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IntroductionWith the increased abilities of Computer Aided Manufacturing (CAM) systems over the pastdecade, it is becoming more and more desirable for manufacturing companies to develop com-puter databases of their inventory. Computer models of components can now be directly usedby numerically-controlled milling machines in the creation process. While most new parts arenow created using a Computer Aided Design (CAD) system, the need for models of old partsstill exists. Generating these by hand is a time-consuming and tedious measurement task, evenwith the aid of computer-controlled coordinate measurement machines.The solution is an automated process to reverse engineer the part. This procedure is gen-erally composed of three basic steps; data acquisition, data registration and model estimation.Currently, local shape data of an object is usually acquired in the form of 3-D range images,either from a stereo camera setup, a variety of laser-based range �nder systems, or from tac-tile probes. In order to build a complete model, multiple views of the object must be taken toachieve total coverage of the surface. The data in these views must then be aligned in a commoncoordinate system. The �nal step generates an approximation of the object's surface from thealigned 3-D points, typically in the form of a triangulated mesh, extracted quadric surfaces, ora potentially smoother spline representation.The quality of the �nal model is directly related to the inaccuracies of each step: the samplingresolution and inherent noise in each sampled data point, the error in the computed alignmenttransformations, and the residual error of a surface �t to the combined data. It can be arguedthat the second of these three steps is perhaps most crucial to the �nal quality. The samplingaccuracy of the range sensor establishes an error baseline, which can be expected to be loweredover time with advances in technology. The �nal surface approximation is generally controlledby either the desired number of triangular patches in the case of a mesh, or an increase in theorder of the surface being �t to the data. Regardless of these error levels, if the surface detailfrom the various views is not properly aligned, one merely gets a �ner approximation to anincorrect set of data.The view registration process itself consists of two basic steps; generating initial estimatesof the alignment transformations, and then re�ning these estimates. The �rst step is oftenaccomplished by aligning a small set of features computed from the data (e.g., edges, surface2



patches, and high curvature points). This was often the only alignment done in early systems.But the quality then depends on �nding a good and accurate set of features. Also, by itsvery nature, this ignores vast amounts of helpful information in the data set. Thus, additionaltechniques that use the underlying point data have been developed recently to further improveupon the initial estimates.In this paper a point-based data registration re�nement process is examined. In the nextsection previous techniques are reviewed and their limitations discussed. Then an improvedalgorithm, designed to overcome many of these limitations, is presented. This technique simul-taneously solves for the interview transformations using more global correspondence constraints.Results of processing both 2-D and 3-D data sets using this algorithm are then given.Registration Using the ICP AlgorithmA recently popular method of re�ning a given registration is the iterative closest point (ICP)algorithm, �rst introduced by Besl and McKay 1. The algorithm is relatively straightforward.First, given a motion transformation that initially aligns two data sets to some degree, a set ofcorrespondences is developed between features (usually points) in one set and the next. This isdone using the simple metric: for each point in the �rst data set, pick the point in the secondwhich is closest to it under the current transformation. From this set of correspondences anincremental motion can be computed which further aligns these points to one another. This �ndcorrespondence/compute motion process is iterated until some convergence criterion indicatingproper alignment is satis�ed.Given the algorithm's simplicity, it performs quite well. But there are two major drawbacks.First, it is not obvious how the two set approach can be extended to handle multiple data sets.Second, proper convergence only occurs if one of the data sets is a subset of the other. Thepresence of points in each set that are not in the other leads to incorrect correspondences, whichsubsequently generates non-optimal transformations. Attempts to solve these two problemshave led to several variants of the original algorithm.Improving correspondenceOne improvement to the basic algorithm changes the simple point-to-point correspondences usedin many of the methods 1�6, to ones between a point and a location on the \surface" represented3



by the other data set. This potentially increases the accuracy beyond that of the samplingresolution.The �rst such e�ort was due to Chen and Medioni 7. A starting location was found as thedata point in the second set that is closest to a line through the �rst point in the direction ofits estimated surface normal. Then, the tangent plane at this \intersection" point is used as thesurface approximation. The initial point is projected onto this plane to give the correspondinglocation. This technique has subsequently been used in other approaches 8�10. A further minorimprovement by Dorai et al. 11 involves incorporating estimates of sensor inaccuracies into thetangent plane calculations. Lastly, more accurate but time-consuming estimates of the surfacehave also been used; such as octrees 12, triangular meshes 13, and parametric surfaces 14.Another improvement explored by fewer researchers uses more than the simple Euclideandistance 1;3;4;6;7;9�14 in determining the closest point. Higher dimensional feature vectors includethe estimated surface normal 8, as well as the principal curvatures of the surface 2;5. By properlyweighting the di�erent components of the feature vector, as by Feldmar and Ayache 5, fewerincorrect correspondences can be obtained during early iterations when points are farther apart.Thresholding outliersThe previous improvements still do not deal with the issue of data sets that are not subsetsof one another, as was the case in most of the early algorithms 1;2;6;7;9;11;14. The solutionsproposed to date invariably have involved imposing a heuristic threshold on either the distanceallowed between points in a valid pairing 3�5;8;12;13 or the deviation of the surface normals ofcorresponding points8;10. Any point pairs with distances greater than the threshold are assumedto be incorrect. These thresholds are usually constants3;5;8;12;13 related to the estimated accuracyof the initial transformations, and can be di�cult to choose robustly. Only Zhang4 has computeda dynamically adjustable threshold based on the distribution of the distance errors at eachiteration.Computational requirementsIn all of the techniques, computing potential correspondences is generally the most time con-suming step. In a brute-force approach 1;8;14, an O(N2) number of comparisons is performedto �nd N pairings. One way to reduce the actual time is to subsample the original data sets.4



