
Segmentation of Range Data into RigidSubsets using Planar Surface PatchesA. P. Ashbrook, R. B. Fisher, C. Robertson and N. WergiDepartment of Arti�cial IntelligenceThe University of Edinburgh5, Forrest Hill, Edinburgh, EH1 2QLanthonya@dai.ed.ac.ukAbstractIn this paper we consider one issue of the problem of automatically con-structing geometric models of articulated objects from multiple rangeimages. Automatic model construction has been investigated for rigidobjects, but the techniques used do not extend easily to the articu-lated case. The problem arises because of the need to register surfacemeasurements taken from di�erent viewpoints into a common refer-ence frame. Registration algorithms generally assume that an objectdoes not change shape from one view to the next, but when building amodel of an articulated object, it is necessary for the modes of artic-ulation to be present in the example data. To avoid this problem wepropose that raw surface data of articulated objects is �rst segmentedinto rigid subsets, corresponding to rigid subcomponents of the object.This allows a model of each subcomponent to be constructed using theconventional approach and a �nal, articulated model to be construc-ted by assembling each of the subcomponent models. We describe analgorithm developed to segment range data into rigid subsets based onsurface patch correspondences and present some results.1 IntroductionThe ability to automatically acquire geometric models from example objects isuseful in a growing number of application areas. In the �eld of computer graphics,the need for improvements in realism requires more complex models, but manualmodel construction is time-consuming and di�cult. In industrial settings it isuseful to capture the geometry of existing parts either for the purpose of inspectionor to enable exact replicas to be manufactured automatically. For reasons whichwill be clari�ed shortly, current techniques are generally limited to constructingmodels of single rigid objects. In this paper we suggest how these algorithmsmight be augmented to allow the automatic construction of articulated objects,increasing the scope of this technology. For clarity we de�ne articulated objects asthose objects consisting of a number of rigid parts that are connected by non-rigidjoints [1].
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The established approach for automatic model construction begins by takingsurface measurements from a number of viewpoints so that all of the object'ssurface is captured. Typically, this will be done with a range �nder such as alaser striper or stereo vision system. Either of two di�erent approaches can thenbe taken. In the �rst approach surface primitives are �tted to the raw data ineach of the views of the object, and then the di�erent views are registered byaligning similar primitives [2]. The second approach registers the raw data initiallyusing local surface shape, see for example [3, 4], and then surface primitives are�tted directly to the registered surface data [5]. The second approach is favouredbecause it makes maximum use of the raw data when surface �tting and avoidsthe problem of having to piece together possibly fragmented surface patches fromdi�erent viewpoints that are not perfectly aligned.Whichever approach is taken, the registration process assumes that the shapeof the object does not change as the surface data is acquired. If, however, we wishto automatically capture the geometry and kinematics of an articulated object,then the object's shape must change from example to example. This means thatcurrent registration algorithms cannot be used directly. Rather than developingnew registration algorithms we propose here that the raw measurement data issegmented into rigid subsets each corresponding to a rigid subcomponent of theobject. This will enable models of each subcomponent to be constructed inde-pendently using existing technology and a �nal, articulated model to be formedby assembling each of the subcomponents.The algorithm we have developed processes a pair of range images at a time andsegments each of them intoN sub-images, whereN is the number of independentlymoving, rigid subcomponents which are present in the data. This processing iscarried out in two distinct stages. In the �rst stage, the rigid transformation thataligns most of the data in the �rst image with corresponding data in the secondis estimated. This is done by segmenting the range data into surface patches andthen �nding consistent transformations that align patches in the �rst image withpotential correspondents in the second. In the second stage, the movement of eachsurface patch between the two images is compared to the estimated transformationand removed from the scene if it is in agreement. These two stages are then iterateduntil no surface data remains and the required segmentation is obtained.We have already published a rigid part segmentation algorithm which util-ises point-to-point as opposed to surface patch-to-surface patch correspondencesbetween two range images [6, 7]. In this approach the transformation that alignsobject subcomponents are estimated by aligning rigid coordinate frames de�nedat corresponding surface points. This approach is, however, limited to non-developable surfaces on which an invariant, rigid coordinate frame can be uniquelyde�ned. This limitation has motivated the development of the surface patch basedalgorithm presented here but it is our intention to eventually combine the twoapproaches to produce a general purpose, rigid subcomponent segmentation al-gorithm.In the next section a detailed description of our rigid part segmentation al-gorithm is presented. This is followed by a demonstration of the algorithm appliedto some real range image data. Finally we summarise the contribution made bythis work and brie
y discuss the aims of ongoing and future work.
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2 The Rigid Part Segmentation AlgorithmGiven a pair of range images of an articulated object, Ra and Rb, the goal isto segment the range data into subimages where each subimage represents a rigidsubset of the data. We present an overview of our proposed segmentation algorithmhere, followed by a more detailed description the most important stages.1. