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Abstract

In this paper we consider one aspect of the problem of
automatically building shape models of articulating objects
from example range images. Central to the model construc-
tion problem is the registration of range data, taken from
different vantage points, into a common coordinate frame.
This involves determining a transformation for each set of
range data which aligns overlapping surface points in the
common frame. Current registration algorithms have been
developed specifically for rigid objects, but it is not obvious
how these can be extended to articulated or more generally
deformable objects. Here, we propose that range images of
articulated objects are first segmented into their rigid sub-
components. Each subcomponent can then be registered in
isolation using the existing algorithms designed specifically
for rigid parts and the final model formed by reassembling
all of the submodels. This has motivated the development
of a rigid part segmentation algorithm which is described
and demonstrated here. The algorithm is currently limited
to non-umbilic surfaces, but in this more restricted domain
is shown to work well. Current work is investigating how
the approach can be extended to all surfaces types.

1. Introduction

The widespread use of 3-dimensional shape models in a
broad range of applications has motivated the development
of techniques for automatic model acquisition. This not
only shortens the time it takes to construct models but al-
lows models to incorporate levels of detail which would be
impractical to construct manually. To generate a complete
description of the surface shape of an object, multiple range
measurements are usually taken from a number of vantage
points. These sets of range data are thenregisteredinto a
common coordinate frame and then used to determine the
presence and position of object surfaces [3].

To register each set of range measurements into a com-

mon coordinate frame, the transformation that aligns over-
lapping surface points in the common frame must be de-
termined. For a single rigid and stationary object this trans-
formation simply describes the change in pose of one vant-
age point to another and can be determined by aligning
overlapping surface features using their local shape. For
deformable objects the problem is much more complex as
each transformation not only describes the change in pose
of the vantage point, but also the change in shape of the
object itself. Because of this increased complexity, current
systems for automatic model acquisition tend to be limited
to rigid objects.

In this paper we extend the current model acquisition
techniques to articulated objects and in particular the regis-
tration of range data describing articulating objects. Artic-
ulated objects are the simplest class of deformable object,
and consist of a number of rigid parts which are connec-
ted by non-rigid joints [6]. The final model should not only
describe the surface geometry of the object but should also
contain a kinematic description of the relative movement of
the different parts. Examples of articulated objects that we
may eventually wish to acquire automatically include robot
arms, machine assemblies and, at least to first order, human
beings and animals. A number of researchers have already
used articulated models in applications such as the recogni-
tion of simple articulated objects [5] and to analyse articu-
lated motion [8]. In these examples, however, the models
have been constructed manually beforehand. The problem
that we are interested in is the automatic construction of
these models from range data.

Unfortunately, current registration algorithms cannot be
used to register articulated range data directly because of
the change in the object’s shape between frames. To avoid
this problem we propose that each set of range data is first
partitioned into its rigid subcomponents, allowing the range
data of each subcomponent to be registered in isolation us-
ing current registration algorithms. The final shape model
can then be produced by reassembling all of its subcom-
ponent models. In some related work on motion analysis,



Goldgof [4] developed an algorithm for partitioning artic-
ulated objects into their rigid subcomponents by identify-
ing the object’s joints. He observed that the curvature on
the surface of the rigid subcomponents remains unchanged
during an articulated motion but that the curvature at the ac-
tual joints does change. The object can easily be partitioned
into its subcomponents by removing surface points whose
curvature changes over time. The technique works well in
principle and has been demonstrated on simulated data but
does not provide a general solution. A particular limitation
of the technique is the need for the joint between subcom-
ponents to be fully visable in the range data. Frequently in
real situations joints are either partially or even fully occul-
ded.