Criteria for subsampling include taking a simple fraction of the original number 2;3, using mul-tiple scales of increasing resolution 13, or having subsets based on potential visibility under thecurrent transform 10, points in areas away from surface discontinuities 7;11, points in areas of �nedetail 9, and small random sets for robust transform estimation 6. An alternative is to use thefull original data sets, but organize the search using more e�cient data structures such as theoctree 12 or k-d tree 4;5. The k-d tree 15 is even e�cient, O(N logN), when higher order featuresof the points are incorporated in the distance metric.Computing Intermediate MotionsOnce a set of correspondences has been determined, a motion transform must be computedthat best aligns the points. The most common approach is to use one of several least squarestechniques 16;17 to minimize the distances between corresponding points 1;4;6�11;13. Alternatively,a Kalman �lter has been used to compute the intermediate motion at each iteration5. In certaincases 1;4;5;13, point contributions are weighted based on the suspected noise of di�erent portionsof the data sets. More robust estimation using the least median squares technique (clusteringmany transforms computed from smaller sets of points) has been tried by Masuda and Yokoya 6.Other techniques compute the motion transform via some form of search over the spaceof possible transforms, trying to minimize a cost function such as the sum of distance errorsacross all corresponding points. Steps in transform parameter space are computed based on thechanging nature of the function. Such standard search strategies as Levenberg-Marquardt 12;14and simulated annealing 3 have been used, in addition to others more heuristic in nature 2;9.Correspondences must be periodically updated during the search to keep the error functioncurrent. Updating too frequently can drastically increase the amount of computation, while toofew updates can lead to an incorrect minimization.Initialization/Convergence of SearchAs mentioned earlier, an ICP-based re�nement occurs after some initial set of transformationshas been determined. Some researchers assume that this estimate is determined by a previousprocess 4;6�8;14, possibly calculated using feature sets. Other prior estimates can be given by arotary table2;10;12, a robot arm3, or even the user13. Most such estimates are assumed to be quiteaccurate so that using various distance thresholds during matching will prune outliers correctly.5



Other researchers do their own feature-based alignment using such characteristics as principalmoments 1 or axes 11, normals of distinctive points 2, positions of points with distinguishingprincipal curvatures 5 or similar triangles on a mesh representation of the data 9. If thesedistinguishing features are absent, a uniform distribution of starting points can be processed 1.All of the iterative search algorithms must use some set of criteria to detect convergence ofthe �nal transformation. For those techniques that compute intermediate motions using leastsquares methods, convergence is achieved when the transform implies a su�ciently small amountof motion 4;9;10, or the distance between corresponding points becomes suitably close 1;6�8;11;13.The Kalman �lter approach stops when the uncertainty in the computed transform reaches adesired level 5. And the iterative searches 2;3;12;14 typically converge based on small changes inthe parameters or error value, or if the shape of the cost function at the current value indicatesa function minimum. All methods can be terminated if convergence is not detected after somemaximal number of iterations.View pairs vs. multiple viewsThe majority of the discussed techniques 1;4�6;8;9;11;12;14 were designed with only two data setsin mind. If one desires to merge multiple images, the naive approach of simply examiningthe sequence in pairs could be performed 2. However, any errors in these computations willaccumulate, leaving the �rst and last in the sequence aligned rather poorly. Therefore, a fewmethods have searched for a more globally optimal set of transforms.The �rst of these, by Turk and Levoy 13, assumed that an additional continuous cylindricaldata scan is available. Individual linear scans were registered to this image, which should havehad commonalities with each of them. Unfortunately, not all scanners can produce such a baseimage. Chen and Medioni 7 incrementally registered data from successive views into a growingcombined set. However, early calculation errors were still not corrected.Two other techniques attempted to compute the motion transforms simultaneously. First,Blais and Levine3 de�ned a consecutive set of transforms between pairs of images in the sequence.In addition, the transform between the �rst and the last images was taken as the compositionof the intermediate ones. They then minimized the total cost function across all image pairs bysearching in the combined transformation space. This high dimensional minimization is oftendi�cult. In the second technique, Gagnon et al. 10 considered each view as being transformed6



into a common frame. Then a view's data could be matched to each other set through composedtransforms. The combined set of correspondences was used to compute each data set's motionat each iteration. While these two methods did compute the transforms simultaneously, theystill su�er from the thresholding di�culties of pairwise correspondences.In summary, global optimization techniques have been developed, but they still rely onpairwise correspondence computations. These su�er from having to choose thresholds that rejectincorrect pairings. In the following section a new global registration technique is presented whichaddresses the major problems of simultaneous solutions and distance thresholds, in addition tocombining some of the best features of previous techniques with new ideas.The Registration AlgorithmGiven a group of N data sets, the goal of the registration is to compute a set of rigid transfor-mations fT j Ti = [Ri; ti]; i = 1 : : : Ng, where Ri is a standard orthonormal rotation matrixand ti is a translation vector. These transformations should align the data sets with minimaldisparity. A high-level overview of the algorithm is shown in Figure 1. All view transformsare incrementally updated in a simultaneous manner so that the best global solution can befound. At each iteration correspondence is determined using point position and normal infor-mation. Point comparison is performed over a combined data set, where every point in one dataset should have a corresponding point in another data set, eliminating the need for a distancethreshold (noisy points should get removed in a preprocessing step). K-d trees are used to speedup point matching, and point projections onto tangent planes of corresponding points increasethe �nal accuracy.Incremental motion computations are made using a force-based approach. Imaginary springsconnect corresponding locations to generate interpoint forces. A time step simulation is runto update the motion of each data set based on the net forces and torques applied by thesprings. Correspondences are periodically updated over time. Finally, hierarchical sized sets ofdata are processed to decrease overall computation time without sacri�cing eventual accuracy.Convergence is detected when the amount of motion is su�ciently small. In the followingsections each of the stages of this algorithm is discussed in detail.7



Initialization

     Median filter data in each view ( 7 x 7 window).
     Determine sampling resolution and depth discontinuity boundaries for each view using threshold (     )
     Gaussian smooth data (7 x 7 window,     ) and compute surface normals (      ) in each view
     Determine number of subsampling passes based on data size.
     Initialize view transforms (    ), dynamic spring system (       ,      ,    ,   ,   ,   ,    ) and simulation time step (      )

