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Abstract

This paper presents a novel approach to the recovery of generic solid parts of
objects from real 2D images. The part vocabulary chosen is the one of geons, which
are qualitative volumetric part primitives that are defined by simple but perceptu-
ally relevant properties which are viewpoint quasi-invariant. Most previous works
on detection and recognition of geons from 2D images relied on quasi-perfect line
drawings. The use of aspects has also been proposed for matching fixed templates of
synthetic images. Here we use parametrically deformable aspects as 2D models to be
matched to real images of geons in the framework of Model-Based Optimisation. The
use of parametric models allows us to efficiently represent geons, whereas the use of
topologically different aspects yields more robustness in the optimisation process we
use, which is Adaptive Simulated Annealing. A simple control strategy is developed
that generates initial aspect hypotheses followed by a maximum a posteriori choice of
the best one. Experiments are shown that demonstrate the validity of the approach.
The proposed method is general, in the sense that it could be easily applicable to
other parametrically defined part vocabularies.

*This research paper is extracted for Chapter 6 of [41]. A shorter version of this paper which does
not include the aspect-based fitting strategy has been presented at the Fourth European Conference on
Computer Vision, Cambridge, April 1996 [42].



1 Introduction

Geons [3] are generic solid primitives defined by qualitative properties of axis and cross-
section of generalised cylinders [4] that are invariant under change of view-point.

In this paper a new method is presented for fitting qualitative 3D volumetric parts
models to real 2D images that treats geons' as single entities to be extracted from images.
This is done by matching parametrically deformable contour models (PDCM) of geons to
edge images in the framework of Model-Based Optimisation (MBO), in which an objective
function expressing the global likelihood (goodness) of fit is maximised. The cost function
accounts for both matched and unmatched contour portions and is formulated in Bayesian
terms.

The potential advantages of such a global approach lie in imposing overall consistency on
the image which lead to robustness to cluttering and opens possibilities of direct figure-
ground segmentation in the spirit of [30] or the method presented in [41].

Similar approaches to generic part recognition that used deformable superquadrics as
generic shape models have been investigated for the 3D case (range data input) in popular
work such as [49] and also in [54], [30] and [5]; only in [35] the method was extended to
the 2D case as a front-end of the OPTICA system [12].

To date, however, one of the main problems faced by global fitting approaches is their
sensitivity to the initial state of the models, which often compromises the quality of the
solution. In previous work [42], we used a loosely-constrained optimisation approach which
worked well only when the initial model was topologically equivalent to the geon instance
being fitted. Here, this deficiency is greatly reduced by using an aspect-based hypothesis
generation-and-testing strategy inspired by [14]. The multidimensional parameter space
defining the geon PDCM is partitioned into eight topology-equivalent classes that we call
Parametrically Deformable Aspects (PDA); the set of eight PDA can be seen as a single
deformable model endowed with global topology information. By doing so, the optimisation
can independently focus in regions of the parameter space that correspond to models with
the same topology, thereby reducing the chances of getting stuck in local minima caused
by different interpretations of image features. A simple experimental control strategy
suggested by [14] is employed that, by starting from coarse 2D part hypotheses produced
as (but not only) in [41], does:

(1) initialises all eight PDA at a representative position for each PDA;

(2) performs the fitting independently for each PDA thus initialised;

(3) chooses the one that achieves the best score.

We will see taht the happy marriage between parametric deformable contour models
and the concept of topologically different aspects efficiently represents geons and yields
more robustness in the optimisation process we use, which is Simulated Annealing.

The results we achieved from 2D images are very much comparable with the one ob-
tained by using 3D range data (e.g. by [49]), although depth and orientation cannot be
obviously recovered from 2D images.

!The parts will be still called geons, although they are are a subset of the ones defined in [3]



2 Review of Previous Related Work

In this section, some previous research in model-based optimisation and the use of aspects
in recognition are reviewed.

2.1 Model-Based Optimisation

In the context of Computer Vision, Model-Based Optimisation (MBO) aims at finding
the best fit of a model by minimising an objective function (or maximising a likelihood
function) that can incorporate both high and low level knowledge about the image, object
model and goodness of fit. Within this framework, the use of whole boundary models —
such as the one used here — is the most natural and effective because [50]: i) the whole
structure is imposed to the problem and the task is simplified; ii) gaps are naturally filled
and iii) overall consistency is more likely to result.

MBO can be performed in parameter space or in image space and with arbitrary models,
fixed templates or deformable models.

Optimisation in image space is done through fitting each composing element (point,
lines, etc) of the model more or less separately to the image. Typical models that have
been used within this paradigm are fixed templates [14], arbitrary models like snakes [24],
bead chains [10], Markov boundaries [17] and parametric shapes like Point Distribution
Models (PDM) [8, 41]. As we shall see later, this method allows the model to better track
object irregularities but, besides problems of stability, it is often difficult to incorporate
high-level knowledge about the overall object shape to guide the fitting process. In most
works using this type of models, the high-level knowledge is inspired by physical analogies
(such as the smoothness constraint [24]) but very promising results have been achieved by
using PDM [8] or finite element models [39], where global information is encoded in the
modes of variation.

On the other hand, MBO in parameter space is performed by adaptively changing the
parameters of the model and checking the goodness of fit in the image; it implies the use
of parametric (deformable) models whose shape variability can be expressed in a compact
form by few significant parameters; within this paradigm fit works by Lowe [34], Yuille [55],
Staib and Duncan [50] and a wealth of others. Fixed templates have also been used but that
is a sort of degenerate case in which the only controlling parameters are the one defining
the pose of the object. Although the use of parametric models offers the advantage of
compactness of representation and easy classification, often the optimisation in parameter
space turns out to be a hard problem (see, e.g., [34]), also because the parameter space is
often not as “tight” as for arbitrary models.

As far as the optimisation algorithm goes, that is, the “tactic” for finding the best
fit in terms of configuration or parameter values, several methods have been proposed
and experimented with but none have provided a reliable and sufficiently general method.
Cost functions are often strongly non-linear and present many possibly narrow and shallow
local minima that make fast convergence even to a sub-optimal minimum hard. The initial
condition, that is, the values of the model parameters before the optimisation starts, often



play a crucial role and, where this is not done manually, several heuristic have been timidly
proposed (as in [34] and [17]). Commonly used methods include Levenberg-Marquandt
(used for instance in [34] and [5]), Simulated Annealing (i.e. in [54]) and hill-climbing in
combination with continuation or multi-scale techniques [50].

2.2 Use of Aspects

The concept of aspects was first formulated in [27] and a new object representation, called
the aspect graph, was proposed. An aspect graph is essentially a “..complete enumeration
of topologically distinct views of an object, along with a definition of the region (cell) of
viewpoint space from which such a view is seen” [14].

A number of algorithms have been proposed to compute the aspect graphs of polyhedral
[51], algebraic surfaces [43] suggestive models [16] or solid of revolution [13], often by
approximating the exact solution by tessellating the Gaussian view-sphere. However, the
practical use of aspect graphs for recognition has been hindered by the lack of practical
implementations and therefore they have been mainly used for feature prediction, that in
for checking how a feature combines with others. Relevant works that used such an aspect
graph-based recognition strategy are, for instance, [12], [6] and [22].

A major conceptual extension of the use of aspect graphs has been proposed in [14]
where the distinct-topology property of aspects is used to constrain an iterative fitting
method within a single view-cell, thereby dramatically improving convergence quality and
speed.

In most aspect-based works, including [14], CAD models were used because of the
difficulty of constructing aspect graphs for general smoothed objects. One of the major
contribution of this paper is to show that the use of an aspect based strategy is very
beneficial also for the fitting of generic deformable models, such as superquadrics, in which
a “topology-blind” strategy often yields poor results.

3 Parametrically Deformable Contour Models of Geons

Geons are volumetric shapes that are defined by qualitative features and are hence subject
to high intra-class variability. Within our framework of Model-Based Optimisation, the
recognition of geons from 2-D images needs to have a model that can describe in a compact
way their appearance in 2D images and, being geon models computed inside the innermost
loop of the optimisation process, this must be done as speedily as possible.

