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ABSTRACT

This work presents the first direct method for specifi-
cally fitting ellipses in the least squares sense. Previous
approaches used either generic conic fitting or relied on
iterative methods to recover elliptic solutions. The pro-
posed method is (i) ellipse-specific, (ii) directly solved
by a generalised eigen-system, (iii) has a desirable low-
eccentricity bias, and (iv) is robust to noise. We pro-
vide a theoretical demonstration, several examples and
the Matlab coding of the algorithm.

1. INTRODUCTION

Ellipse fitting is one of the classic problems of pattern
recognition and has been subject to considerable at-
tention in the past ten years for its many application.
Several techniques for fitting ellipses are based on map-
ping sets of points to the parameter space (notably the
Hough transform).

In this paper we are concerned with the more fun-
damental problem of least squares (LSQ) fitting of el-
lipses to scattered data. Previous methods achieved el-
lipse fitting by using generic conic fitters that perform
poorly, often yielding hyperbolic fits with noisy data,
or by employing iterative methods, which are compu-
tationally expensive.

In this paper we presents and demonstrate the first
ellipse-specific direct least squares fitting method that
has the following desirable features: i) always yields
elliptical fits 4i) has low-eccentricity bias, and iéii) is
robust to noise.

2. THE LSQ ELLIPSE FITTING PROBLEM

Let us represent a generic conic as the zero set of an
implicit second order polynomial:

F(a,x) —ax=az’ +bry+cy’ +dr+ey+ f (1)

where a=[abcdef] and x=[z2zyy?zy1]T.
F(a,x;) = dis called the “algebraic distance” of a point
x; to the conic F(a,x) = 0.

One way of fitting a conic is to minimise the alge-
braic distance over the set of N data points in the least
squares sense, that is

N
a= argm&n{ZF(a,xi)Q} (2)

i=1

Linear conic fitting methods have been investigated
that used linear constraints that slightly bias conic fit-
ting towards elliptical solutions. In particular Rosin [§]
and Gander [4] investigated the constraint a + ¢ =1
and Rosin [7] f = 1.

In a seminal work, Bookstein [1] showed that if a
quadratic constraint is set on the parameters (e.g., to
avoid the trivial solution a = 0g) the minimisation (2)
can be solved by the rank-deficient generalised eigen-
value system:

D’Da=Sa = \Ca (3)
where D = [x; Xo--- X,]7 is called design matriz,
S = D7D is called scatter matriz and C is the matrix
that expresses the constraint.

A simple constraint is ||a|| = 1 but Bookestein used
the algebraic invariant constraint a® + 1b% + ¢? = 1;
Sampson [10] presented an iterative improvement to
Bookstein method that replaces the algebraic distance
(1) with a better approximation to the geometric dis-
tance, which was adapted by Taubin [11] to turn the
problem again into a generalised eigen-system like (3).

Despite the amount of work, direct specific ellipse
fitting, however, was left unsolved. If ellipses fitting
was needed, one had to rely either on generic conic fit-
ting or on iterative methods such as [6]. Recently Rosin
[9] re-iterated this problem by stating that ellipse-specific
fitting is essentially a non-linear problem and iterative
methods must be employed for this purpose. In the
following we show that this is no longer true.



3. ELLIPSE-SPECIFIC METHOD

Let us consider a different quadratic constraint that
corresponds to the well known quadratic algebraic in-
variant of a conic
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This constraint was first introduced in [3] and it was
shown to yield always elliptical solutions; the brief jus-
tification given was that because of the immateriality
of the scale of a, the inequality (4) can, w.l.0.g., turned

into a”Ca = —1 and hence the minimisation (2) sub-
ject to the constraint (4) can again be formulated like
in (3).

In the following, we give theoretical account of the
method by demonstrating its key feature of ellipse speci-
ficity, i.e. that it gives always one and only one ellip-
tical solution. But before that, we need to state two
Lemmas that will naturally lead to an uniqueness the-
orem.

Let S € ®,xn and C € R« be symmetric matri-
ces, with S positive definite. Let us define the spectrum
o(S) as the set of eigenvalues of S and let o(S, C) anal-
ogously be the set of generalised eigenvalues of (5).

Lemma 1 The signs of the generalised eigenvalues of
Su = \Cu (5)

are the same as those of the matriz C, up to permuta-
tion of the indices.