Subsampling Passes

     For increasing sample sizes

          Select random subset of interior and boundary points in views
          Generate k-d trees of points in each view
          Initialize point feature (location,normal) weight ratio (     ,       )

          Data set convergence

               While standard deviation of point distance error distribution still decreasing

                    Data correspondence

                         Compute correspondence of non-boundary points using normal k-d trees
                         Compute correspondence of boundary points using specialized k-d trees with threshold (    )
                         Determine number of changed correspondences from previous iteration
                         Update feature weight ratio (       ) based on number of changed correspondences

                    Motion estimation

                         While incremental motion still significant compared to threshold (        )

                              Update correspondence locations with projections onto tangent planes (    ,     )
                              Compute spring forces (     ), torques (      )and moments of inertia (    ) from current data positions (    ,    )

                              For each view’s data set

                                   Update angular position (   ), velocity (    ) and acceleration (    ) of points using torques (     ), moments of inertia (   ) and current time step (      )
                                   Update linear position (   ), velocity (    ) and acceleration (    ) of points using forces (    ) and current time step (      )
                                   Adjust velocity damping factors (        ,       ) based on new accelerations (    ,    )
                                   Compute incremental transformation (          ,       ) based on updated position (   ,    ), compose with current transformation (        ,       )

                             Adjust time step (      ) based on new distance error (    )
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µ vFigure 1: High level chart of registration algorithmInitializationSeveral operations are performed before the actual iterative process begins. First a median-type�lter is used to remove noisy data in each range image based on a neighborhood (7�7) of depthvalues in the scan grid. Following this, points on the occluding side of step discontinuities aredetected, where a discontinuity is said to occur for points separated by more than a multipleof the average sampling resolution (here, the depth discontinuity threshold, dd = 10 � samplingresolution). These occluding points are important in constraining proper alignment of surfaceboundaries in a manner not used in previous algorithms.Next, the remaining data is smoothed with a Gaussian kernel (� = 2:5) before surfaceproperties are computed. All three position components are independently calculated based onpositions of neighbors in a 7 � 7 window in the range scan. At each point a tangent planeis �tted to the window of smoothed data around the point to estimate the surface normal.(The smoothed data is only used in the normal calculation. Original data is used in all othercomputations.) Principal curvatures were not used in this implementation. The inherently noisynature of these second-order features, plus the additional computation burden, outweighed the8



potential discriminatory power. On the other hand, the usefulness of the surface normal justi�edtheir computations.Additionally, we must initialize the state of the dynamic spring system. It is assumed thatthe starting view transformations, T , that align the views in a common coordinate frame, areobtained from an external process, such as the rotary table or robot arm mentioned previously.Later experiments will show that these transforms can be quite rough in their accuracy withoutpreventing proper convergence. The remaining state consists of inertial properties (velocitydamping factors�v and �!) of the data sets, as well as the spring strength (�) and the simulationstep size (�t). In the beginning it is assumed that each group of points is at rest, with bothzero velocity (v and !) and acceleration (a and �), there is no velocity damping, the springstrength is constant (� = 1000), and the simulation time step is �t = 0:005. The number ofsubsampling passes for the simulation is a function of the total number of points in each view.The actual schedule is discussed in a later section.Determining point correspondencesIn order to determine the point that is \closest" to another, a distance metric is needed tode�ne closest. In a manner similar to Feldmar and Ayache 5, the metric used combines bothpoint location and normal information. The actual metric is:E = k p� q k2 + wn � s2n � k np �nq k2 (1)Here, p and q are the coordinates of two points and (np;nq), their associated unit normalvectors. Since the di�erence in magnitude of errors in position and normal can be large, it isimportant to scale the dimensions of these components of the feature vector to similar ranges.The value sn is chosen as the ratio of the size of a bounding box in 3-D about the combined datasets to the maximal normal di�erence (bounded by a value of 2 for unit normals). The value ofwn is used to control the steadily decreasing contribution of the normal information over time(the exact schedule is discussed later).Equation (1) is not the only distance metric used. It will be shown in later experiments thatonly using simple point correspondences as in equation (1) can lead to premature convergence.Therefore, an additional metric is used based on those points labelled as occluders as:E = bvp � k p� q k2 (2)9



Here, bvp has a value of one if the surface normal of point q is back-facing with respect to theviewpoint associated with point p. Otherwise bvp has a value of in�nity. This models the relationthat` the proper correspondent of a point on an occluding boundary is merely the nearest pointon the hidden portions of the other surfaces with respect to the current data set's viewpoint.The correspondence searchA basic assumption of the global approach presented here is that each portion of the object hasbeen observed in at least two data sets. (Limitations of this assumption are discussed later).Given this assumption, a proper corresponding location on a surface does exist; it just needsto be found. Therefore, we avoid the need for any distance thresholds, as in the pairwise viewprocessing of previous methods. This is a signi�cant advantage of our approach.The use of k-d trees can improve the e�ciency of searching for correspondences. Ideally onewould like to represent all of the data points across all views in a single k-d tree. But, since theinterpoint distance relationships are constantly changing between data sets, this would requirecontinual reconstruction of the tree. On the other hand, since the points of a single data set arerigid, a tree representing each view can be constructed in the beginning and never modi�ed.A k-d tree partitions data points into regions of space bounded by dividing planes that areperpendicular to a particular axis of the k dimensions. At each level in the tree the dimensionwhich provides maximal distinction (here k = 6 for three position and three normal components)is used to divide the points at a node into two sets. Because the dividing planes are perpendicularto the axes, the scaling of a dimension (such as the normal components by wn in equation (1)),does not change the relative ordering of the points and the partition. Thus the single k-d treefor a view can still be used in many di�erent searches as the value of !n changes.Determining the overall closest point is simply a matter of searching the k-d tree for eachdata set other than the current one to �nd its corresponding closest point. The globally closestpoint is found with a simple linear comparison of these closest points. The search for the closestpoint in a given tree is done using a depth-�rst traversal with pruning. By going down the treeone moves into smaller and smaller regions which contain the search point. At a leaf whichcontains only one point, an upper bound on the distance to the closest point is updated usingthe distance to the data point in the leaf's cell (actually, the distance norms of equation (1) areleft squared to reduce computation). In the remainder of the search, a portion of the tree can10