Recent works that dealt with the recognition of geons from 3-D range data (e.g. [49], [5],
[54], [44]) have associated geons to globally deformable superquadric model [1]. There are
mainly two advantages in using superquadric models. Firstly, the distinguishing features
characterising geons can be expressed by single parameters such as bending, roundness,
swelling and tapering and, secondly, they can represent very compactly a variety of shapes
[38].



Here, the use of superquadrics in extended as done in [35] to the 2D case by approxi-
mating the contour of the image projection of geons (as opposed to their spatial occupancy)
by the apparent contour (outline plus interior edges) of globally deformable superquadrics
once they have been properly deformed, roto-translated and projected onto the image [49].

Unfortunately, computing the apparent contour of deformed superquadrics and in gen-
eral for smooth surfaces is not a trivial job. As classic works in aspect computation show
[13, 40], if an exact closed-form solution is sought, huge systems of equations need to be
solved and time-expensive search in high-dimensional hyper-spaces has to be carried out.
For these reasons, we did not endeavour along this avenue, which has been followed by the
(however excellent) work by [35], where the superquadric contour was found by numerical
methods at a high computational expense.

A few words must be said about this use of deformable superquadrics. Although they
are a good model for representing 3-D shapes, they are extremely clumsy mathematical
toys. Their deformations [49] have more of an engineering hack and is their error of fit
function has no closed form. If used to compute contours as done in [35], superquadrics’
clumsiness is certainly too much a burden for the compactness of representation they can
give in exchange.

For our purposes, there is no need to have a precise knowledge of the projected de-
formable superquadrics contour for the following reasons:

e Contour details such as cusps cannot be reliably detected in real images and if re-
covered, they would be useful only for structural analysis of the contour such as in
[2], which have been proved inapplicable in real cases;

e Very few, if any, actual geons can be properly described by globally deformable
superquadrics: they are an arbitrary approximation in the first place, and a different
approximation does no harm!

e [f precise implies expensive, the above reason is even stronger

Therefore, a new, more straightforward approach has been followed, that is, to build
a Parametrically Deformable Contour Model (henceforth PDCM) that simulates the de-
formable superquadric contour — thence without going through the explicit construction
the superquadric — in a much more efficient, though approximate way; this constitutes a
significant efficiency improvement to the model building method used by [35].

The geon PDCM has been designed following the pragmatic spirit of [55], [7], or [15],
where models are designed with recognition in mind, rather than being inherited from
computer graphics or the mathematics literature, as in the case of superquadrics. For
instance, in [15] a parametric 3D wire-frame model of a car was purposely built that was
able to represent the essential shape of several vehicles classes through its parameters; the
2D projection was trivially obtained from the 3D model and the fitting was performed
using the technique presented in [9] and also used in this work. The approach is rather
pragmatic but, if “theoretical” support is sought, it fits in the philosophy of [53], which
advocated that vision has to be driven by structure.



The model, that is going to be described in the following, is suitable for qualitative
geon PDCM and simulates the contour of projected deformable superquadrics in a very
efficient way: starting from a cylinder centred on the z axis with superelliptical cross-
section (Fig. 1-left), we apply deformations and rotations and find the contour by trivial
geometric considerations. In the following the construction of the model is detailed.

The initial superelliptical cylinder S of height 2 - a, and semi-axes a, and a, can be
expressed as

x(n) azcos(n)
) . —nr<n<Tm
S - }’(77) = ayszn(n) —a, <z<a (1)
zZ zZ -0 =

where 0 < € < 1 controls the degree of squareness of the cross-section from a rectangle for
€ — 0 to an ellipse for € — 1.

Any curve lying on this cylinder can be variously deformed but for our purpose of
representing geons we are particularly interested in three kinds of deformations: tapering,
bending and swelling along the principal axis. Below the mathematical definition of these
deformations is given. The tapering and bending deformations have been derived from [49]
but the latter has been slightly modified by normalising the bending control parameter
to a, and allowing bending on both sides which has also improved the stability of its
estimation. The swelling deformation, however, has been introduced here to represent the
“expanding and contracting” sweeping rule of geons [3].

Let us indicate by x, y, z and X, Y, Z the vector of shape points before and after the
deformations, respectively.

A linear tapering deformation along the z axis is given by

X = (fj”z+1)x
Taper(S, K, K,) =4 Y = (f}‘z—i— 1)y
Z=1z

where —1 < K, <1 and —1 < K, <1 express the amount of tapering in the z-z and z-z
plane, respectively; henceforth we shall assume K, = K.
A circular bending deformation in the y-z plane is obtained by (see [49] for details):

r = sign(c) cos(B)vxZ +y?
X =x+ sign(c)(R' — ) f = arctan ¥
Bend(S,c) =4 Y=y with R =k~ —cos(y)(k™" —71)
Z =sin(y)(k™' = R') y=1z/k"
\ K=

where —1 < ¢ < 1 is the bending control parameter, which, when zero, yields no bending
(for ¢ = 0 the deformation is not applied).



Finally a circular swelling deformation along the z axis is given by:

X =x + sign(x)(R" cosa — (R" — o)) 0= a,s
Swell(S,s) =< Y =y + sign(y)(R"cosa — (R" — o))  with R" = (a? — 0?)/(20)
Z = R"sina «a = arctan (sz——a)

where s is the swelling control parameter (zero for no swelling).

Following the suggestion made by [49], the above deformations are applied in the fol-
lowing order: first tapering, then swelling and finally bending.

Once deformed, the shape is roto-translated to simulate the change in viewpoint by
applying in sequence pan (about z) and tilt (about z) rotations, orthographic projection
(Proj) and finally rotation about the optical axis y and translation in the image plane
(by P, and P,). The whole chain of transformations of the initial 3D shape S to its full
projection onto the image plane z-z S’ is:

Z

!
SI — [ X/ ] — TT(ISZ(an PZ} ROty(eopt’ PTO](ROtI(thlta ROtz (epan7
(2)
Bend(c, Swell(s, Taper(K,, K., S))))))))

Now we are ready to describe the construction of PDCM of geons. The knottiest
problem is to determine the occluding contour. For doing this, the following approximation
has been employed.

The transformation chain in Eqn. (2) is applied to the two bases of the superelliptical
cylinder and take the four outermost points P1), P1, and P2/, P2} (small circles in Fig.
1-right-B) and find the two corresponding points in the original undeformed superellipses
(small circles in Fig. 1-right-A). These two pair of points are linked by two 3D straight
lines L; and Ly, as shown in Fig. 1-right-A and are then deformed according to Eqn. (2)
and the resulting L1' and L2’ (Fig. 1-right-B) will then be used as the two sides of the
occluding contour.

By checking the projection on the image plane to the normals n, and n; to the superel-
liptical ends, it is possible to determine whether each of the two ends are visible or not:
if visible, the whole superellipse contour will be added to the geon PDCM; otherwise only
its outermost part between P1/ (P1;) and P2/, (P2}) will be included in the final PDCM.

In the case the geon has square cross-section (small €, say less than 0.5 in the superel-
liptical cross-section model) the central edge is determined by joining the two corners P3,
and P3, (Fig. 1-right-C) from the undeformed superelliptical bases occurring at n = 7/4
in Eqn. (1) by a 3D straight line and then deforming it by Eqn. (2); the resulting 2D
curve is shown in Fig. 1-right-D.

The PDCM described above is controlled by 12 parameters, namely a,, a,, a,. €, K, s,
¢, Opan: Orite, Oopt, Py, and P,. All these controlling parameters immediately relate to those
of a globally deformable superquadric, therefore they have a 3D meaning as we will see in
the experiments, in particular in Sec. 7.2 and 7.3, where deformable superquadrics will be
shown.



Superelliptical cross-section

Figure 1: Construction of the parametrically deformable contour model of geons: Initial su-
perelliptical cylinder (left) and determination of occluding contour and central rim (right).
See text for details.

