
ELLIPSE-SPECIFIC DIRECT LEAST-SQUARE FITTINGMaurizio Pilu Andrew W. Fitzgibbon Robert B. FisherDepartment of Arti�cial Intelligence,The University of Edinburgh5 Forrest Hill, Edinburgh EH1 2QLSCOTLANDABSTRACTThis work presents the �rst direct method for speci�-cally �tting ellipses in the least squares sense. Previousapproaches used either generic conic �tting or relied oniterative methods to recover elliptic solutions. The pro-posed method is (i) ellipse-speci�c, (ii) directly solvedby a generalised eigen-system, (iii) has a desirable low-eccentricity bias, and (iv) is robust to noise. We pro-vide a theoretical demonstration, several examples andthe Matlab coding of the algorithm.1. INTRODUCTIONEllipse �tting is one of the classic problems of patternrecognition and has been subject to considerable at-tention in the past ten years for its many application.Several techniques for �tting ellipses are based on map-ping sets of points to the parameter space (notably theHough transform).In this paper we are concerned with the more fun-damental problem of least squares (LSQ) �tting of el-lipses to scattered data. Previous methods achieved el-lipse �tting by using generic conic �tters that performpoorly, often yielding hyperbolic �ts with noisy data,or by employing iterative methods, which are compu-tationally expensive.In this paper we presents and demonstrate the �rstellipse-speci�c direct least squares �tting method thathas the following desirable features: i) always yieldselliptical �ts ii) has low-eccentricity bias, and iii) isrobust to noise.2. THE LSQ ELLIPSE FITTING PROBLEMLet us represent a generic conic as the zero set of animplicit second order polynomial:F (a;x) = ax = ax2 + bxy + cy2 + dx + ey + f (1)

where a = [ a b c d e f ] and x = [x2 xy y2 x y 1 ]T .F (a;xi) = d is called the \algebraic distance" of a pointxi to the conic F (a;x) = 0.One way of �tting a conic is to minimise the alge-braic distance over the set of N data points in the leastsquares sense, that isâ = argmina ( NXi=1 F (a;xi)2) (2)Linear conic �tting methods have been investigatedthat used linear constraints that slightly bias conic �t-ting towards elliptical solutions. In particular Rosin [8]and Gander [4] investigated the constraint a + c = 1and Rosin [7] f = 1.In a seminal work, Bookstein [1] showed that if aquadratic constraint is set on the parameters (e.g., toavoid the trivial solution a = 06) the minimisation (2)can be solved by the rank-de�cient generalised eigen-value system: DTDa = Sa = �Ca (3)where D = [x1 x2 � � � xn]T is called design matrix,S = DTD is called scatter matrix and C is the matrixthat expresses the constraint.A simple constraint is kak = 1 but Bookestein usedthe algebraic invariant constraint a2 + 12b2 + c2 = 1;Sampson [10] presented an iterative improvement toBookstein method that replaces the algebraic distance(1) with a better approximation to the geometric dis-tance, which was adapted by Taubin [11] to turn theproblem again into a generalised eigen-system like (3).Despite the amount of work, direct speci�c ellipse�tting, however, was left unsolved. If ellipses �ttingwas needed, one had to rely either on generic conic �t-ting or on iterative methods such as [6]. Recently Rosin[9] re-iterated this problem by stating that ellipse-speci�c�tting is essentially a non-linear problem and iterativemethods must be employed for this purpose. In thefollowing we show that this is no longer true.