be ignored if the distance to the boundary of the corresponding region of space is greater thanthe current upper bound.A good initial estimate of the maximal distance to the closest point can lead to drasticreductions in the percentage of the tree traversed. An e�ective value can be found by using thecorrespondences from a previous iteration. Here, the distance to the old corresponding pointunder the current transform is a good upper bound. Near convergence the number of changingcorrespondences is small, and the search of the k-d tree requires only a single traversal to thebottom to verify that the old point is still the best.A second tree with k = 3 (for the three position coordinates) is used to search each data setaccording to equation (2). A single modi�cation to the search involves the method of update tothe maximal distance estimate. Rather than always updating the value when a leaf is reached,the distance is changed only if the back-facing normal test labels the point as \invisible". Inpractice a tolerance angle of � = 10� is used to model the inability of real range sensors to detectsteeply angled surfaces with respect to the viewer.Interpoint forcesIn order to obtain a registration with potentially greater accuracy than the sampling resolution,it is necessary to �nd the closest location on the surface near the corresponding point of a givenpoint. A variant of the tangent plane projection method of Chen and Medioni 7 is used, whichis seen as a compromise between the improved accuracy of a higher-order surface �t and theassociated increased computation time.One drawback of Chen and Medioni's method is that it is doubly sensitive to any noise inthe surface normals. The calculation of a corresponding point by \intersecting" a normal witha surface can be signi�cantly in error during early iterations prior to rotational alignment, andeven later due to noise. The search for correspondence detailed here avoids much of this error.However, once the closest point has been chosen, the surface location is still found by projectingthe search point onto the associated tangent plane as in previous methods.To see the potential e�ects of this process, consider the simple 2-D example in Figure 2.Assume that the black points are a subset of the white as seen from a di�erent angle to theleft, and that the rightmost point was labelled as an occluding point. The point-to-point corre-spondences are indicated by the solid lines. Note the rightmost occluding point links to a point11



Point from data set 1

Point from data set 2

Corresponding projection point

Correspondence

Plane projectionFigure 2: Mapping of corresponding points. The points from data set 2 correspond to theindicated points in set 1 via the solid lines. The points project onto the associated tangentsof corresponding points via dashed lines. The rightmost point of set 2 is labelled occluder andtherefore maps to the nearest hidden point around the corner.around the corner (it does not map to the corner point because the normal for this point isassumed to be consistent with the other points on the horizontal line, making the corner point\visible"). The projections onto the tangents are indicated by dashed lines. The non-occluderpairings will tend to pull the two lines into being parallel, while the occluding point moves theends of the lines together. If the rightmost point was instead handled as a non-occluder, itwould map to the corner point, causing the two lines to never overlap properly without a forcethat acted along the line of points. Using direct point-to-point mappings everywhere as in theoriginal ICP process can also lead to problems in this example. For instance, as the region ofoverlap increases during motion in the �gure, the desire of points to stay still when incorrectlymapped to very close neighbors will eventually outweigh the desire of the others to move, causingpremature convergence. Further examples of this will be seen in the experiments.In order to align the corresponded data sets, there must be attractive forces to pull themtogether. Connected between each point and its corresponding projection location is an imag-inary spring of natural length zero. This spring generates a force with magnitude, F = � d,where d is the distance between the points, and � is the spring tensile strength (� = 1000 forregular points and 1000 � pass2 for occluders. Increasing an occluder's spring constant helpsquicker convergence). The spring force is directed along the line connecting the points and isre
exively applied at both ends. The cumulative e�ect of the forces from each point will governthe movement of the data sets toward one another.
12



Computing motion transformsRather than use some of the more popular least squares solutions 1;4;6�11;13 to compute inter-mediate motions, a simulation of the dynamic spring system is used. The reason is that thee�ects of any signi�cantly incorrect correspondences are compounded when the best alignmentis computed in a least squares manner, in addition to the premature convergence problems justmentioned. With a dynamic system it is possible to move in the direction of an intermediatesolution without being totally committed to it. Also, inertia from previous motions can helpconstrain any excessive, and possibly incorrect, motion tendencies. In the example of Figure 2,this makes it seem as if the corresponding end of each spring is not attached to a speci�c point,but rather to a line. This degree of freedom allows the data to move in the direction of thetangent lines under the in
uence of the single force from the occluding point. This point to linemapping technique has been used previously to help solve other alignment problems 18.One method of simulating this dynamic system would be an exact �nite element analysis 19,in which each data set truly moves simultaneously. Spring lengths and end positions wouldconstantly be changing, resulting in continuously varying forces on each data set. However, thisprocess is rather involved due to the computational complexities. In a less exact scenario, forcescan be assumed constant over a properly small amount of time, thus allowing the movement ofeach set to be computed independently. This movement can be decomposed into a translationalmovement of the center of mass of a view's points, along with a rotation of the points aboutthat center. We now give the details of this approximate solution.A single time stepTranslationalmovement is a consequence of the cumulative e�ect of the forces generated both bythe springs attached from each data point to other view's data surfaces, and from other view'spoints to locations on the current surface. Relating each force to motion is done according to thelaw, Fi = mv ai, where Fi is the force directed by a particular spring, ai is the correspondingacceleration that it generates, and mv is the mass of the view's points. The overall equation fora view's acceleration is then given by:av = Pnvi=1 � di +Pnoj=1 � djmv = �nv ( nvXi=1 di + noXj=1dj) (3)13