By these simple approximated models of geon contour inspired by deformable su-
perquadric modelling, we can represent 12 geon classes with a good level of accuracy.
The proposed model could actually represent all 36 geon classes once a certain amount
of deformation is introduced that would asymmetrically deform the superelliptical cross
section; however this is unnecessary, because it has been shown that such deformations are
unrecoverable from 2D images [35].

Some examples of geon PDCMs produced by this method can be seen in Fig. 3 and
in the experimental section. The time for creating an instance of such a model is less
than 1ms on a SPARC 10 machine, which is over 2 order of magnitudes faster that any
other method that would use a direct exact computation of the outline using raster scan
techniques or computation of surface normals as in [35].

It is necessary to point out that, although effective, this model becomes rather imprecise
with high amount of bending under viewing directions where the tilt is greater than about
7/4; in these situation, however, the geon would be virtually unrecoverable from its contour,
unless a precise model of it is known.

One last important remark is due. Geons are, by their very nature, qualitative primi-
tives and one might argue how they can be modelled by simple shapes — such as the one
proposed here — or by globally deformable superquadrics. Although this criticism is cer-
tainly correct, for the task of recognition and detection these models constitute a valid low
order approximation of geon shapes and surely good enough to recover their distinguishing
features. It is up to the fitting algorithm to be able to cope with this low order-ness and
make sure that high-order components do not affect the robustness of the process.



Figure 2: Example of geon contour models generated by the proposed method. The param-

eters controlling the PDCM shape are the same as the ones that would produce a similar
contour projection from a globally deformable superquadric.
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4 Aspect Partitioning of PDCM

In the previous subsection, a PDCM has been presented which represents the variable
contour of geons through its parameters. This section describes how the PDCM parameter
space is partitioned in “cells” that correspond to topologically distinct PDCM aspects.

First, the definition of topological equivalence for geon PDCMs is given, and that will
be used to generate distinct aspects. Let us take the model described in the previous
section and give it an orientation corresponding to the direction of the positive z axis of
the original undeformed superelliptical cylinder.

Now, let us impose a labelling scheme on some features of the geon PDCM. Let U =
{curved, squared} be two properties of the cross section, and Vi,, = {visible/nonvisible}
and Vioyom = {visible/non_visible} two properties of the two geon ends which indicate
whether they are visible or not, the ends being the top and bottom superellipses in Fig.
1-left.

The Cartesian product U X Vi X Viguom induces 8 PDCM classes. Of the twelve
PDCM parameters, only four change the PDCM class, namely ¢, which affects the cross-
section roundness, and ¢ (bending), 6y and 6,4,, which affect the visibility of the two
ends. Cross-section dimensions, length, tapering and swelling do not change the topology
as it has been defined . For the topology theory connoisseurs, these equivalence classes
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Figure 3: Distinct PDCM topologies and their enumeration. The features defining the
topology are the visibility of top and bottom ends and the central rim.

partition the 4D parameter space S = {e, ¢, Oy, Opan } into eight dense simply-connected
open subspaces of S, thus creating eight different topologies in the parameters space; each
of these topologies correspond to a stable view of the PDCM that preserve the labelling
we have imposed; these topologies are known as aspects [27] of the PDCM, of which some
examples are shown at the top-left of Fig. 3 along with the enumeration that will be used
henceforth.

As said in the previous subsection, the property U = {curved, squared} is determined
by simply setting a threshold € € 0.3 .. 0.6 for €, hence dividing S in two symmetric 3D
sub-spaces S’ and S”.

The separation from one topology to another in S’ (S”) are singularities that are called
visual events surfaces [27]. By analysing the expressions of the two normals to the ends as
functions of ¢, 04, and 60,4, a closed-form for those surfaces has been determined as the
zero set of the functions A and B defined as follows:

A = cos(Byr) sin(bpan ) sin(a) — sin(fyy) cos(a)
B = cos(0ir) sin(bpan) sin(a) + sin(byr) cos(a)
a = arctan(c)

The plot in Fig. 4 shows these surfaces. The region within which each aspect is defined
is given by the inequalities in the table of Fig. 4.

In principle it should be possible to consider also aspects without one or both ends to
model parts that are joined to other parts at their ends. All the discussion so far and what
follows can be trivially extended to include these other aspects.

10



Visual Event Surfaces
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Figure 4: Aspect definition (left table, see text for the definitions) and plot of the visual
event surfaces in the bending/pan/tilt parameter subspace (bottom-hull: Aspect#1/5;
top-hull: Aspect#2/6; right-part: Aspect#3/7; left-part: Aspect#4/8). The gap between
the hulls is a rendering flaw.

5 Matching a Single Aspect

Our Model-Based Optimisation approach to geon detection involves the minimisation of
an objective (or cost) function that expresses the quality of the image-model match and
other constraints that will be discussed later.

There are many conceptually different ways of designing an objective function suitable
for a certain application but they mainly fall in these three categories: Energy Minimisation
(EM), Maximum A Posteriori (MAP) or Minimum Description Length (MDL). It has been
shown that given a certain problem and a certain fitting quality assessment criterion, they
are conceptually equivalent (i.e. in [56, 28]). Practically, however, the nature of the
criterion makes the use of a particular method easier. In this work, a MAP philosophy has
been followed, but the ideas behind it could be restated in MDL term:s.

Let M; = M(x;) be a geon PDCM instance built as in Sec. 3 expressed in terms of
pixels by a set of (4, j) image pixel coordinates and of which we would like the determine
the likelihood of fit, and let

Xi= [ax Ay Gz € Ky sc gpan Orits gopt Py Pz}T (3)

be the vector of the PDCM parameters. Furthermore, let Z be the original image and &
the binary edge image, which can be produced by a standard Canny edge detector; £ has
the same shape as Z and (i,j) € £ is 1 if an edge has been detected at (i,5) € Z and 0
otherwise.

11



The a posteriori likelihood of a PDCM matching the image can be expressed in term
of a priori probabilities by Bayes rule:

P(€ | M;) P(M;)
S P(E | M) P(M;)

PM; [ €)= (4)

where N, is the total number of hypotheses produced by the optimisation procedure.
The model that best fits the image is the one for which P(M; | £) is maximum, that is:

Mppest = M(Xbest) = mZaX{P(MZ ‘ 5)}
or, by inverting the sign and expressing probability in term of logarithms:
Mbest = M(Xbest) = miin{_ log(P(Mz | 8))} (5)

Since the denominator of Eqn. (4) is constant over all hypotheses, the minimisation
need only be concerned with the numerator. In the two following sections we describe how
we defined the model-conditional image and prior probabilities.

5.1 Model-Conditional Image Probability

In Eqn. (4) P(€ | M;) expresses the conditional probability of having particular image
evidence in the presence of the model. Although many ways of defining this probability
are possible, we express this probability in terms of how many image edgels “match” the
PDCM contour.
Let

Em(M) = {(k,1) ¢ [ (i) — (b D) 1<d, (.)€ My}

be the d-neighbourhood of the model contour M, and &,(M;) = € — &,,(M;) the rest of
the edge image which is not covered by it; henceforth we drop the M; arguments wherever
there cannot be ambiguities.

By assuming that the presence/absence of an edge in & and &, can be considered
independent (this is valid in general) and with different distributions, P(€ | M;) can be
expressed as:

P& | M;) = P(& | Mi) - P(Em | My). (6)

& and &, can be considered, to a first approximation, as realizations of binary ergodic
processes, for which the probability of single local outcomes are all the same, namely p;,
and p,,,, respectively. The value of py, is given by the ratio between edge locations and the
number of pixels in the image (typical values: 0.02-0.06) and p,,; ranges from 0.6 to 0.9,
depending on the neighbourhood dimension d and how good the edge detection is expected
to be. This ergodicity assumption is simplistic; a Markovian model that would take into
account relationships between neighbouring pixels would perhaps be a more accurate model
but this is left for future work.