Proof: Let the inertia i(S) be defined as the set
of signs of ¢(C), and let i(S,C) analogously be the
inertia of o(S,C). Then, the lemma is equivalent to
proving that i(S,C) = i(C). As S is positive defi-
nite, it may be decomposed as Q? for symmetric Q,
allowing us to write (5) as Q?u = ACu. Now, substi-
tuting v = Qu and pre-multiplying by Q™! gives v =
AQ'CQ v so that 0(S,C) = ¢(Q1CQ ')t and
thus i(S,C) = i(Q 'CQ™!). From Sylvester’s Law
of Inertia [12] we have that for any symmetric S and
nonsingular X, i(S) = i(X7SX). Therefore, substitut-
ing X = X7 = Q7! we have i(C) =i(Q~'CQ™!) =
i(S,C). O

Lemma 2 If()\;, a;) is a solution of the eigen-system
(3), we have: sign(\;) = sign(al Ca;).

Proof: By pre-multiplying by a} both sides of (3)
we have alTSai = )\ialTCai. Since S is positive-definite,
azTSai > 0 and therefore \; and the scalar aZTCai must

have the same sign. O

Now we can state the following uniqueness theorem:

Theorem 1 The solutions to the conic fitting prob-
lem given by the generalised eigen-system (3) subject
to the constraint (4) include one and only one ellipti-
cal solution corresponding to the single negative gener-
alised eigenvalue of (3). The solution is also invariant
to rotation and translation of the data points!

Proof: Since the non-zero eigenvalues of C are
o(C) ={ -2, 1, 2}, from Lemma 1 we have that
a(S, C) has one and only one negative eigenvalue \; <
0, associated with a solution a;; then, by applying
Lemma 2, the constraint al Ca; = b2 — 4ac is nega-
tive and therefore a; is a set of coefficients represent-
ing an ellipse. The constraint (4) is a conic invari-
ant to Euclidean transformations and so is the solution
(see [1]) O

Theorem 1 does not state anything about the qual-
ity of the unique elliptical solution, since classical opti-
misation theory states that it might not be the global
minimum of (2) under our non-positive definite inequal-
ity constraint. However, the physical solution (the ac-
tual ellipse) does not change under linear scaling of the
coefficients and therefore it can be easily shown that the
minimisation with the inequality constraint (4) can be
equivalently turned to a minimisation with an equality
constraint a’ Ca = —1. By doing so, as illustrated in
[2], we can say that:

Corollary 1 The unique elliptical solution is the one
that minimises (2) subject to the constraint al Ca =
—1.

A more practical interpretation of this corollary is

that the unique elliptical solution is a local minimiser
a’Sa

of the Rayleigh quotient 7Ca and thus the solution
can also be seen as the best gzast squares ellipse under
a re-normalisation of the coefficients by b> — 4ac. Al-
though experimental evidence would suggest that this
statement could be valid, a formal demonstration is
currently not known to the authors. This implicit nor-
malisation turns singular for b> —4ac = 0 and, following
the observations in [7], we can say that the minimisa-
tion tends to “pull” the solution away from singular-
ities; in our case the singularity is a parabola and so
the unique elliptical solution tends to be biased towards
low eccentricity, which explains many of the following
results, such as those in Figure 2.

ISince C is rank deficient, the eigen-system (3) should be
solved by block decomposition like in [1]; however most numerical
packages will handle this detail.



Bookstein Method Ellipse-Specific Method

Figure 1: Specificity to ellipses. The three eigen-
solution obtained by the Bookstein algorithm (left) and
the best LSQ elliptical solution obtained by our ellipse-
specific method (right).

4. EXPERIMENTAL RESULTS

First, let us now have a glimpse at what this ellipse-
specificity means. Figure 1-left shows the three eigen-
solutions yielded by the Bookstein algorithm on a small
set of hand-input points; the best LSQ fit is a hyper-
bola and the (incidentally) elliptical one is extremely
poor. With the proposed ellipse-specific algorithm, the
only solution satisfying the constraint is the best LSQ
elliptical solution, shown in Figure 1-right.

Figure 2 shows three experiments designed after
[10] that consist of the same parabolic data but with
different realizations of added isotropic Gaussian noise
(o = 10% of data spread). In his paper, Sampson re-
fined the poor initial fitting obtained with Bookstein
algorithm using an iterative Kalman filter to minimise
his approximate geometrical distance [10]. The final re-
sults were ellipses with low eccentricity that are quali-
tatively similar to those produced by our ellipse-specific
direct method (solid lines) but at the same computa-
tional cost of producing Sampson’s initial estimate.