Here, nv and no are the number of points in the view's data set and the other data sets,respectively, that are contributing forces. The distances between points and their projectionsonto corresponding tangent planes are given by di and dj. If each point is assumed to have unitmass, then mv = nv.By assuming that the forces, and therefore acceleration, remain constant for a time, �t, thechange in location and velocity can be calculated using the equations:lt = lt�1 + vt�1 �t+ 0:5 at�1 �t2 (4)vt = vt�1 �v + at�1 �t (5)Position is updated through the velocity and acceleration over the given time step. The newvelocity is a function of the old velocity and acceleration. An additional term, �v, is includedhere as a matrix with zeroes o� the diagonal and damping values along the diagonal for eachvelocity component. As time passes, the momentum of a set of points can get quite large, causingoscillations as correspondences change. While the reversal of acceleration from these changes canslow these oscillations, additional damping of the previous velocity in this case is also helpful.The damping can be relaxed as velocity and acceleration again become synchronized.Rotational movement is governed by a similar set of equations. Each force, when applied atthe associated point, generates a torque (or moment) with respect to the center of mass of thepoints. The cumulative e�ect of these moments causes rotation about the center. Recall in twodimensions that rotation in the plane caused by a single force is governed by the simple relation,Mi = Ii �i, where �i is the angular acceleration, Ii = mv k ri k2 is the moment of inertia, andMi = k ri � Fi k is the moment for the radius, ri = pi � cm. Here the force, Fi, is applied atpoint, pi, with respect to the center of mass, cm.In 3-D, the relationship of moments to angular motion is more complex and governed by theset of scalar equations (referred to as the Euler equations of motion 20):Mx = Ixx �x + !y !z (Izz � Iyy)My = Iyy �y + !x !z (Ixx � Izz)Mz = Izz �z + !x !y (Iyy � Ixx) (6)14



Here, !j , �j , Mj, and Ijj are the jth components of the angular velocity, angular acceleration,moment and moment of inertia, respectively. If the angular velocity is known, equations (6) canbe rewritten to calculate the angular acceleration due to a set of forces as:�x = Pnvi=1 [(ri � Fi)x � !y !z nv (r2iz � r2iy)] +Pnoj=1 [(rj � Fj)x � !y !z nv (r2jz � r2jy)]nv (Pnvi=1 r2ix +Pnoj=1 r2jx)�y = Pnvi=1 [(ri � Fi)y � !x !z nv (r2ix � r2iz)] +Pnoj=1 [(rj � Fj)y � !x !z nv (r2jx � r2jz)]nv (Pnvi=1 r2iy +Pnoj=1 r2jy)�z = Pnvi=1 [(ri � Fi)z � !x !y nv (r2iy � r2ix)] +Pnoj=1 [(rj � Fj)z � !x !y nv (r2jy � r2jx)]nv (Pnvi=1 r2iz +Pnoj=1 r2jz) (7)where rab is the bth component of the radius vector for the ath point.Then, making the approximation that angular acceleration remains constant for small �t,the change in angular position and velocity can be found using equations similar to (4) and (5):�t = �t�1 + !t�1 �t+ 0:5 �t�1 �t2 (8)!t = !t�1 �! +�t�1 �t (9)Here, each component of the angular velocity is damped using the appropriate element of thediagonal matrix, �!. If the above approximation is valid, these calculations are much simplerand more reasonable, than attempting to directly solve the set of di�erential equations in (7).Using the values of �l = lt � lt�1 and �� = �t � �t�1 from equations (4) and (8), one cancompute the elements of an incremental transform relative to the center of mass, R�� and t�l.These can then be converted to incremental transforms in the common coordinate frame as:R� = R�� t� = (I �R��)[Rv cm + tv] + t�l (10)where, I is the identity matrix, Rv and tv are the current transform for the view, and cm isthe original center of mass. This incremental transform can then be composed with the currentone to yield the new total transform for the view into the common frame. The common frameis initially established by setting all view transforms to the identity.Iteration controlThe overall iterative process is a set of nested cycles as seen in Figure 1. The outermostcycle controls the hierarchical subsampling scheme for the data. For a given sampling, pointcorrespondences are found and motion computed until convergence occurs. Since determining15



correspondence between data points is an expensive operation, it is done as few times as possible.Several motion steps can be made before new pairings are needed. Thus the motion computationitself is also iterative, continuing until movement due to a set of forces is minimal (minimalmotion, �m, is 1% of the total motion so far in a cycle).Subsampling the dataLarger data sets mean more computation. Therefore, if approximate alignment can be obtainedusing reduced data sets, e�ciency is enhanced. In the algorithm, a starting sample size of 100points is used. For subsequent passes we increase this data set size by a factor of ten, until onthe �nal pass all of the original data is used. Points for a subsample are selected randomly,with the constraint that occluding points, which are important for boundary alignment, arespecially selected so that a quantity proportional to the number of regular points is obtained.The k-d trees are then constructed for each new subsample. Because the mass of a view is basedon the number of points, reasonable motion continuity between samplings is maintained as theincreased number of forces is balanced by the increased mass.Adjusting controlling parametersSeveral of the controlling parameters in the previous equations are adjusted either during asubsampling step, or during each motion step. The parameter, wn, decides the weight of normalto position information during correspondence, see equation (1). This value changes basedon sample size and motion steps. Processing of the �rst subsample involves large changes inrotational alignment, where normal information is most useful. Therefore, wn is set to one forthe entire pass. During the second pass focus shifts towards translational alignment, wherenormals are less important. After each new set of pairings is computed, the number of changedcorrespondences is recorded. During the second pass, wn is set to the ratio of this quantity andthe total sample size. Thus it should gradually go from one towards zero as the pass progresses.For all subsequent passes wn is set to zero, since the data should be very nearly aligned, requiringonly small translation updates.The next two parameters adjusted are the damping matrices, �v and �!. Beginning withdiagonal values of one, a diagonal component is reduced by 10% each time the associated ac-celeration and velocity directions are opposed, and increased by 100% when agreement again16