The algorithm we have developed processes a pair of
range images at a time and partitions each of them intoN
subimages, whereN is the number of independently mov-
ing, rigid subcomponents that are present in the data. This
processing is carried out in two distinct stages. In the first
stage, theN rigid transformations that align each subcom-
ponent in the first image with the corresponding subcom-
ponent in the second are estimated. In the second stage,
the movement of each surface data point between the two
images is compared with theN estimated transformations
and grouped with any they agree with. This results in the
partitioning we require.

In the next section a detailed description of our rigid part
segmentation algorithm is presented. This is followed by a
demonstration of the algorithm applied to some real range
image data. Finally we summarise the contribution made by
this work and briefly discuss the aims of ongoing and future
work.

2. Rigid Part Partitioning

Given a pair of range images describing an articulated
object, our objective is to partition those images intoN
subimages that correspond to the object’sN rigid parts. We
begin by observing that corresponding surface points that
lie on the same subcomponent will be aligned by the same
rigid transformation, whilst corresponding surface points
that lie on different subcomponents will be aligned by a dif-
ferent rigid transformation. Consider the hypothetical data
in Figure 1 for example. Corresponding points on partA
are aligned by the transformationTA, whilst correspond-
ing points on partB are aligned byTB . This difference
provides a mechanism for distinguishing surface data from
different subcomponents and is the basis of our partitioning
strategy.

To implement this strategy it is necessary to find cor-
responding surface points in the two range images and to
determine the rigid transformation that aligns them. For
non-umbilic surfaces, this can be done using the magnitude
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Figure 1. A hypothetical, articulated ob-
ject comprising two subcomponents connec-
ted by a revolute joint. Features on the
two subcomponents can be differentiated by
the transformation that aligns them between
frames.

and directions of the local principal curvatures at each range
data point. These measurements, along with the surface nor-
mal, define the augmented Darboux frame [1] and are depic-
ted in Figure 2. On umbilic surfaces the magnitude of the
surface curvature is the same in all directions so the direc-
tions of principal curvature are not defined and the Darboux
frame does not exist. To find potential correspondences
between surface points in the two range images, the mag-
nitudes of the minimum and maximum principal curvature
of the surface at each point are compared. If the relative
difference between both of these curvatures for a pair of
surface points is within a specified level of tolerance then
the surface points are considered to be a potential match. If
the maximum and minimum principal curvatures at a point
in the first range image are�1A and�2A respectively, and if
the maximum and minimum principal curvatures at a point
in the second range image are�1B and�2B respectively,
then the pair of points are accepted as a potential corres-
pondence if the following conditions are met.�1A � �1B12 (�1A + �1B) < �1 (1)

And. �2A � �2B12 (�2A + �2B) < �2 (2)

where the level of tolerance is defined by�1 and�2. The
transformation,ti, that aligns the Darboux frames at these
points is then treated as a hypothesis of the transforma-
tion that aligns one of the articulated object’s subcompon-
ents. The set of all potential surface point correspondences



then provides a set of hypothetical transformations,ftig,
for aligning all of the rigid subcomponents present in the
range data.
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Figure 2. If the relative difference between
both the maximum and minimum curvature
at the two surface points is small then they
are considered as a potential match. The
transformation that aligns the Darboux frame
defined at these points then provides a hy-
pothesis of the transformation that aligns the
surfaces.

The use of the Darboux frame for finding point corres-
pondences and for estimating the transformations that align
subcomponents does have a number of disadvantages, how-
ever. First, the Darboux frame only provides a local de-
scription of surface shape and it is likely that many differ-
ent parts of a surface have the same shape locally. This res-
ults in a large number of incorrect surface point correspond-
ences being formed. This problem is made worse by the fact
that curvature measurements are sensitive to noisy data and
quantisation effects, so to ensure that correct point corres-
pondences are found it is necessary to allow a large amount
of tolerance when comparing curvature. Similarly, the ori-
entation of the Darboux frame is also sensitive to noisy data,
resulting in a poor estimate of the alignment transformation
for correct surface point correspondences. The requirement
of non-umbilic surfaces, on which the Darboux frame is
uniquely defined, is also a serious limitation, but we are cur-
rently investigating how this approach might be extended to
planar and spherical surfaces.

