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Abstract

Constructing a full CAD model of a part requires fea-
ture descriptions from all sides; in this case we consider
surface patches as the geometric primitives. Most previ-
ous research in surface patch extraction has concentrated
on extracting patches from a single view. This leads to sev-
eral problems with aligning and combining partial patch
fragments in order to produce complete part models. We
have avoided these problems by adapting our single view,
range data segmentation program to extract patches, and
thus models, directly from fully merged range datasets.

1. Introduction

Constructing a full CAD model of a part requires feature
descriptions from all sides. This seems obvious, but how to
achieve that description is the question. The two main ap-
proaches are to extract individual surface patches from indi-
vidual views (e.g. of range data) and then merge them, or to
merge the range data and then extract the surface patches.

The former approach has the advantage of having many
existing algorithms for patch extraction, even from many
years ago [23, 3, 14, 9, 17]. A recent comparison in [15]
concluded that in many ways, our single image planar patch
segmentation algorithm has the best performance among
current algorithms. In fact, our algorithm actually extracts
quadric surface patches, but the comparison in [15] applied
only to planar patches. The single view approach also has
the advantage that single orthographic or spherical coordin-
ate views are typically what range sensors produce, and so

it is clear what the topology of the range image is (i.e. it is
easy to determine what are neighbouring surface points).

The disadvantages of merging patches from single views
are serious, however. The first problem is how to register the
features extracted from single views into a single reference
frame. It is easily possible to align the views provided 3
independent non-parallel planes can be found in each pair
of views. (Two planes provide orientation alignment, but
allow one translational degree of freedom, which is resolved
by the third plane.) Faugeras[11] gives standard algorithms
for transformation estimation.

However, our experience has shown that this provides
only limited accuracy, and so our models are typically ac-
curate only to about 1-2 mm (using a range sensor that has
0.15 mm measurement standard deviation). Our belief is
that the causes of this poor registration are: 1) the limited
number of features that can be paired between two substan-
tially different views, 2) the fact that we are working with
industrial parts that have large developable surfaces (which
do not locally provide the registration constraints obtain-
able from curved surfaces on more exotic shapes), and 3)
the attempt by the least-square algorithm to spread the error
across the whole of a surface patch (i.e. much of the patch
will have very small errors while the edges might have sub-
stantially larger errors).

Improved registration is possible, as in our Imagine II
object recognition system, which uses an adapted Iterated
Closest Point algorithm [4] to provide fine alignment us-
ing the raw range data after the feature-based alignment
provides an initial coarse registration. But, there is still
the problem of merging the features. This is a rather com-
plex problem, because individual views might only provide
a fragment of a patch, and even a pair of views might



not provide a complete view. So, one might use a patch-
stitching algorithm [22] to produce new patches. These al-
gorithms require complex reasoning in order to construct
the boundary of a merged patch from the boundaries of the
individual patches, particularly because positioning errors
require one to use statistical tests to determine if vertices
observed in the two views are the same.

We have avoided these problems by adapting our single
view quadric patch range segmentation program to extract
patches and thus complete object models directly from fully
merged range datasets.

The problem of merging multiple range datasets has re-
ceived considerable research[2, 5, 13, 7, 8, 12, 20, 21, 24,
25, 26, 27, 28, 29, 30] in the past few years, so we will not
review it here. However, the result of this research is that
it is now possible to obtain quite good registration of clean
range image datasets of smooth curved and developable sur-
faced objects.

There has been some previous research on extracting
geometric surface patches from full 3D datasets, of which
[10] is a good example, except that the reported work ad-
dressed mainly planar patches.

This paper describes the algorithm used for surface patch
extraction and presents results obtained from using the ap-
proach of surface merging first and then segmentation of
full 3D range datasets. It can be applied to both industrial
parts with simple developable surfaces and more complex
surfaces.

2. Complete Patch Extraction

The algorithm for complete patch extraction consists of
these stages:

1. Multiple view merging.

2. Initial surface triangulation.

3. Local curvedness estimation and shape classification.

4. Surface patch growing.

5. Patch edge adjustment.

These are discussed in more detail in this section.
The algorithm used formultiple view merging is de-

scribed in [7]. The algorithm merges multiple range im-
ages using a modified Iterated Closest Point algorithm [4]
and produces a cloud of range(x; y; z) values registered
in a common reference frame. The algorithm assumes that
every point has been observed in at least two range images,
and thus avoids the problem of identifying points without
a correspondence (i.e. no distance threshold is needed). It
uses a force model (with “springs” connecting correspond-
ing points) that iterates over time to pull the datasets into

Figure 1. View of merged and tessellated
range data for UFO part.

alignment, rather than a closed form solution, because not
all points are treated identically. Correspondence is from a
point to the nearest tangent plane, as in [6], except for points
at depth discontinuities, which are mapped to the tangent
plane of points “around the corner” in the second view. This
adaptation allows use of the algorithm on locally and glob-
ally developable surfaces (where the translation aligning the
surfaces is not well constrained because the two surfaces
can translate over each other) as well as generic curved sur-
faces.

