correlation is selected. The mapping at theleft was based on the standard correlation measure applied to the T2 image andat the right metric (2) with the T2 and PD data is used. Because there is a slightrotation between the two images, there is a general \swirling" of vectors abouta point to the left of the middle of the brain. While there are some di�erencesbetween the two brain sections due to changes over time (especially in the upperleft), the main thing to note is that there are a lot of pixels whose mapping isradically di�erent to the mapping of their neighbours. This is observable as a cross-hatching e�ect in the mapping vectors. That is, the wrong pixel correspondenceshave been found. In (left), this mis-mapping is rather frequent; however, in (right),



British Machine Vision Conferencemany fewer \cross-hatched" regions can be seen.
Figure 2: Mapping vectors between the initial and later images (left) using T2correlation only and (right) using both T2 and PD data. A perfect match outputshould show all vectors \swirling" about a point just left of the centre of the brain.A mis-mapping is observable as a cross-hatching of overlapping vectors, whereasgood mappings are largely all parallel.The mappings were computed over a 139 by 166 set of sample points on a 50MHz 486DX PC (with FPU) and took about 30 minutes for the T2 correlation onlyand 60 minutes for the correlation using both T2 and PD data. A 9� 9 windowis used for the correlation, and search is restricted to a 11 � 11 neighbourhoodabout the initial position. Figures 3 and 4 show the mapping functions on thePD/T2 vector pairs for the �ve matching functions described. The results seenhere and in the table below show that the standard correlation metric given in (2)is substantially better than the other algorithms. In this case, there are few areaswith constant contrast. A match was considered to be bad if it was more than 3pixels from its expected position. For the 17,647 matches tried, the summary ofmatching is:Metric Time Bad Mean Error ErrorDist (Pixels) Std DevCorrelate 60 m 05 s 806 0.58 1.28Modi�ed Correlation 59 m 19 s 1176 0.77 1.44Euclidean 15 m 54 s 1583 0.92 1.63Manhatten 14 m 18 s 1600 0.93 1.62L1 14 m 37 s 1812 1.05 1.69
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Figure 3: Mapping vectors using (left) the correlation metric given in (2), (middle)the contrast weighting correlation metric given in (3) and (right) the Euclideanmetric.4.2 RGB Colour Image MatchingWe use the correlation function to derive a dense pixel based (as compared tofeature-based) image correspondence between a stereo pair of colour R/G/B im-ages. In this case, the image pixels are 3-vectors. Figure 5 shows the initialR/G/B image planes. The images were captured from a collage of three di�erentphotographs with di�erent spectral characteristics and image textures. Here, theinitial image is about 20 pixels to the left of the scene in the second image. Asthe images were taken at di�erent times, there is a slight di�erence in camerapositions, projection, illumination and noise between the two sets of images.For each pixel in the left image, a 7 � 7 window about that pixel is used formatching when searching in the right image for the corresponding pixel. (Weassumed that disparity limits the maximum shift of a pixel to �20 pixels aboutthe expected position.) The pixel selected as the matching pixel is that with themaximum correlation, provided that1M trace(Dx) > � and 1M trace(Dy) > �(here, � = 7:5. Using 12.5 reduced the number of matches allowed slightly, buthad no signi�cant e�ect.). The reason for this condition is that regions where thereis little contrast (i.e. uniformly lit, uniform reectance regions) correlate well withany other region also having little or no contrast, and this test eliminates regionswhose contrast is low. Additional conditions may be needed for uniform intensitygradient regions (where any nearby pixel will have the same correlation).Figure 6 shows the R channel and R/G/B multivariate mappings. As therewas only a linear shift between the two views, all mapping vectors should beapproximately horizontal. While the two mappings are quite similar, it is clearthat the mappings computed using only the R channel (left) have more incorrectmappings than those computed using all of the R/G/B data (right). Analysis ofthe mappings shows that only 389 of 506 possible mappings were acceptable (by
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Figure 4: Mapping vectors using the metric given by (a) the Manhatten distanceand (b) the largest absolute value.
Figure 5: (left) Red, (middle) Green and (right) Blue components of initial imagethe average channel standard deviation being at least 7.5 in the window) withthe R channel matching, of which 297 were good (i.e. mapped positions were lessthan 4 pixels from expected position). In the case of the RGB matching, 415mappings were acceptable of which 321 were good. When the modi�ed contrastcondition was used, then 351 good matches were found. Thus, the multi-spectralmatching gave more matched regions with fewer bad matches. We also comparedthe performance using the Euclidean, Manhatten and L1 metrics. In all of thesecases, 415 mappings were acceptable using the same criteria as the RGB case,and the number of good matches was 357 for the Euclidean metric, 363 for theManhatten metric and 350 L1 metric. Thus, in this case, the Manhatten metrichas advantages over the other metrics; however, as the image distributions arethe same between the two images, one would expect the non-normalising metricsto have better performance. None-the-less, all of the vector metrics were betterthan the scalar metric. The mappings were computed on a SparcStation 10/50and required about 2 minute for the R channel and 6 minutes for the R/G/Bmappings.
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Figure 6: Mapping vectors between the initial and later images (left) using R chan-nel correlation only and (right) using all R/G/B data with the modi�ed contrastmetric.5 ConclusionsTheoretical analysis has shown that an e�ective multi-variate cross-correlationcoe�cient is simply the mean of the cross-correlation coe�cient of the individualchannels. The measure proposed here is also an improvement on Geiss [4] byaccounting for normalisation of the di�erence signal channels and use of negativeeigenvalues. This measure can be adapted slightly for image region matching, toeliminatematches using regions with low contrast. Experiments with many vectorsin several images have shown that the use of the multi-spectral data does reducethe number of bad matches in actual use. The choice of metric to use dependson whether the image intensity distributions are identical between images beingmatched. If they are not identical, then the normalising e�ect of the correlationmetrics is essential; otherwise, the non-normalising metrics (e.g. Manhatten orEuclidean) may have better performance as well as be faster.The computational complexity of this process can be rather high in its worstform of complete image matching, as there is an N pixel correlation calculationfor all S2 possible correspondences between two images each of size S. Thus, thisprocess will need special purpose hardwareThis matching process is only suitable when the transformation between imagesis limited to translation of image positions and linear transformations of pixelvalues. When rotations are small (e.g. less than 5 degrees), the process will stillwork; however, for larger rotations the windows being matched no longer correlatewell with the rotated version of the correct match. The same problem ariseswith scaling and shear of the image pixel positions. If this assumption does nothold, the correlation process is still valid; however, in this case, one would haveto search for the maximum correlation with rotated and scaled versions of one ofthe images (e.g. every 5 degrees), unless some global estimation of rotation and
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