2.1. Estimating the Alignment Transformations

We are now left with the problem of estimating theN
rigid transformations,fT̂jg, that align each of the subcom-
ponents present in the pair of range images from the set
of hypotheses,ftig. This is a relatively difficult estima-
tion problem because the number of rigid subcomponents is
unknown, the correct hypotheses are subject to a relatively

large error and because many of the hypotheses are mislead-
ing because of correspondence errors. Given the difficulty
of this problem we have employed an approach based on
the probabilistic Hough transform [9] which is known to be
a robust estimator.

This use of the probabilistic Hough transform is best de-
scribed by first considering a simple case in which the range
images only contain a single rigid object which has under-
gone a transformation,T1. If we have some estimate of
the error on each hypothesis we can estimate the probabil-
ity of measuring the set of hypothetical transformations for
any possible transformationT. To make this calculation
tractable we make the assumption that each hypothesis is
independent. This probability can then be expressed as:P (t1; t2; : : : ; tnjT) =Yi P (tijT) (3)

where the probabilityP (tijT) describes the error on each
hypothesis and

Qi P (tijT) is called the likelihood func-
tion. Intuitively, a good estimate,̂T1, of the rigid transform-
ationT1, that accounts for the set of measured hypotheses,
is obtained by finding the value ofT at which this function
is a maximum. This is themost likelyvalue forT1 given
the set of hypotheses.T̂1 = Max

Yi P (tijT) (4)

In the probabilistic Hough transform algorithm the like-
lihood function is maximised by quantising its allowable
domain and exhaustively evaluating it at every interval. In
practice the logarithm of the likelihood function is evaluated
for efficiency as this only requires addition operations. The
probabilistic Hough transform,H(T), is therefore defined
as: H(T) =Xi ln[P (tijT)] (5)

For estimating alignment transformations in this applica-
tion, the Hough transform represents a 6-dimensional para-
meter space into which entries are accumulated for each hy-
pothesis,ti. In practice the 6-dimensional parameter space
is separated into a pair of 3-dimensional parameter spaces,
representing the rotation and translation components of the
estimated transformations respectively.

So far, little has been said about the hypothesis error
functionP (tijT) but the definition of this is crucial if the
algorithm is to be robust to incorrect hypotheses and if it
is to be able to determine multiple transformation estim-
ates. Consider a pointT in the parameter space that cor-
responds to the transformation that aligns one of the artic-
ulated objects subcomponents. If a particular hypothesis,ti, is a measurement of this particular transformation thenP (tijT) simply describes the measurement error. Ifti is



a measurement of one of the other alignment transforma-
tions or is incorrect because of a correspondence error thenT tells us nothing aboutti. Without further information the
best we can do is say thatP (tijT) is constant. To combine
this information into a single error function,P �(tijT), we
describe the error within three standard deviations using a
multivariate Gaussian with a uniform background probabil-
ity, k, beyond this:P �(tijT) = ( 12�j�tj 12 e��2i =2 �i � 3k Otherwise

(6)

where�t is the covariance matrix that describes the meas-
urement error and�2i is defined as:�2i = [ti �T]T��1t [ti �T] (7)

Having constructed the probabilistic Hough transform in
this manner, the number of significant peaks will corres-
pond to the number of subcomponents in the range data.
The position of each peak in the parameter space then
provides an estimate of the transformationT̂j that aligns
thejth subcomponent in the first range image to its corres-
ponding subcomponent in the second.

2.2. The Partitioning Strategy

The scheme outlined so far provides a robust method for
determining the number of rigid subcomponents present in
a pair of range images and for estimating the transforma-
tions that align each of them. This information is then used
to partition each of the range images into their rigid sub-
components.