occurs, until the value of one is reached. In this way, oscillations are damped rather smoothly,and then the system is released to begin again quickly.The �nal parameter is the time step, �t. This should be maintained at a value that is notso large as to violate the constant force assumption, yet large enough to continue reasonableamounts of movement. After a motion step, the velocity damping factors are examined. If amajority of the views are not being damped, things are in order, and the time step is increasedby 0.1%. If not, it means oscillations are occurring as the result of assumptions being violated,and therefore the time step is reduced by the same amount. The initial length of the time stepis set at 0.005.Convergence of sampled dataConvergence of sampled data is detected based on the distances between points and their corre-sponding tangent planes. The distribution of the signed distance of points to planes is computedafter each motion. If the standard deviation of this distribution decreases then the surfaces arestill integrating. If not, the next larger sample is processed until �nally convergence is achievedwith the original data.Experimental Veri�cationIn this section the properties of the registration process are examined. These properties includethe radius of convergence with regard to starting con�guration, the accuracy and repeatability ofthe force-based optimization, as well as the rate of convergence. The algorithmwas implementedin C, and uses values for the various controlling parameters as summarized in Table 1. Both2-D and 3-D data sets are used to emphasize key features of the algorithm.Utility of data normals and occlusion pointsBefore presenting the complete experimental results, it is instructive to examine how the variouscharacteristics of the current algorithm provide more potential than previous methods. For thiswe use a simple 2-D data set consisting of four corner views of a rectangle as seen in Figures 3.aand 3.g. The data is simulated, but contains depth quantization noise. Five di�erent versionsof the algorithm are compared, all of which use the force-based motion computations, butcorrespondences are determined in di�erent ways. The �rst is the traditional direct mapping17



Table 1: Algorithm parameter initial values and update methodsParameter Initial value/Update methodImage median �lter and smoothing window size - 7� 7Processing Gaussian smoothing kernel (� = 2:5)dd 10 � sampling resolutionsn data diameter / 2� 10�wn Pass 1 - wn = 1, Pass � 3 - wn = 0Pass 2 - wn = # changing correspondences / # points, only if decreasing� 1000 for regular points, 1000 � pass2 for occluders�m 1% of total movement for current point pairings�v, �! Initially all diagonal components of matrix are 1.0,decrease an element by 10% to dampen, increase by 100% to undampen�t Initially 0.005, decrease 0.1% each step when system is damped,increase by 0.1% if system undampedof closest points based strictly on position. The second computes projections of points ontothe corresponding tangents. The third additionally maps occluder points to the nearest hiddenpoint. The fourth again uses direct mapping between points, but the normal at the point isused as in equation (1). The �fth algorithm is that presented here which combines all of theseelements.The �rst example, Figures 3.a - 3.f, shows the results on data sets which have been pushedout from their desired position. The �rst two algorithms do not fully contract to the correctshape, due to the missing occlusion constraints which the third version provides. The use ofnormal features also helps to contract the shape towards its proper size. For this case, thelatter three algorithms all produce comparable results. The second example, Figures 3.g - 3.l,contracted the data sets in from their desired position. Here, the normal features are a necessityin establishing correspondences that do not bind the tips together incorrectly. However, whenusing only the normal features, the ends do not come into full alignment. Only the algorithmpresented here, which combines normal features and occluding point mapping, converges uponthe correct shape in both instances.Optimization convergence propertiesIn this section 2-D data is again used to examine the convergence properties of the algorithm.These data sets consist of eight views of a cross-section of a real 3-D object as seen by atriangulation-based range sensor and shown in Figure 4.a. The goal of this experiment is to18



(a) Initial alignment #1 (b) direct mapping

(f) current algorithm(e) normal features(d) combined mapping

(c) tangent plane mapping

(g) Initial alignment #2 (h) direct mapping (i) tangent plane mapping

(l) current algorithm(k) normal features(j) combined mappingFigure 3: Alignment of 4 corner views of a rectangle. Each view contains 128 simulated pointsgenerated with quantization error. Given the starting positions in (a) and (g), algorithms with5 di�erent characteristics converged to the registrations shown.determine the necessary quality of the initial transforms to insure proper convergence. Threesets of tests were run, the results of which are summarized in Table 2. First, the algorithmwas run on the data from starting positions provided by the acquisition process. The resultinganswer was taken to be the \true" registered position. The data was then disturbed from thiscon�guration by varying amounts and the algorithm run on it.19



(a) Eight views of example 2d outline

(b) Initial position of views, 
      rotation =    25 degrees, 
      translation =    25% of size

(c) Registered set of views
+-

+-Figure 4: Alignment of 8 views of cross-section of a real object of size 50� 125mm. Each viewin (a) contains between 336 and 501 real points measured by a triangulation-based range sensor.An initial position with rotation error of � 25� and translation error of � 25% of the size of thepolygon is shown in (b), with �nal registration in (c).The perturbance of the data took three forms; rotation about the center of mass in the planeof the data only, translation of the center of mass in the plane only, and combined rotation andtranslation. The change in rotation for each view was ��, where � was increased in �ve degreeincrements as shown in Table 2.a. Thus two views were basically either in alignment, or 2�out of alignment. Translation amounts were handled similarly, with the amount of movementequal to a fraction of the diameter of the data sets. For each level of disturbance, 25 (of thepossible 256) data con�gurations were generated, with the direction of rotation or translationbeing determined randomly. The three sections of Table 2 show the number of times the \true"con�guration was achieved, how many iterations the process took, and how close the convergedpositions were to one another.Looking at the results in these tables one can draw a few conclusions.� The average rate of convergence is rather independent of the level of perturbation fromthe starting point. The average number of iterations does not change by more than 20%,but the absolute rate of convergence is expected to be di�erent for other data sets.� The system repeatably converges to the same set of transforms. The di�erence between20