The initial surface tessellation is performed using the
Hoppe and DeRose [16] algorithm. The purpose of this tes-
sellation is to construct local topology between the range
points that can then be used as part of the curvature clas-
sification and region growing processes. The problem that
we’re trying to solve here is how to find the local surface
shape. With range data acquired from a single viewpoint,
there is usually a local topology in the form of a regular grid
imposed by the mechanical structure of the range sensor.
With multiple merged range images, the range data usually
forms a cloud of points about the true surface. This means
that getting an initial approximation of the surface shape is
difficult, and second, it is hard to determine point adjacency
on the surface during the surface growing phase. Our solu-
tion to the problem was to tessellate the surface, which gives
a regular 3D mesh on the surface, and then do surface shape
extraction and surface growing using the centres-of-mass of
the mesh polygons.

The tessellation consists of a set of connected small poly-
gonal patches. Associated with each polygonal patch are
the range points from the patch and also the neighbouring
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patches. Local topology is the essential ingredient needed
by most other range data segmentation algorithms, in that
this specifies which of the range points are nearby. While
other graph-based connection algorithms are possible to
use, we chose the Hoppe and DeRose algorithm for con-
venience.

With a local topology, it is easy toestimate the local
surface curvatures at each point through a local surface
fitting algorithm. This provides an estimate of the prin-
cipal curvatures, which can be used in a (mean, gaus-
sian) curvature classification process, as in [3]. Surface
patches are then formed by grouping polygons with a sim-
ilar curvature classification to form the initial seed patches
for a surface fitting algorithm. Here, because our experience
has shown that the surface fitting algorithm has a more sig-
nificant impact than the initial curvature classification, and
because our surface fitting algorithm uses a general quadric
form rather than different forms specialised for the different
shape classes, we only classify polygons into the classesfplanar, curved, edgeg. Surface fitting is still applied to
connected polygons with the same shape class.

Our shape classification process estimates the local
curvedness by finding the maximum angle�max that ad-
jacent surface polygons turn away from the current poly-
gon. This angle is found by examining the angle between
polygon normals in a neighbourhood of distanceN poly-
gons (default is 2) about the current polygon. The max-
imum angle gives an indication of how curved the surface
is, and forms the basis for the initial labeling of polygons
into different surface shape classes:

CONDITION POLYGON CLASS.
If �max < �plane (4.7 deg) Planar
If �max > �edge (10 deg) Edge
Else Quadric

Only surface orientation (fold edge) discontinuities are
detected by this algorithm (depth discontinuities do not ex-
ist because the approach is viewpoint independent). Con-
nected (using the local topology) polygons with the same
shape class are then joined to form the seeds of extended
surface patches.

Complete surface patches are found by an iterative
surface growing process that starts from the initial seed
patches. The surface model is the general quadric path
form, unlike thez = f() Monge form used by Besl[3]
(which did go to fourth order, however). The algorithm adds
and deletes members from the list of polygons associated
with a given surface. As discussed above, the surface grow-
ing uses the centres-of-mass of the polygons, rather than the
cloud of raw range points. This is because the surface grow-
ing algorithm extends patches at the patch boundaries, and
therefore it needs to know which points are adjacent to the
boundary. The tessellated surface mesh provides the adja-
cency information, and so we use the centres-of-mass of the

Figure 2. View of merged and tessellated
range data for BAe part.

mesh polygons as the data for the surface shape estimation.
The key ideas behind the algorithm are:� There is competition between patches for polygons.� The algorithm works iteratively between extending the

patch shape and refitting the surface model to the
grouped points.� Small patches are deleted and their polygons are then
available for merging into other patches.� Only planes are extracted on the first pass, as their
curvatures are less stable.� After a surface is fitted, polygons that do not lie within�noisep2 of the fitted surface are returned to the pool
of unfitted polygons.� Adjacent patches with similar shape parameters and at
least 30% shared boundary pixels are merged.� A specialised cylinder fitting is applied to the quadric
surface patches on the final iteration.

Pseudo-code for the surface growing algorithm is given in
Appendix A

Central to the surface patch fitting process is a least
square shape parameter estimation process that determines
both the surface type and the surface shape parameters. The
key ideas of the shape parameter estimation are:� A least-square error criterion is used.� The fitting is for general quadrics (9 parameters), but

has specialisations for some degenerate quadrics (i.e.
planes and cylinders).
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� The selection between the different model shape
classes is based on minimising the surface fit error,
subject to a bias factor related to the number of para-
meters needed for the fit. That is, if the fit error is
comparable, the fit requiring the 3 plane parameters is
preferred to the 9 parameter general quadric fit. More
precisely, we use the Akaike information criterion[1]
to bias the model selection in favour of simpler mod-
els: eplane = 1�2noise��2i + 3�ecylinder = 1�2noise��2i + 5�equadric = 1�2noise��2i + 9�
and the classi with the smallestei is chosen.�i is the
geometric error distance between the model and the
polygon centre-of-mass. Here,� = 32 is a heuristic-
ally chosen weight factor, influenced by a MDL-style
bias term[18].