12



Let Nyg, Np1, Nimg and N,;,; be the number of locations (7, j) that are “1” (edge) or “0”
(non-edge) in & and &, respectively; the probability that a certain number of elements
in & and &, is “1” or “0” follows a binomial distribution but, since we are interested in a
particular realization of the process that is the image itself, the two probabilities in Eqn.
(6) can be expressed as:

P(& | M) = ppr ' (1 — pyy) Vo
P(gm ‘ MZ) = pmivml(l - pml)NmO
By taking the logarithm of both sides, we obtain:

log(P (& | M;)) = Ny log(psy) + Nyg log(1 — pyy))
log(P(Em | Mi)) = Ny log(pm1) + Nmolog(l — pm1))

which in turn, by letting NV; 2 (Np1 + Npm1) be the overall number of pixels in the image
that are edge, are expanded to:

log(P(& | Mi)) = [Nilog(pyy) + Nilog(l —ppy)] —
(N1 log(pey) + Nimo log(1 — pyy)) (7)
log(P(Em | M) = Nyt 10g(Dmy) + Nimo log(1 — pry).

Then by taking the logarithm of both sides of Eqn. (6) and expanding we obtain:
log(P(& | M;)) =log(P(&, | Mi)) +log(P(&m | M;)) =

(8)
K + [Nin110g(Pm1) + Nmo 10g(1 — pimy)] — [Nt log(ps1) + Nmo log(1 — pey)]

where K is the constant term in square brackets in Eqn. (7) and therefore it will be
dropped in the MAP estimation.

In an information theoretical framework this equation has a precise meaning. The term
—log(P(E | M;)) is the overall number of bits necessary to express the whole edge image £
and —log(P(Em | M;)) and —log(P (&, | M;)) are the number of bits needed to represent
the information in the model neighbourhood (&,,) and in the background (&,) under the
ergodicity assumption. The minimisation in Eqn. 5 can then be re-interpreted as the search
for the most economical description in term of the edge evidence and the model, bringing
all into a MDL framework [37][28]. A more formal proof of the MDL/MAP equivalence
can be found in [47] and in the context of computer vision in [19, 28]. This information
theoretical avenue was followed in [18] but with the fundamental difference that there the a
priori p,, was computed by looking at the number of pixels matching the current instance
of the model, therefore making the mistake of using the same data set for both training
and estimation; some experiments that we carried out by using their objective function
gave unusual high likelihood for bad fits as well, which was somehow expected from what
has been just said.
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Figure 5: Example of model-conditional image probability —log(P (€ | M;)) for p,,; = 0.7,
Pe; = 0.06. See text for details.

Fig. 5 shows an example behaviour of —log(P(€ | M;)) (not considering K) for
Pm1 = 0.7, pe; = 0.06 and the total number of model points N,,, = N,,; + Np,o ranging
from 100 to 300; the small step has been added in order to show the points at which the
absence or presence of the model M; is equally likely (P(€ | M;) = 0.5): beyond this
line the probability increases with the overall model dimension N,,, that is a preference is
given to bigger models.

5.2 Model Prior Probability: A Heuristic

Within a Bayesian framework it is necessary to express the occurrence probability of each
instance of the model, called the model a priori probability. In most research this probability
is neglected (i.e. is considered uniform) but, through experimentation, it has been found
that by introducing a heuristic on the prior probabilities, the overall quality of the fitting
can be improved.

The reasons for introducing a model prior probability are essentially three: i) some
parameter configuration are unlikely to occur (such as a bent and swollen object); i) cer-
tain configurations of parameters arise from a weird viewpoint that would make detection
impossible; and i4) it biases the fitting to more perceptually likely shapes. These con-
siderations are both practical and also correspond to sensible assumptions to reduce the
quantitative shape ambiguities caused by the projection.

A sensible heuristic has been defined to express these loose constraints. The probability
of each aspect is expressed by overlapping (multiplying) marginal densities of parameter
values or combinations of them, tacitly assuming independence amongst them. The pa-
rameters we took into considerations are the dimension parameters a,, a, and a,, swelling,
bending and the pan rotation; the others are given a uniform probability. Below we show
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Figure 6: Heuristic model prior probabilities: definitions and plot for each contributing
term. The definitions and details are given in the text. These probabilities constitute an
heuristic that bias the fitting to perceptually more plausible volumetric shapes correspond-
ing to similar 2D contour projections.

how we defined the probability density functions.

e C and Qp(m In the case of Aspects #3, #4, #7 and #8 when 0,,, is close to —7/2,
(that is we have frontal view of the only visible ends) bending cannot be detected
from the occluding contour and therefore we need to strongly assume straightness of
axis, i.e. the only thing we can perceive in these situations. Without this constraint
the model could bend forward an arbitrary amount and yielding essentially the same
occluding contour. To model this constraint we set up an unnormalised p.d.f. like
the one Fig. 6-A, where K’ is an additive constant (controlling the desired minimum
value of the p.d.f.) and o.4,,, = 0.5. In fitting Aspects #1, #2, #5 and #6, the
bending is essential for the visibility or invisibility of both ends and this constraint
is not used.

e a, and ay The projection onto the image plane of a 3D object changes its shape,
but our perceptual system is slightly biased to assume more compact cross-sections
rather than weird rotation angles [33]. We therefore model the joint p.d.f. as given
in Fig. 6-B, which is a constant-height ridge running along the a, = a, line. The
value of o, 4, is fairly large because this constraint need not be severe (cram,ay = 20
in Fig. 6-B). This constraint assumes that the objects in the scene are not too flat
and should be dropped if that is the case.

° a, The PDA length could take any value but, since it defines the length of
allegedly elongated parts like geons, it should be biased to be bigger than the cross-
section dimensions by a constant factor 7. A non-normalised p.d.f. as the one given
in Fig. 6-C has been set to model this constraint; the figure shown it for 7 = 1.5 and
0q, = 20.
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e cand S High swelling and bending are incompatible. In statistical terms we can
express this constraint by a (non-normalised) p.d.f. like the one shown in Fig. 6-D
and arising from a Gaussian distribution over the product c¢-s. The plot in Fig. 6-D
is given for o, = 0.3.

Now that we have all the non-normalised probabilities and given the assumption of prior
independence between parameters, we just multiply them together to obtain the (non-
normalised) a priori p.d.f. of the model:

log(P(M;)) = H +log(P(a, | az, a,)) +log(P(c,s)) +
log(P(az,ay)) + log(P(c, Opan))- (9)

The normalisation constant H is unnecessary because it does not affect the MAP estimate.

This heuristic has improved the perceptual goodness of the recovered shapes but there
would be other possible ways of defining the model prior probability, which could also
incorporate more detailed specific domain-dependent knowledge about the scene structure.

5.3 MAP Estimation Procedure
The MAP estimation obtained by the minimisation of

—log(P(M; [ £)) = —log(P(£ | M;)) — log(P(M)), (10)

where the two terms are given by Equations (9) and (8), is rather difficult to achieve, since
it is extremely irregular and presents many shallow and/or narrow minima.

As an example, Figure 7 shows some graphs of the objective function value taken at
three orthogonal planar regions of the parameter space (in particular about the initial
estimate of the handset upper-piece example of Figure 10): although the three surfaces are
rather rugged, three pronounced valleys stand out that correspond to good values of the
objective function. In the middle figure, however, two valleys beyond the ripples might
jeopardise the fitting procedure.

By trying to minimise Eqn. (10) alone, it was also found that sometimes the optimi-
sation got stuck in local minima because of the step-like nature of the model-conditional
probability of Eqn. (8) (remember we used a binary “belonging to the model” criteria).
For overcoming this problem, a small smoothing term has been added to the right side
of Eqn.10; this term represents the average minimal distance between contour model and
image edge points (by using a minimal distance transform computed off-line) and it does
not affect the MAP estimate but just helps convergence in cases where image and model
are much displaced and the numerical computation of the gradient become meaningless
due to the low number of edge points falling inside the model neighbourhood. This term
can then be seen as “telling the optimisation where to go” in absence of other information.