3. ELLIPSE-SPECIFIC METHODLet us consider a di�erent quadratic constraint thatcorresponds to the well known quadratic algebraic in-variant of a conicb2 � 4ac = aT 2664 0 0 �2 0 0 00 1 0 0 0 0�2 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 3775 a = aTCa < 0(4)This constraint was �rst introduced in [3] and it wasshown to yield always elliptical solutions; the brief jus-ti�cation given was that because of the immaterialityof the scale of a, the inequality (4) can, w.l.o.g., turnedinto aTCa = �1 and hence the minimisation (2) sub-ject to the constraint (4) can again be formulated likein (3).In the following, we give theoretical account of themethod by demonstrating its key feature of ellipse speci-�city, i.e. that it gives always one and only one ellip-tical solution. But before that, we need to state twoLemmas that will naturally lead to an uniqueness the-orem.Let S 2 <n�n and C 2 <n�n be symmetric matri-ces, with S positive de�nite. Let us de�ne the spectrum�(S) as the set of eigenvalues of S and let �(S;C) anal-ogously be the set of generalised eigenvalues of (5).Lemma 1 The signs of the generalised eigenvalues ofSu = �Cu (5)are the same as those of the matrix C, up to permuta-tion of the indices.Proof: Let the inertia i(S) be de�ned as the setof signs of �(C), and let i(S;C) analogously be theinertia of �(S;C). Then, the lemma is equivalent toproving that i(S;C) = i(C). As S is positive de�-nite, it may be decomposed as Q2 for symmetric Q,allowing us to write (5) as Q2u = �Cu. Now, substi-tuting v = Qu and pre-multiplying by Q�1 gives v =�Q�1CQ�1v so that �(S;C) = �(Q�1CQ�1)�1 andthus i(S;C) = i(Q�1CQ�1). From Sylvester's Lawof Inertia [12] we have that for any symmetric S andnonsingular X, i(S) = i(XTSX). Therefore, substitut-ing X = XT = Q�1 we have i(C) = i(Q�1CQ�1) =i(S;C). 2Lemma 2 If (�i; ai) is a solution of the eigen-system(3), we have: sign(�i) = sign(aTi Cai).Proof: By pre-multiplying by aTi both sides of (3)we have aTi Sai = �iaTi Cai. Since S is positive-de�nite,aTi Sai > 0 and therefore �i and the scalar aTi Cai must

have the same sign. 2Now we can state the following uniqueness theorem:Theorem 1 The solutions to the conic �tting prob-lem given by the generalised eigen-system (3) subjectto the constraint (4) include one and only one ellipti-cal solution corresponding to the single negative gener-alised eigenvalue of (3). The solution is also invariantto rotation and translation of the data points.1Proof: Since the non-zero eigenvalues of C are�(C) = f �2; 1; 2 g, from Lemma 1 we have that�(S;C) has one and only one negative eigenvalue �i <0, associated with a solution ai; then, by applyingLemma 2, the constraint aTi Cai = b2 � 4ac is nega-tive and therefore ai is a set of coe�cients represent-ing an ellipse. The constraint (4) is a conic invari-ant to Euclidean transformations and so is the solution(see [1]) 2Theorem 1 does not state anything about the qual-ity of the unique elliptical solution, since classical opti-misation theory states that it might not be the globalminimum of (2) under our non-positive de�nite inequal-ity constraint. However, the physical solution (the ac-tual ellipse) does not change under linear scaling of thecoe�cients and therefore it can be easily shown that theminimisation with the inequality constraint (4) can beequivalently turned to a minimisation with an equalityconstraint aTCa = �1. By doing so, as illustrated in[2], we can say that:Corollary 1 The unique elliptical solution is the onethat minimises (2) subject to the constraint aTCa =�1.A more practical interpretation of this corollary isthat the unique elliptical solution is a local minimiserof the Rayleigh quotient aTSaaTCa and thus the solutioncan also be seen as the best least squares ellipse undera re-normalisation of the coe�cients by b2 � 4ac. Al-though experimental evidence would suggest that thisstatement could be valid, a formal demonstration iscurrently not known to the authors. This implicit nor-malisation turns singular for b2�4ac = 0 and, followingthe observations in [7], we can say that the minimisa-tion tends to \pull" the solution away from singular-ities; in our case the singularity is a parabola and sothe unique elliptical solution tends to be biased towardslow eccentricity, which explains many of the followingresults, such as those in Figure 2.1Since C is rank de�cient, the eigen-system (3) should besolved by block decomposition like in [1]; however most numericalpackages will handle this detail.