The pseudo-code for the surface fitting algorithm is given in
Appendix B.

Finally, because this process is intended for manufac-
tured parts, a phase ofpatch edge adjustment occurs. A
majority of surfaces on engineered parts are planes and cyl-
inders, and whenever these surfaces intersect at fold edges,
then geometric descriptions of the patch intersection are
easily obtainable. When the surfaces do not intersect at fold
edges, that is, the intersection has tangent plane continuity,
we do not perform any model improvement at present. This
can leave a ragged boundary joining the surface patches, but
the surface join itself is smooth. As there is no strong im-
age evidence to place the boundary (ie. there is a change in
curvature, but accurately locating this is difficult), we spec-
ulate that the best approach to locating this boundary is to
exploit some problem-specific knowledge (i.e. knowledge
that such boundaries are straight), or ask for user assistance.

In addition, range data near orientation discontinuities
on real parts is often not very good, because of specular re-
flections and also because the range sensor “footprint” will
acquire data from two different surfaces. Thus, one cannot
obtain very accurate patch edge descriptions from the data
near an edge, whereas the intersection of the fitted ideal sur-
faces provide much better edge descriptions. As the inter-
sections are usually either infinite in extent or extend con-
siderably beyond the real patch edge, we apply statistical
tests to determine the extent of the ideal edge in the real
data, by examining proximity of range measurements to the
ideal intersection edge.

Figure 3. Close-up of coarser tessellated
range data for BAe part that is used for sur-
face growing.

3. Results

Here we show the results of the segmentation process on
2 parts. In Figure 1, we see a view of the merged range
data for a part with planar, cylindrical and conical surface
patches. The boundary is a bit ragged because we used the
Hoppe algorithm [16] to tessellate the surface and this al-
gorithm is somewhat sensitive to local surface noise, res-
ulting in small outlying polygonal patches. Figure 5 shows
several views of the segmented surface patches, when rep-
resented by a CAD-like surface representation. Figure 2
shows the merged range data for another similar part, with
a close-up in Figure 3. Notice that, although there is a plane-
cylinder join with tangent plane continuity, which leads to
the ragged patch shown in Figure 4, the complete recon-
structed object surface is smooth. Figure 6 shows several
views of its segmented surface patches. One can see a little
raggedness where the cylindrical surface has the smooth
join with the planar surface. Improving this is a topic of
future research. In a sense, there is not much to see because
the segmentation algorithm has worked well on these parts.

4. Conclusions

This paper has presented a segmentation algorithm
that has the advantage of avoiding the problem of patch
merging when producing a description of all sides of a part
in a common reference frame. It depends primarily on
having merged 3D dataset to provide the accurate relative
positioning of the surface points, from which our quadric
surface patch extraction algorithm can then accurately
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Figure 4. Close-up of ragged cylindrical patch
boundary for BAe part at the point where the
cylinder meets the plane with tangent plane
continuity. The resulting complete surface is
effectively smooth, but the boundary is not
the ideal straight line expected.

extract surface patches. Segmented patch position is on the
order of the range error (0.25 mm), even with engineering
parts that have hard-to-handle developable surfaces.
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A. Pseudo-code of Surface Growing Algorithm

For each of N passes
For each current region R

Do f
If region too small (< 60 polygons),

then move polygons into pool
Fit surface (R), doing cylinder case if last pass
If surface fit fails, then move polygons into pool
If first pass of many, then only extract

initial planes
If second or later pass, then

If region is smaller than an adjacent region,
with whom it shares at least 30% of the
total two-region boundary and all of its
polygons are within2�noisep2 of the
other region’s surface, then move
polygons into pool.

Move the A polygons into the pool that are
further than�noisep2 from the surface.

Add the adjacent B polygons from the pool
that are within�noisep2 of the surface.

Add the C polygons from adjacent
regions that are within�noisep2
of this surface and are closer to this
surface than to their original owner.g while (A > 3 or B+C> 3)

B. Pseudo-code of Surface Fitting Algorithm

Geteplane from plane fit
Getequadric from quadric fit
If plane and quadric fit successful

If cylinder fit is desired
Getecylinder from cylinder fit

Choose surface type with best fit
Else if plane fit successful

Then choose Plane type
Else if quadric fit successful

Then choose Quadric type
Else return NoFit
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Figure 5: Three views of fully segmented UFO
part with plane-cylinder and plane-plane
intersections highlighted in black.

Figure 6: Two views of fully segmented BAe
part with plane-cylinder and plane-plane
intersections highlighted in black.
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