In early stages of the work, a Levenberg-Marquandt method with added random per-
turbations was used, following [5] and other works, but this method led to difficult con-
vergence. The choice fell then to Simulated Annealing (see Appendix A) for a summary
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Figure 7: Three graphs of the objective function value taken at three orthogonal planar
regions of the parameter space about the initial estimate of the handset upper-piece exam-
ple of Figure 10: although the three surfaces are rather rugged, three pronounced valleys
stand out that correspond to good values of the objective function.

of the method), which is a powerful optimisation tool that efficiently combines gradient
descent and controlled random perturbations to perform the minimisation of non-convex
functions. The actual implentation is a publicly available version of Simulated Annealing,
called Adaptive Simulated Annealing (ASA) [23]. The set-up of the ASA algorithm will
be extensively discussed in the next section.

6 Experimental System

In this section outlines the simple experimental system, schematically depicted in Fig. 8§,
that has been used to carry out the experiments.

Starting (for instance) from the set of hypotheses produced by the method described in
[41], for each hypotheses each of the eight PDA are initialised at a representative position
and independently fitted to the image. The PDA that obtains the best scores is considered
the best fit to the image.

The approach relies on two fundamental assumptions [14]:

1. The MAP estimate that started with the “correct” hypothesis will converge to the
correct interpretation of the image;

2. The quality of the fit (score) of this correct interpretation must be higher than any
other.

No theoretical proof of convergence and uniqueness of the method is possible since the
problem is strongly non-linear and too complex to be analysed as stated also by [14], where
rigid models were used. The experiments of the next section will, however, empirically show
that the proposed method reasonably complies with these two goals.

In the following three subsections, the PDA initialisation and the optimisation set-up
of the experimental system is described.
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Figure 8: The simple aspect-based control strategy. For each part hypotheses, the eight
PDA are independently initialised and fitted to the image. The one that obtain the best
fitting score gives the best interpretation of the image.

6.1 Initialisation

The initialisation stage is concerned with estimating coarse part initial hypotheses (some-
time called the frame [52]) that comprise position, orientation of the major axis and di-
mensions. These initialisations need not be precise and the degree of allowed inaccuracy
depends upon the power of the optimisation procedure. The initial estimates could be
produced by the part-grouping and filtering method proposed in [41]. However, the two
modules are currently not integrated and in some experiments the intialization have set hy
hand to be qualitatively similar to those output by the MDL hypothesis filtering method
presented in Chapter 5 of [41].

It is worth highlighting again that the generation of generic part hypotheses from 2D
images is a novelty in vision, functionally matched only by the system proposed by [35].
Part hypotheses are physically PDM models fitted onto the image [41] and their position,
orientation and respective variation modes are used to initialise the PDCM by assigning
them to P,, P,, G,, G, = a, and gopt, respectively. The values of @, and @, are set to be
equal because we do not have prior information on the aspect-ratio of the part cross-section.
Information about bending, tapering or roundness, which are projective quasi-invariant
properties, are not currently used to better initialise PDCMSs, but this could be done with
relatively little effort.

6.2 Aspect Hypotheses Generation

From each of the initial frames, all eight distinct aspects are instantiated by properly
setting the PDCM parameters that control the aspect topology. Referring to Fig. 4, we
chose points in the topology-controlling parameter space (Sec. sec:partitioning) that are

18



squareness (€) bending (c) Orire Opan

init min max | init min max | init min max | init min
Aspect#1: | 0.75 0.51 0.99 | -0.5 -1 0 0 /4 w/4 | —7w/2 —mw
Aspect#2: | 0.75 0.51 0.99 | 0.5 0 0 /4 w/4 | —w/2 —m
Aspect#3: | 0.75 0.51 0.99 0 -1 —r/8 —m/4 0 /2 -7
Aspect#4: | 0.75 0.51 0.99 0 -1 /8 0 /4 | —w/2 —m
Aspect#5: | 0.25 0.05 0.49 | -0.5 -1 0 /4 w/4 | —7w/2 —mw
Aspect#6: | 0.25 0.05 0.49 | 0.5 0 0 /4 w/4d | —7m/2 —mw
Aspect#7: |1 0.25 0.05 0.49 0 -1 —7m/8 —m/4 0 —n/2 -7
Aspect#8: | 0.25 0.05 0.49 0 -1 /8 0 /4 | —w/2 —7

B
o
w

—_ == O == =
SO OO OO oo

Table 1: Initialisation and bounds for the aspect topology-controlling parameters. See text
for details.

more or less equidistant from the visual event surfaces and therefore are placed in a fairly
central position within each aspect cell. This choice is a sensible heuristic that reduces the
distance between the initial point and any possible true final estimate 2. Table 1 (along
the “init” columns) shows these values for each aspect topology. The other parameters,
bending, swelling and tapering, were all set to zero.

6.3 Optimisation Set-Up

The optimisation of strongly non-linear functions is “typically a non-typical problem” [45]
and therefore no canned optimiser can be used. As pointed out in [23], the set-up of
the ASA algorithm is a bit tricky, since no theoretical guide exists, but once the right
configuration has been found, the method becomes reasonably robust. Having said that,
here we describe the essential set-up of the ASA optimiser.

One of the key decisions when using a constrained optimisation algorithm is the choice
of the parameter bounds; the ASA algorithm requires hyper-rectangular bounds defined
by a minimum and a maximum for each parameter.

Within our aspect-based control strategy, we basically have two sets of parameters,
those controlling the PDCM aspect topology (€, ¢, O and 6,,,) and those that do not
change it (as, ay, a,, K;, s, P, P, and 6,p).

Section 3 gave a closed-form expression of the visual event surfaces bounding different
aspect topologies. In order to make the ASA optimiser to “stay within” a certain aspect
topology, we do two things: (1) give it a 4D search bounds (given in Table 1) that enclose
the true aspect cell; and (2) invalidate states (through a specific ASA option) that fall
outside the chosen aspect cell by checking the constraints given in the table in Fig. 4.
In most of the experiments we carried out, the ratio between invalid and valid generated

2The choice of these values can be regarded also as giving maximal disambiguation distance between
visual events [25].
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states was always less the 5%.

Besides the parameters constraining the aspect topology, the others need bounds too.
Bounds for the tapering and swelling deformations are set to their full range (Sec. 3); in
the case of position, sizes and orientations, bounds are set as tolerances with respect to the
initial values P,, P,, @,, @, = @, and 0,,. The following table summarises these bounds
(N is the resolution of the image):

Qg ay a, K, s Oopt P, P,
Min | @, —40% @, —40% @, —40% -1.0 0.0 Oy —7/8 P,— 5% P.—{%
Max | @ +40% @, +40% @, +40% 1.0 1.0 O +7/8 Pr+ 5% P,+ X%

In order to improve convergence, we need also to specify the deltas for computing
the partial pseudo-derivatives of the cost function, which are chosen such that for each
parameter, a perturbation equal to its respective delta should produce detectable changes
in the image at a given resolution. For 128x128 images, the values of A, A, ,Aq., A,
Ay, Ay, Aoy Ay Doy Do,es Ap, and Ap, are set to 1.0, 1.0, 1.0, 0.05, 0.2, 0.05, 0.05,
0.01, 0.01, 0.01, 1.0 and 1.0, respectively.

The annealing schedule plays an important role. We have experimentally found that
sub-optimal schedules are also related to the aspect topology we are trying to fit, probably
because of the different kind and number of features. For good convergence the Tempera-
ture_Ratio_Scale parameter [23] has been set to 10712 for Aspect#1 ... Aspect#4 and to
10710 for Aspect#5 ... Aspect#8. Finally the number of iterations has been set to 2000,
which we found to be a good trade-off between speed (about 5s for each optimization run
on a SPARC 10) and good convergence; moreover, for the experiments carried out with
128x128 images, we set py;, pmy and d (see Sec. 5.1) to 0.07, 0.85 and 1, respectively.

7 Experimental Results

In this section, three set of experiments are discussed.