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Figure 1: Speci�city to ellipses. The three eigen-solution obtained by the Bookstein algorithm (left) andthe best LSQ elliptical solution obtained by our ellipse-speci�c method (right).4. EXPERIMENTAL RESULTSFirst, let us now have a glimpse at what this ellipse-speci�city means. Figure 1-left shows the three eigen-solutions yielded by the Bookstein algorithm on a smallset of hand-input points; the best LSQ �t is a hyper-bola and the (incidentally) elliptical one is extremelypoor. With the proposed ellipse-speci�c algorithm, theonly solution satisfying the constraint is the best LSQelliptical solution, shown in Figure 1-right.Figure 2 shows three experiments designed after[10] that consist of the same parabolic data but withdi�erent realizations of added isotropic Gaussian noise(� = 10% of data spread). In his paper, Sampson re-�ned the poor initial �tting obtained with Booksteinalgorithm using an iterative Kalman �lter to minimisehis approximate geometrical distance [10]. The �nal re-sults were ellipses with low eccentricity that are quali-tatively similar to those produced by our ellipse-speci�cdirect method (solid lines) but at the same computa-tional cost of producing Sampson's initial estimate.The low-eccentricity bias of our method discussed inSection. 3 is most evident in Figure 2 when comparingthe results to other methods, namely Bookstein (dot-ted), Taubin (dash-dots) and Gander (dashed); theseresults are not surprising, since those methods are non-ellipse speci�c whereas the one presented here is.Let us now qualitatively illustrate the robustnessof the ellipse-speci�c method as compared to Gander'sand Taubin's. A number of experiments have been car-ried out, of which here we present a couple, shown inFigures 3 and 4. They have been conducted by addingisotropic Gaussian noise to a synthetic elliptical arc;note that in both sets each column has the same set ofpoints. More quantitative results can be found in [2]and are not reported here for reasons of space.Figure 3 shows the performance with respect toincreasing noise level (see [3] for more experiments).

Figure 2: Low-eccentricity bias of the ellipse-speci�cmethod when �tting to noisy parabolic data. Encodingis Bookstein: dotted; Gander: dashed; Taubin: dash-dot; Ellipse-speci�c: solid.The standard deviation of the noise varies from 3%in the leftmost column to 20% of data spread in therightmost column; the noise has been set to relativelyhigh level because the performance of the three algo-rithm is substantially the same at low noise level ofprecise elliptical data. The top row shows the resultsfor the method proposed here. Although, as expected,the �tted ellipses shrink with increasing levels of highnoise (as a limit the elliptical arc will look like a noisyline), it can be noticed that the ellipse dimension de-creases smoothly with the increase of noise level: thisis an indication of well-behaved �tting. This shrinkingphenomenon is evident also with the other two meth-ods but presents itself more erratically: in the case ofTaubin's algorithm, the �tted ellipses are on averagesomewhat closer to the original one [3], but they arerather unpredictable and its ellipse non-speci�city, asit happens in the Gander's case, sometimes yields un-bounded hyperbolic �ts.The second set, shown in Figure 4, is concernedwith assessing stability to di�erent realizations of noisewith the same variance (� = 0:1). (It is very desirablethat an algorithm's performance be a�ected only by thenoise level, and not by a particular realization of thenoise). This and similar experiments (see [2, 3]) showedthat our method has a remarkably greater stability tonoise with respect to Gander's and Taubin's.5. CONCLUSIONIn this paper we have presented an ellipse least squares�tting method which for is speci�c to ellipses and directat the same time; other previous method were eithernot ellipse-speci�c or iterative.We argue that our method is possibly the best trade-o� between speed and accuracy for ellipse �tting and itsuniqueness property makes it also extremely robust to
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Figure 3: Stability experiments with increasing noiselevel. Top row: ellipse-speci�c method; Mid Row: Gan-der; Bottom Row: Taubin. The ellipse-speci�c methodshows a much smoother and predictable decrease inquality than the other two methods.
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Figure 4: Stability experiments for di�erent runs withsame noise variance (10% of data spread). Top row:ellipse-speci�c method; Mid Row: Gander; BottomRow: Taubin. The ellipse-speci�c method shows a re-markable stability.noise and usable in many applications, especially in in-dustrial vision. In order for other researchers to quicklyassess the validity of the method, Figure 5 gives a Mat-lab implementation of the proposed algorithm and aninteractive JAVA demonstration is available at http://vision.dai.ed.ac.uk/maurizp/ElliFitDemo/demo.html.In the near future, a method for correcting the biasto the noise for incomplete elliptical arcs will be ex-plored that is inspired by [5]. Moreover, the proposedellipse-speci�c method could be used to produce excel-lent initial estimates for iterative methods, thus signif-icantly increasing their speed; we are currently investi-gating this possibility.Acknowledgements: Maurizio Pilu was partially spon-sored by SGS-THOMSON Microelectronics. This work waspartially funded by UK EPSRC Grant GR/H/86905.
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