Having identified the rigid transformations that align
each of the object subcomponents present in the range data,
it is possible to verify each of the hypotheses,ti, gener-
ated earlier. For each hypothesis we calculate the probabil-
ity P (tijT̂j) for each of the estimated transformationsT̂j .
This is the probability that the hypothesisti would have
been measured if the surface points it was derived from un-
derwent a transformation̂Tj . If this probability is large
for any T̂j then it is probable that the surface points used
to generate the hypothesis lie on thejth subcomponent.
The probability of measuring a particular hypothesisti de-
pends upon both the measurement error on each hypothesis,P (tijT), used earlier and the error on the transformation
estimate. Because the transformation estimate is derived
from numerous hypotheses, the estimate error will be signi-
ficantly less than the hypothesis error and so the following
approximation can be made:P (tijT̂j) � P (tijT) (8)

We then define the distance,dij , between the hypothesis
and the estimate in standard deviations using the Mahalan-
obis distance metric:d2ij = [ti � T̂j ]T��1j [ti � T̂j ] (9)

If we then want 99.9% of the surface points to be in-
cluded in our partitioning, the surface points used to gener-
ate the hypothesisti should be assigned to subcomponentj
if: dij � 3 (10)

3. Experiments

Preliminary results of the rigid part partitioning strategy
are presented here for two range data sets, the first presented
in Figure 3 and the second in Figure 5.

3.1. Experiment 1

Although the motivation for developing a rigid part parti-
tioning strategy has been to isolate the rigid subcomponents
of articulated objects, the technique is also suited to isolat-
ing single rigid objects which have undergone some relat-
ive motion. This is a slightly simpler problem to solve be-
cause it avoids the complication of subcomponents occlud-
ing each other, but provides a good way of testing the prin-
ciple of the algorithm. In this first example, range images
containing a pair of objects which have undergone a dif-
ferent transformation between frames have been used. See
Figure 3.

Both of the Hough transform arrays used in this exper-
iment, to represent the rotation and translation parameters,
contained1003 bins, occupying 8Mb of memory each. The
total time to run the experiment was approximately 6 hours
and 20 minutes on a 50Mhz Sparc 10. Details of the five
largest peaks in the probabilistic Hough transform construc-
ted for the rotation parameters are presented in Table 1. The
second column of the table presents the relative height of
each peak as compared to the highest peak. The two largest
peaks correspond to the two objects present in the range
data and the rotation parameters associated with these peaks
agree with the relative movement of the objects. It is diffi-
cult to make a quantitative analysis of this result because the
objects have been placed by hand so the actual transforma-
tion of each object is not accurately known. An important
observation concerns the relative magnitudes of the peaks
representing the two objects and the peaks which occur by
chance. The height of each peak relative to the biggest is
presented in the second column of Table 1. In this example
the first two peaks are well separated from the rest so that
thresholding the Hough space is relatively straightforward.



(a)

(b)

Figure 3. Each of the objects in these range
images has rotated between frames. The
difference in the respective transformations
provides the necessary information for parti-
tioning the range data into its rigid parts

Peak Height Rel. % �z �y �x
98077.6 100.0 -41.4 1.8 1.8
62013.4 63.2 12.6 1.8 1.8
13600.3 13.9 84.6 -34.2 171.0
13313.4 13.5 109.7 -30.6 171.0
10944.4 11.2 -48.6 37.8 -27.0

Table 1. Details of the five largest peaks in the
rotation Hough transform constructed for the
range data in Figure 3.

Figure 4 presents the partitioning of the range image
in Figure 3 (a) into separate rigid objects. Overall the al-
gorithm has performed very well and the majority of sur-
face data points have been partitioned correctly. Most of
the erroneous points tend to lie close to the edge of the ob-
jects where the estimation of surface curvature is less stable.
It should be possible to improve the result further by post-
processing the partitioned data using morphological operat-
ors.

(b)

(a)

Figure 4. These images present the partition-
ing of the range image in Figure 3 (a).