In the first set, several fitting experiments of geon PDCM are shown for both synthetic
and real images with the purpose of verifying the validity of the cost function and the
optimization. The second set aims at assessing the validity of the two premises to the use
of aspects given in Section 6. In the final set of experiments, three fitting experiments
to the familiar handset test image are given along with interpretation of the results; in
particular, an example of what can happen when the aspect-based strategy in not used is
also supplied.

7.1 Testing the MAP fitting

In this subsection a number of single fitting experiments are shown that help assess the
validity of the cost funciton and the optimization method for fitting the PDCM proposed
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in this paper. Here the aspect-based strategy is not used but, but in some experiments
some of the topology-definining parameters have been constrained, as we shall see later.

The experiments presented here can in turn be divided in two sets, which are described
in the following. In both experiments, the initialization is performed manually and is
intentionally set to be poor to test for worst cases.

FIRST SET

The set of 18 fitting experiments shown Fig. 9 was designed to assess convergence and
viability of the cost function and the optimization procedure. Six geon-like objects were
created with some plasticine and an image of them was then taken with a resolution of
512x512 pixels. A Canny edge detector was applied and the resulting cluttered edge image
is shown in Image C (left) of Fig. 9. This image has been intentionally used without any
post-processing — like cleaning and linking — because we wanted to test the convergence in
hard conditions.

Afterwards, two synthetic images mimicking the original one created, one with roundish
primitives (Image A of Fig. 9) and the other one with squared cross-sections (Image B of
Fig. 9). The initial PDAs are shown in the left column Fig. 9 overlapped to the respective
edge images; the initializations for these two synthetic images are rather crude but the
right topologic aspects have been imposed to each example.

The manual initializations are the same across the three images except for the roundness
parameter, which has been set to “squared cross-section” in image B. The corresponding
results of the fitting can be seen in the right column. The neighbourhood dimension was
set to 7 (that is d = 3) and the other parameters are the same as given in Sec. 6.3; each
estimate was produced in about 25 seconds on a networked SPARC 10 machine.

e Image A (Top of Fig. 9) The results here are essentially good but in the case of
Object 6 the sign of the bending is wrong. All the geon distinquishing features have
been correctly detected, as can be visually seen.

e Image B (Centre of Fig. 9) In this case the results are better than the one in
Image A because the presence of the additional interior edge gives “more information”
to the fitting.

e Image C (Bottom of Fig. 9) As expected, the results here are not particularly
exciting but they can be considered positive, given the intentionally poor edge image
quality we have used. Here, the roundness parameter € was set free to check whether
a change in the aspect topology would occour. The results for object 2,3 and 5 are
very good. The fit of Object 1 is essentially correct (apart from slight tapering), but
the spurious edge due to a high shading gradient caused the object to be interpreted
as a bent prism. Object 4 too has been fit rather poorly (because the high noise)
but the essential orientation, bending and tapering have been recovered. In the case
of Object 6 the presence of shadows and poor image contrast has been fatal and
the fitting is a complete failure, with a final result that, although obtaining a higher
score, looks poorer that the initial estimate.
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Image A (init.) Image A (fits)

Image B (init.) Image B (fits)

Figure 9: First set of experiments. The purpose is to assess validity of the objective
functon and the optimization; the aspect-based strategy is not used here. A description
of the eighteen fitting experiments is given 2 the text. Although only one initialization
for each is shown here, many others have been tried that, however, kept the same initial
topology as the ones shown.



Handset Image Banana&Mug

Top Piece Handle Bottom Piece | Banana Cup
Tapering (K) 0.09 0.08 0.21 -0.02 -
Swell (s) 0.08 0.28 0.42 0.47 -
Bending (c) -0.12 0.25 0.15 0.35 -
Squareness (€) 0.84 0.26 0.69 0.45 -

Table 2: Final Parameter estimation. The recovered parameters allow a coarse description
of the shape: Top Piece: cylinder; Handle: slightly bent prism; Bottom Piece: Swollen and
slighlty tapered cylinder; Banana: bent and swollen prism. See text for details.

SECOND SET

This set of experiments has been carried out with real images of isolated objects, a
handset, a mug and a banana. The examples in Fig. 10 are 128x128 gray-level images; the
neighbourhood dimension was set to 3 (that is d = 1) and the optimization set-up was the
same as for the first set of experiments;

This time, the initialization was performed by manually selecting out rectangular re-
gions of the image (top of Fig. 10), thresholding to extract the silhouette and finally by
computing the principal moments that gave coarse estimates of position, axes lengths and
orientation; the result are the initializations shown at the top of Fig. 10.

e Handset The top-left of Fig. 10 shows the original handset image with the initial
models instances and their major axes overlapped on it. The two end parts (ear and
mouth piece) have a rather poor initial estimate because of their low eccentricity
and the shadows cast on the background. On the other hand, the central part is
well defined and hence a good initial estimate is achieved; at this point there is no
knowledge about the squareness of this part. The centre-left figure shows the edge
image. It can be noticed that there is some cluttering, like that caused by circular
ridges at the mouth piece. The bottom-left figure shows the results obtained after
applying the optimisation to each one of the initial estimates. As it can be seen, the
results are rather good. Table 2 shows that the main geons’ distinguishing features
are captured, with the exception of the top part (ear piece) not being swollen as
it should; in this case, however, even for a human it would be difficult to tell the
exact shape of such a short part just from that poor edge image. Another remark
worth making is that the length of the central part was correctly found despite the
rightmost edge that runs along the whole handset. Note that some research has been
recently carried out [44, 5] in the classification of geons from parameters such as those
that define our PDCM.

e Banana  The top-right of Fig. 10 shows the initial estimate of the banana shape.
The combined effect of a shadow in the right-hand side of the banana and poor
resolution has lead to the poor edge image shown in the centre-right image. Here,
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Figure 10: Second set of experiments with semi-automatic initialization again without
using the aspect-based strategy (see text for details). The fitting to the handset geons and
the banana are reasonably good whereas mug one is a sheer disaster.
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the little incomplete square that somehow appears at the top and the double edge
running along the right-hand side were interpreted as part of the shape, as shown
in the final estimate in the bottom-right image. Table 2 shows that again all the
essential features (apart from roundness, as just said) are grasped, such as curvature,
swallowness and no tapering.

e Mug This experiment is a complete failure. The big shadow, the highlight at the
top and poor resolution led to an edge image that is virtually uninterpretable by the
human eye. The initial estimate shown at the top-right of Fig. 10 is mis-oriented in
the image plane by roughly 7/4 and the estimation procedure produced a very poor
result. Only by giving a very good initial estimate, a better result was achieved.

The experiments described above show that the proposed method works reasonably
well. The tests with clean images indicate that the optimization converges well. Results
with real images show the the method performs well if a coarse initial estimate is given and
there is not too much noise or spurious edges. However, as in the mug example, more care
must be given at determining the initial estimate for one that is poor can yield dramatically
wrong results, especially for low-eccentricity objects and with high noise level.

7.2 Testing the Aspect-based strategy: Synthetic Image

This subsection presents one of the experiments set up for testing the aspect-based strategy,
in particular the two premises given at the beginning of Section 6: when starting from the
correct PDA, the fitting must both converge and give a better score than the ones obtained
from initialization with any of the wrong-topology aspects.

Eight synthetic contours of geons (Obj#1 ...Obj#8), each representing a different
apect topology (Aspect#1 ... Aspect#8), have been placed in the same 128x128 image
(Fig. 11-A) and a coarse initialization was given using estimates of just orientation, posi-
tion, length and cross-section dimension; the initializations are represented by the crosses.
Then, all eight distinct PDA were initialized by the method given in Section 6.1 and fitted
on each of the eight objects, with the same optimization set-up as the one given in Section
6.3; the resulting scores were put in a confusion table (Fig. 11) whose lines represent the
scores of fitting an object with all the aspects. These results validate the two main assump-
tions of the aspect-based control strategy outlined at the beginning of Sec. 6: the boxed
scores on the diagonal are the best ones for each geon, that is the correct aspect obtained
the best score in all cases. Fig. 11-B show the superquadric representation using the very
same parameters results from the fitting of the best aspect. It is worth pointing out that
the superquadrics are built using the very same parameters produced by the fitting and
used for contructing the PDCM; these volumetric representations are then the ones that
once projected onto the image plane would yield the fitted object contours.