Table 2: Results of convergence tests for object in Figure 4. At each error setting 25 tests wereperformed. Average angle and translation errors from \true" converged values were measured,along with total distance error sums and standard deviation of error distances. A registrationwas deemed correct if the total distance error was less than 400 mm. All distance entries are inmm. �� # converged avg avg avg total avg angle avg trans avg angle avg transcorrectly iterations std dev distance (correct) (correct) (incorrect) (incorrect)�0� 25 16.8 0.1615 343.0 0:060� 1.04 - -�5� 25 18.3 0.1609 343.4 0:060� 1.02 - -�10� 25 20.8 0.1611 343.6 0:063� 1.08 - -�15� 25 19.2 0.1606 342.4 0:064� 1.10 - -�20� 24 19.5 0.1856 382.1 0:075� 1.29 4:35� 70�25� 18 17.7 0.5094 881.0 0:075� 1.28 12:52� 226�30� 14 19.3 0.7953 1359.6 0:080� 1.37 14:57� 297(a) Convergence results for rotation only changes�x; y # converged avg avg avg total avg angle avg trans avg angle avg transcorrectly iterations std dev distance (correct) (correct) (incorrect) (incorrect)�0% 25 17.2 0.1612 343.8 0:062� 1.05 - -�5% 25 17.0 0.1611 343.2 0:064� 1.10 - -�15% 25 20.5 0.1610 343.8 0:078� 1.34 - -�25% 25 19.7 0.1611 344.3 0:060� 1.02 - -�35% 24 18.3 0.1818 385.4 0:061� 1.05 1:48� 32�40% 20 20.3 0.4036 772.7 0:062� 1.06 6:19� 118�45% 14 18.8 0.5150 910.3 0:086� 1.46 4:33� 68(b) Convergence results for translation only changes�� # converged avg avg avg total avg angle avg trans avg angle avg trans�x; y correctly iterations std dev distance (correct) (correct) (incorrect) (incorrect)�0�; 0% 25 14.2 0.1601 343.3 0:077� 1.32 - -�5�; 5% 25 19.1 0.1611 344.1 0:070� 1.19 - -�10�; 10% 25 18.3 0.1613 344.3 0:063� 1.08 - -�15�; 15% 25 19.2 0.1610 342.8 0:064� 1.11 - -�20�; 20% 24 21.4 0.2397 489.1 0:067� 1.15 11:51� 193�25�; 25% 21 20.0 0.3868 711.9 0:080� 1.39 10:01� 183�30�; 30% 7 19.4 1.7935 3149.9 0:060� 1.03 17:13� 366(c) Convergence results for rotation and translation changesthe answers of correct convergences was less than 0:1� in rotation and 1.5% of the diameterof the object in translation. Note that small changes in rotation can almost be compen-sated for with di�erent translations to achieve very similar transforms. The average totaldistance error, as well as the standard deviation of the point to tangent distance, indicatethat a consistent minimumwas being converged upon. Similar error variance was observedin the zero perturbation cases (top lines of each table), because the �rst pass of registrationbased on the small random subsamples pulls the search from its starting point to di�erentlocations each time.� When incorrect registration occurs, it is rather easy to detect. For the example objectin Figure 4, the algorithm was more susceptible to rotational errors than translational21



errors. The amount of allowable angular error is related to the rotational symmetry of theobject. For instance, rotating one of the views of the rectangle in Figure 3 by more than45� would lead to incorrect correspondence. For the object in Figure 4, reliable resultscan be obtained for rotational errors of �20� and translational di�erences up to one thirdof the object size. An example starting position in this extreme range for which properregistration was achieved is seen in Figure 4.b. Our algorithm appears to have a muchgreater radius of convergence than that demonstrated by previous methods based on thisexample.3-D data analysisIn order to demonstrate that the algorithm also works on 3-D data sets, multiple views of severalobjects were merged by the system. The �rst, a rectanglular block, is shown at the top of Figure5. The image on the left shows the point sets of each view in their starting position (randomlyperturbed from the initial registration of acquisition by approximately 10� in all rotation anglesand 25% of the object size in translation). Eight views of this object were synthetically generatedat a resolution of 128� 128, but they did contain quantization error in the depth values. Theimage on the right shows the result of a triangulation process due to Hoppe et al. 21, as appliedto the automatically registerd data. This triangulation has two distinguishing features. First,the edges of the block are rounded. This is a characteristic of many triangulation schemes,especially that of Hoppe et al. Second, there are certain small patches sticking out from theedges. These are due to the low sampling resolution. Since the viewing rays do not hit theobject exactly along each true edge of the block, straight lines may not result. Some of theextremely sampled edge points give rise to the outlying small triangles in the reconstruction.The views of the second object in the middle of Figure 5 were also synthetically generated,but at a resolution of 256� 256. Here it can be seen that the resulting triangulation has edgesthat are less rounded, and the small extra patches are no longer present. The presence of smallfeatures and a curved surface on this object did not stop the algorithm from determining theproper registration.The �rst example of processing data from a real sensor is shown in the bottom of Figure5. This object again possesses a combination of planar and curved surfaces. Here it can beseen that the edges of the triangulation are worse than in the synthetic case. This is not the22



(a) initial registration of rectangular box

(c) initial registration of widget 1

(e) initial registration of widget 2

(b) triangulation of registered box

(d) triangulation of registered widget 1

(f) triangulation of registered widget 2Figure 5: Registration results for three objects, two of them synthetic (top and middle) datasets, the other (bottom) data from a real sensor. Initial positions of the point sets are shown inthe left column, while triangulations of the registered data are depicted on the right.23