3.2. Experiment 2

In this experiment a mock-up of a simple articulated joint
is used to provide a more comprehensive test of the parti-
tioning algorithm. The joint is formed by placing a con-



ical object on a cylindrical surface and articulated motion
is simulated by moving the cone over the surface. Figure 5
presents this joint with the cone at two different inclina-
tions. In this example the partitioning is more complicated
because the rotation is no longer in the image plane and
parts of the subcomponents are occluded.

The same Hough transform array sizes were used in this
example, but, because of the smaller number of surface
points, the execution time was slightly less at 5 hours and 10
minutes. Details of the five largest peaks in the probabilistic
Hough transform constructed for the rotation parameters are
presented in Table 2. The two largest peaks correspond to
the two subcomponents present in the range data and the
rotation parameters associated with these peaks agree with
their relative movement.

Peak Height Rel. % �z �y �x
56234.1 100.0 1.8 1.8 55.2
33403.1 59.4 1.8 3.4 1.8
17770.0 31.6 24.5 12.4 64.2
9897.2 17.6 -98.1 17.9 17.5
4048.9 7.2 -45.3 103.5 -34.1

Table 2. Details of the five largest peaks in the
rotation Hough transform constructed for the
range data in Figure 5.

Figure 6 presents the partitioning of the range image in
Figure 5 (a) into its rigid subcomponents. Again the al-
gorithm has performed well, although, in each of the par-
titioned subimages, a distinct region of the surface data
that we would expect to be present is actually missing.
The reason for this phenomenon is that the missing surface
points are not present in both of the range images so it is
impossible to determine which subcomponent they belong
to. This effect has both an advantage and a disadvantage.
The disadvantage is that to obtain a complete description of
the surface of an articulated object more example views are
required. The advantage is that registration of this surface
data is likely to be more reliable because the registration al-
gorithm [2] works best when the data sets to be registered
contain the same surface points.

4. Conclusions and Future Work

The number of applications for 3-dimensional shape
models is steadily growing and the need for more com-
plex models and a reduction in the time to construct models
has motivated the development of techniques for automatic
model construction. Central to the problem of automatic
model construction is the registration of different views of

(b)

(a)

Figure 5. The conical subcomponent has ro-
tated between frames. The difference in the
respective transformations provides the ne-
cessary information for partitioning the range
data into its rigid parts.



(a)

(b)

Figure 6. These images present the partition-
ing of the range image in Figure 5 (a).

an object into a single coordinate frame. Although this re-
gistration process is relatively straightforward for isolated,
rigid objects, extending it to deformable objects has proved
to be more difficult.

To avoid this registration problem we have proposed that
views of articulated objects are first partitioned into their
rigid subcomponents. This then allows views of each rigid
subcomponent to be registered in isolation using existing
algorithms and the final, articulated model constructed by
assembling each of the modelled parts.

Although the idea of partitioning articulated data into ri-
gid subsets has been used in the field of motion analysis the
algorithms used are not suitable for genreral purpose model
construction. The has motivated the development of a new
algorithm. This algorithm has been demonstrated on real
range data and appears to work adequately.

So that the algorithm may be applied more generally, we
are currently investigating ways for extending it to planar
and spherical surfaces. The problem with these types of
surface is that the Darboux frame is not fully constrained as
it can rotate about the normal vector on these surface types.
In principle it is possible to use these weaker constaints. In-
stead of voting for a point in the parameter space we end up
with a plane of votes but a number of these planes for dif-
ferent surface points should intersect at the correct solution.

We are also looking at the use of morphological oper-
ators for post-processing the partitioned data to obtain bet-
ter results. One possible criticism of the technique is the
large amount of storage and computational effort need for
building and searching the probabilistic Hough transform,
although this partitioning process is only performed once
when creating new models. We intend to address this par-
ticular problem by employing a hierarchical strategy [7].
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