An interesting behavior also crops up from the analysis of the scores in the confusion
matrix. Let us take the case of Obj#8. The second best score corresponds to the one
obtained with Aspect#6, which has a visible bottom end, whereas the third best score
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Obj#1

Obj#5

Obj#2 Obj#3 Obj#4

Obj#6  Obj#

Obj#8

A B
Aspect#1 Aspect#2 Aspect#3 Aspect#4 Aspect#5 Aspect#6 Aspect#7  Aspect#8
Obj#1 |-264.77| -210.16 -170.32 -238.72 -211.14 -121.30 -133.60 -123.24
Obj#2 -242.49 |—314.16| -252.11 -252.83 -167.71 -170.09 -106.96 -179.19
Obj#3 -177.34 -142.54 |—255.22| -193.46 -183.00 -116.05 -13.18 -161.31
Obj#4 -236.55 -220.50 -187.26 |—261.39| -177.06 -151.19 -166.85 -130.36
Obj#5 | -252.05 -291.04 -245.37 -284.76  |-478.75|  -171.62 -62.20 -161.26
Obj#6 -290.78 -384.35 -346.86 -295.48 -392.26 | -458.83 | -362.63 -261.09
Obj#7 -284.68 -192.94 -300.22 -135.86 -166.14 -245.18 |—437.68| -230.28
Obj#8 -249.61 -275.68 -211.26 -322.67 -270.43 -326.21 -241.54 |—374.05|

Figure 11: Experiment with synthetic images of 8 different aspect of geons and the con-
fusion matrix representing the results of the fittings. The boxed results are the highest
scoring PDA for each fitting experiment and all correspond to the PDA with the same
topology as the respective test contours in fig. A. The superquadric corresponding to these
best PDAs are displayed in figure B: the 3D shapes are in well in agreement with the 3D
structure that pops up from the contour images when we see them.
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correspond to Aspect#4, which is the one that presents a visible bottom face but non-
squared cross-section; evidently these features matched well the image and contributed
to improve the overall score. Similar considerations can be made for other objects. This
behavior suggests a side-effect of this strategy, that is the ranking of aspect hypotheses
according to “how well” they fit the instance of objects, at least insofar as synthetic images
go. With real images this phenomenon is much smoothed but is still present, as we shall
see for the other examples.

7.3 Real Image: a Handset

In this experiment, the now familiar 128x128 grey-level image of the handset is used (Fig.
12-A). The corresponding edge image is reported here for convenience in Figure 12-B. The
initializations are performed as outlined in Section 6.1 and come from selected hypotheses
produced by the part-based grouping and filtering method presented in [41].

Both end-pieces of the handset have almost no eccentricity and therefore it was not
possible to determine their natural major axis, which is an essential requirement of geon
representation. Which of the two axes was the major one was imposed by hand, but a
straightforward automated strategy would just assume that for low-eccentricity blobs both
major-axis hypotheses should be tried out and the best be selected. This problems are
familiar when the data has rotational symmetries but the models employed are oriented
[31].

As in the experiments with the synthetic image, Aspect#1 through Aspect#8 were fit-
ted to the image for each of the initialization hypotheses, again with the same optimization
set-up as is Sec. 6; the scores for each fit are given in the table in Fig. 12. The best fits,
which correspond to the boxed scores, are displayed both as contours overlapped onto the
real image in 12-C and Fig. 12-D.

The two correct aspects for the mouth and ear pieces got the highest score as auspicated,
since their ends are well visible. The interpretation of the mid-part has turned out to be
a bit ambiguous, with the two scores for Aspect#5 and Aspect#7 very close; this is due
to the invisibility of its ends and their overall low weight for such an elongated part. The
correct aspect scored the highest here but either would have acceptable, given that in
this case they are almost indistinguishable. It is worth remembering that we are looking
for qualitative features of parts and what really matters is that the model with the right
features is selected over other possible alternative ones, that is, the fitting quality need not
be absolute but relative.

The aspect-based strategy avoids situations as the real case presented in Fig. 13, where
the fitting results are shown that are obtained from the same position/axes initialization as
above but when all the parameters governing the aspect topology were left unconstrained
(of course always within meaningful ranges). In the experiments of Section 7.1, the fitting
was performed by giving a good initialization and good results were obtained; here, pan,
tilt and squareness values are set to 0.0 and 0.5, respectively.

Although the number of iterations was increased to compensate for the bigger search-space,
the results obtained are rather poor. The top piece is completely mis-interpreted, as well
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Asp. #1  Asp. #2 Asp. #3 Asp. #4 Asp. #5 Asp. #6 Asp. #7 Asp. #8

Upper | -216.78 -193.43 -150.51 -246.30 -171.89 -88.31 -158.49 -112.34
Mid -226.07 -223.15 -223.18 -228.82 -386.32 -306.45 -382.91 -301.60
Lower | -213.79 -238.68 -74.19 -286.10 -171.95 -156.41 -160.54 -246.30

Figure 12: Real-image experiment with the aspect-based control strategy. Here, the PDA
have been initialized automatically from some of the hypotheses produced by the part-
based grouping and filtering method presented in [41]. The figure shown initialization (A),
edge image (B), contour fits (C) and their volumetric representation (D). The scores of the
PDA fittings are shown in the table. See text for more details.
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Figure 13: Handset fitting results without using the aspect-based strategy and from an
initialization where pan, tilt and squareness values are set to 0.0 and 0.5, respectively, and
size/position/orientation as the ones in Figure 12. The fitting in all three cases got stuck
in deep local minima.

as the mid-part, which was recognized as a cylinder. It can be noticed that in these two
cases the fitted models (Fig. 13-left) match very well a considerable amount of the edges, a
clear indication that very deep minima of the objective function were found there which the
optimizaton algorithm could not escape. The use of topologically distinct aspects has not
only the property of reducing the dimension of the search space but also of dramatically
boiling down the presence and effect of undesirable minima within it.

8 Discussion

In this paper a novel approach to 3D qualitative part recovery from real 2D images has been
presented. A new efficient deformable model is fit to raw edge images in the framework
of Model-Based Optimisation, with an objective function expressed in Bayesian terms and
the use of topologically distinct aspects has led to more reliability. The results we have
presented here show that this method is valid and open to further developments.

In this section, the major contributions of the material presented in this paper are
highlighted, followed by some criticisms and the proposition of future work.

8.1 Contribution

There are several contributions to vision research in this paper. All of them were recognized
by anonymous reviewers of a paper based on the paper and its early version that appears
in [42].
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e A new approximated but efficient parametric model of deformable superquadric con-
tour is presented in Section 3. Previously, when performing deformable superquadrics
fitting to 2D images as in [35], a very clumsy method was used whereby the whole
superquadric was built, deformed and its contour computed by finding zero-crossings
of the surface normal component along the optical axis. Here, a leaner, simple
geometrical model has been pragmatically designed that approximates the contour
of the deformable superquadric in a tiny fraction of the cost needed by the other
method. The parameters keep a clear three-dimensional interpretation, as well as for
deformable superquadrics.

e The fitting of the aforementioned parametrically deformable contour model is per-
formed through model-based optimization where an objective function is minimized
that, in information theoretical terms, essentially expresses the economy obtained
by representing groups of edgels in the image by the model contour. Although sim-
ilar cost functions had been proposed in the past, the one presented here formally
accounts for both matched and unmatched contour portions and the background
in formal Bayesian terms, whereas previous method (such as [19, 18]) did not do
so. Through experimental results, it has been shown that this method copes with a
significant amount of cluttering.