fault of the registration algorithm, but rather it is due to the data obtained by the sensor.Contributing factors for the erroneous data are: this particular object is metallic, a troublesomematerial for most laser scanning devices; laser scanners are known to produce worse data atdepth discontinuities due to an averaging of the response over two surfaces; and steeply angledsurfaces with respect to the sensor are foreshortened because edges are not sampled as closely ason surfaces perpendicular to the viewing rays. Here, the algorithm has settled on a registrationwhich aligns the common observed areas. The non-common portions then protrude from theedges, resulting in the extra small patches. This happened mainly along the border of thebottom of the object, which appeared larger in one view than the others.The �nal example, shown in Figure 6, depicts the results for the well-known Renault part.Here the positions of the point sets after registration at the intermediate subsampling resolutionsare also given. As can be seen, the majority of the rotational alignment is achieved using thesmallest subsamples. Using the next size up completes a majority of the translationalmovement,while the �nal two passes perform minor adjustments. The average motion on the �rst pass was15� in each rotation dimension and 125 units in the translation dimensions. The motion of thesecond pass was approximately 10% of this amount, while the amount of motion in the �nal twopasses was only about 1% of that in the second pass.The quality of the �nal registration can be seen in comparing the image of the triangulation(Figure 6.f) to an actual photo of the object (Figure 6.e). Here the object was painted beforeacquiring the range data to reduce specular re
ections where possible, obviously improving thequality over that in the previous example. But, there are still a few outlying clusters of erroneouspoints which the median �lter was not able to remove. However, notice how the mold lines ofthe part have been registered nicely, while there are no other surface discontinuities that wouldindicate a misregistration.A full summary of the registration results for all four objects is given in Table 3. Of �rstinterest are the columns stating the sampling resolution and the average distance of a point fromthe tangent plane of its corresponding point. Here, the point to plane distances are 10 - 15 %of the sampling resolution for the synthetic data sets, and 20 - 25% for the real data sets. Thisis an encouraging result, since in general processes that attempt to locate features to accuraciesless than the sampling rate (for instance, subpixel interpolation), rarely achieve below 10% ofthe sampling rate. 24



(a) initial alignment of 10 views (b) registration of 100 points per view

(c) registration of 1000 points per view (d) registration of 10,000 points per view

(e) actual photo of imaged Renault part (f) rendered image of triangulation of data pointsFigure 6: Registration results for the Renault part. The position of the point sets after eachstage are shown, along with the �nal triangulation. For comparison, an actual image of the partis also shown beside it.A slightly more discouraging statistic is execution time. The table clearly shows the non-linear dependence on the data set size. The simple box with only 30,000 points needed only 8minutes to process on a Sparc 5 workstation, but the Renault part, containing half a millionpoints, required a full day. However, when the time for the Renault part is broken down, aboutten minutes was spent in the initialization phase, and a similar amount of time in the �rsttwo passes in which 99% of the data movement occurred. Thus, a fairly large decrease in theexecution time could be achieved at the expense of only a little accuracy.25



Table 3: Results of registration algorithm on 3-D objects.Object type # views view total sampling avg point # of timesize points resolution distance iterationsbox synthetic 8 128 x 128 31,464 0.0497 0.00738 18 8 minwidget # 1 synthetic 8 256 x 256 151,380 1.397 0.139 31 1 hrwidget # 2 real 8 � 250 x 250 273,730 0.610 0.121 33 3 hrRenault part real 10 � 225 x 400 471,760 0.663 0.174 24 1 dayIt is di�cult to compare the results given here to those of previous e�orts, either becausecompletely di�erent data sets were used, or few actual numbers have been reported. Only twoof the e�orts performing multiple view registration have reported quantitative accuracy andtiming results. Blais and Levine stated that the processing of six views (of size 256� 256) of anowl �gurine yielded an average distance between corresponding points of 1.55 mm for imageswith a point measurement error (related to the sampling resolution) of 0.625 mm. This took83 hr to compute on an SGI workstation. The initial registrations were o� by approximate 4�in rotation and 8 mm in translation. This suggests superior results are being obtained by ouralgorithm.Gagnon et al. processed 8 views of a teapot, each containing approximately 10,000 points(the sampling resolution was not stated). From an initial registration having an average pointdistance error of a few tenths of a millimeter, they achieved a �nal registration with a pointerror of less than 10 micrometers, an order of magnitude improvement. This took approximately30 minutes to compute on a Sparc 10 workstation. Again this indicates either comparable orsuperior performance by the algorithm given here.Conclusions and Future WorkIn this paper an algorithmwas presented for performing a re�nement on an initial set of transfor-mations that register multiple range views of an object. This algorithm has several advantagesover previous registration methods.� The radius of convergence is larger than that of previous e�orts. Errors in rotation of 20�and translations up to 25% of the object size can still be compensated for properly onmost objects. However, characteristics of the object shape, such as rotational symmetry,are the deciding factors in determining the particular radius of convergence.26



� The set of transformations is solved for simultaneously, rather than pairwise incrementally,leading to a better global solution.� Correspondence is not determined on a pairwise view basis. The use of a global data seteliminates the need for distance thresholds (assuming each part of the object has been seenat least twice). This also implies that the views need not be part of an actual sequence inwhich the changes between views are small.� Using k-d trees, in combination with lists of previous correspondences, increases the per-formance of the correspondence process considerably.� Extended point features such as surface normals are used in early passes to help conver-gence, but only point positions are used at the end due to the inherently noisier values ofthe normals.� The concept of linking a point to a surface tangent via a spring leads to less restrictivemotion calculations that should eliminate premature convergence. However, additionalspecial correspondences between occluding points and hidden surface regions are necessaryto ensure motion parallel to these tangent planes.� The use of spring forces between corresponding locations allows for the use of a dynamicsimulation as a search method for the proper transformations, which has proven to befairly robust with respect to initial transformation variations.� The accuracy of the �nal registration is on a par with most other sublocalization algo-rithms, approaching 10 - 25% of the sampling resolution.� The use of hierarchically-sized data sets leads to quicker convergence. Faster times andslightly less accurate results can be achieved if the full data set is not processed.Given this, there are still avenues open for future work. These could include:� The use of uncertainty in sensor readings to determine point weightings as by others 1;4;5;13could lead to potentially more accurate results.� A further analysis of the use of curvatures as a point correspondence feature, especially oncurved objects, is needed to see if potential bene�ts can be made to outweigh drawbacks.27
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