The low-eccentricity bias of our method discussed in
Section. 3 is most evident in Figure 2 when comparing
the results to other methods, namely Bookstein (dot-
ted), Taubin (dash-dots) and Gander (dashed); these
results are not surprising, since those methods are non-
ellipse specific whereas the one presented here is.

Let us now qualitatively illustrate the robustness
of the ellipse-specific method as compared to Gander’s
and Taubin’s. A number of experiments have been car-
ried out, of which here we present a couple, shown in
Figures 3 and 4. They have been conducted by adding
isotropic Gaussian noise to a synthetic elliptical arc;
note that in both sets each column has the same set of
points. More quantitative results can be found in [2]
and are not reported here for reasons of space.

Figure 3 shows the performance with respect to
increasing noise level (see [3] for more experiments).
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Figure 2: Low-eccentricity bias of the ellipse-specific
method when fitting to noisy parabolic data. Encoding
is Bookstein: dotted; Gander: dashed; Taubin: dash-
dot; Ellipse-specific: solid.

The standard deviation of the noise varies from 3%
in the leftmost column to 20% of data spread in the
rightmost column; the noise has been set to relatively
high level because the performance of the three algo-
rithm is substantially the same at low noise level of
precise elliptical data. The top row shows the results
for the method proposed here. Although, as expected,
the fitted ellipses shrink with increasing levels of high
noise (as a limit the elliptical arc will look like a noisy
line), it can be noticed that the ellipse dimension de-
creases smoothly with the increase of noise level: this
is an indication of well-behaved fitting. This shrinking
phenomenon is evident also with the other two meth-
ods but presents itself more erratically: in the case of
Taubin’s algorithm, the fitted ellipses are on average
somewhat closer to the original one [3], but they are
rather unpredictable and its ellipse non-specificity, as
it happens in the Gander’s case, sometimes yields un-
bounded hyperbolic fits.

The second set, shown in Figure 4, is concerned
with assessing stability to different realizations of noise
with the same variance (o = 0.1). (It is very desirable
that an algorithm’s performance be affected only by the
noise level, and not by a particular realization of the
noise). This and similar experiments (see [2, 3]) showed
that our method has a remarkably greater stability to
noise with respect to Gander’s and Taubin’s.

5. CONCLUSION

In this paper we have presented an ellipse least squares
fitting method which for is specific to ellipses and direct
at the same time; other previous method were either
not ellipse-specific or iterative.

We argue that our method is possibly the best trade-
off between speed and accuracy for ellipse fitting and its
uniqueness property makes it also extremely robust to
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Figure 3: Stability experiments with increasing noise
level. Top row: ellipse-specific method; Mid Row: Gan-
der; Bottom Row: Taubin. The ellipse-specific method
shows a much smoother and predictable decrease in
quality than the other two methods.
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Figure 4: Stability experiments for different runs with
same noise variance (10% of data spread). Top row:
ellipse-specific method; Mid Row: Gander; Bottom
Row: Taubin. The ellipse-specific method shows a re-
markable stability.
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noise and usable in many applications, especially in in-
dustrial vision. In order for other researchers to quickly
assess the validity of the method, Figure 5 gives a Mat-
lab implementation of the proposed algorithm and an
interactive JAVA demonstration is available at http://
vision.dai.ed.ac.uk/maurizp /ElliFitDemo/demo.html.

In the near future, a method for correcting the bias
to the noise for incomplete elliptical arcs will be ex-
plored that is inspired by [5]. Moreover, the proposed
ellipse-specific method could be used to produce excel-
lent initial estimates for iterative methods, thus signif-
icantly increasing their speed; we are currently investi-
gating this possibility.
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% z,y are lists of coordinates
function a = fit_ellipse(x,y)
% Build design matriz

D = [ x.*x x.*y y.*y x y ones(size(x)) |;
% Build scatter matriz
S = D*D;

% Build 6z6 constraint matriz

C(6,6) = 0; C(1,3) = -2; C(2,2) = 1; C(3,1) = -2;

% Solve eigensystem

[gevec, geval] = eig(inv(S)*C);

% Find the negative eigenvalue

[NegR, NegC] = find(geval < 0 & ~isinf(geval));

% Extract eigenvector corresponding to positive eigenvalue
a = gevec(:,NegC);

Figure 5: Complete 6-line Matlab implementation of
the proposed algorithm.
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