e Although its contribution has not yet well quantified, the embedding into the model
prior probability of a bias towards more perceptually plausible 3D shapes — described
in Sec. 5.2 —is a rather clever idea, as remarked by F. Ferrie in a personal commu-
nication.

e The concept of using an aspects-based strategy to deformable contour model fitting
has been introduced here for the first time. Previous work had used aspects only
for fitting CAD-based models, such as in [14]. The benefits of such a strategy are
straightforward: the optimization can independently focus on regions of the param-
eter space that correspond to models with the same topology, thereby reducing the
chances of getting stuck in local minima caused by different interpretations of image
features. Due to the simplicity of the geon model defined in this paper, a closed-form
solution for the aspect cell subdivision has been found.

e The idea of recognizing generic primitives like geons from 2D images by fitting con-
tour of superquadrics is not a new idea, but the only implementation known to the
author is by [35]. However, there the fitting was performed to segmented data and
optimization was done in image space (see Sec. 2.1) in a multistage fashion with
two ad hoc different search strategies for cylindroids and prismoids — probably due to
severe fitting problems, also highlighted by the apparent syntheticity of the examples
shown in their paper. Here, this topological information has been brought to the fore
by employing right different models, which has allowed us to safely utilize a more
general optimization algorithm such as Simulated Annealing.
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8.2 Criticisms to the Method

There are several issues that need to be addressed in future work to improve the proposed
method. Here, we will first discuss criticisms made by anonymous reviews of a submission
based on this paper; the overall opinion on the work was rather positive, but some acute
criticisms were made which are summarised and commented in the following. Some other
criticisms will be added later.

The first criticism was that the method does not constitute a significant advancement
with respect to the current state-of-the-art work by [35]. This criticism was mainly at-
tributed to the manual initialisation phase that was then used — now taken over by the
automatic part-based grouping presented in [41]. In my opinion the criticism in unjusti-
fied. The method proposed in [35] assumes that faces and edges belonging to a single part
are pre-segmented by the OPTICA [12] system, which also supplies information about the
class of object to be fitted; this allowed them to implement an ad hoc strategy for dealing
with the fitting of different classes of models. The problem of fitting to unsegmented data
was not even taken into consideration, whereas here the fitting is done to unsegmented
data and, in principle, the initialisation could come from methods other that the one pro-
posed in [41]. Another important remark is that in [35] a clumsy method for determining
superquadric contours was used, whereas here a purposely designed model (Sec. 3) has
been built that allows much greater efficiency.

Differently from the OPTICA system equipped with the superquadric fitting machinery
of [35], the scope of this thesis was not to build a generic-part segmentation recognition
system — quite beyond the state of current vision technology — but to explore the possibility
of using a global model-driven method to segment out generic parts from ordinary edge
image. The imposition of structure on the solution by the parametrically deformable
aspects of the geon fitting method presented in this paper is nothing but a natural extension
to the fil rouge of the line of thought of [41].

Another criticism coming from another anonymous reviewer was that the fitting re-
sults were not impressive; this is a rather unfair statement that probably was inspired by
improbable comparisons between the results given here and parallel works on part segmen-
tation from (often pre-segmented) range data, such as [49, 54]. The absence of precise
models, image cluttering and, again, the use of unsegmented 2D edge data, would never
allow a precise fitting, unless other information is used.

The use of a neighbourhood “in/out” criterion in the design of the cost function of
Section 5 has allowed a formal expression in Bayesian terms of the goodness of fit but some
troubles can be encountered when the geon being fitted cannot be properly represented
by the PDCM given in Section 3. This representation problem is common to all global
deformable models fitting methods but it manifests itself more when censored error norms
are employed, like [19] [11] [29] or the one presented in this paper.

The possibility of using a different, smoother error norm that would avoid these problems
is under investigation. Preliminary experiments showed that the results are much worse
than the one presented in this paper but it too early to draw conclusions.

Finally, some doubts could arise regarding the model prior probability given in Sec.
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5.2. The definition might look arbitrary but it should be remembered that it was meant
to have an heuristic character. In early stages of the work, this probability was uniform
over the parameter space, as it is often done in these cases. When such a heuristic was
added, the fitting results improved rather significantly especially in regard to the recovery
of 3D shape and not only the matching of the contour; further systematic experiments are
needed to evaluate how these probabilities affect the final results but, given the stochastic
nature of the optimiser (simulated annealing) a large amount of experiments are need to
objectively evaluate the effectiveness of such a heuristic. However, this activity was not
deemed relevant at this stage and is left to future work.

8.3 Future Work

The technique presented in this paper has opened some problems and interesting prospec-
tives alike. Some issues that would need to be addressed in the near future are the following.

First above all, in [41] codons [46] were presented as indivisible pieces of information.
Here we are working on raw data, because after the hypotheses generation phase we have
only an rough idea about which codons make up the actual part outline, let alone interior
edges. In Section 5.1 we saw that edgels falling within a certain neighbourhood were
considered as matching the model but some effort could perhaps be spent in trying to use
whole codons as data to be matched. This modification would probably prevent spurious
chunks of data locally matching the model contour to fool the goodness of fit evaluation,
and would also yield a smoother objective functions, thereby easing optimisation. Some
preliminary results in this direction look promising.

As said back in Section 2.1, the fitting is performed in parameter space. However,
a very exciting prospect would be to use the point-to-point correspondence method by
single value decomposition by [48] for fitting each aspect in image space, analogously to
PDM fitting of the part-based grouping phase of [41]. For doing so, each PDA would
need to be redesigned as a point distribution model, as done in Chapter 3 of [41] for
building the generic-part PDM from superellipses. This technique might allow greater
robustness, speed of convergence and tolerance to bad initialisation, due to the power of
the SVD correspondence method that would globally find the best matches between PDA
landmarks of the aspects and the data, however cluttered it might be.

Another exciting step to try is to account for interactions between parts. In Chapter
4 of [41] we saw that by taking account of many competing interpretations of local evi-
dence, it is possible to produce a minimal, hopefully correct, interpretation of the image.
The same considerations could be done here. In the case of the handset test image, for
instance, the fitting could be performed concurrently for the three parts and penalty terms
could be introduced for overlapping as in the support competition method prposed in [41].
However, differently from that, in this case the fitting and hypotheses competition would
be performed at the same time and the workload would be huge.

A natural extension, which would however present several theoretical problems, would
be to integrate other non-edge information in the fitting, specifically in the cost function,
such as coarse depth and surface orientation information as it could be produced by a
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shape-from-shading method [21].
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A Simulated Annealing

Simulated Annealing (SA) [26] is a powerful optimisation tool that effectively combines
gradient descent and controlled random perturbation to perform the minimisation of non-
convex functions and it was developed from the Metropolis algorithm [36], which was orig-
inally contrived to simulate the equilibrium state in statistical mechanics; the Metropolis’
algorithm can be summarised as follows. Given a solid composed by interacting atoms,
small random perturbations are added to the current state; a differential of energy AF is
computed and if AF < 0 the new state is accepted as a valid one. Conversely is AE > 0
the state is not rejected but it is given a probability e 2E/kTe (Metropolis criterion)
where k is the Boltzmann constant and 7T, is the absolute temperature. By keep repeating
this procedure for a large number of times the system eventually converges to a thermal
equilibrium.

More recently, in [26] an important modification was proposed to the Metropolis’ al-
gorithm that consisted of running it with decreasing temperatures (called Boltzmann An-
nealing) until a low enough temperature is reached. This improvement was inspired by
the physical annealing process of a solid and therefore the method was called simulated
annealing and the way the temperature is lowered called annealing schedule.

Optimisation by SA was first introduced to the vision community in the seminal paper
by Geman&Geman [20] and more recently used also in [32, 54] and other works.

In this thesis, a recent publicly available implementation of SA has been used, called
Adaptive Simulated Annealing (ASA), developed by Ingber at Caltech [23]. As described
by Ingber, “the major difference between ASA and standard Boltzmann SA is that the
ergodic sampling takes place in a n+1 dimensional space, in term on n state variables and
the cost function”.
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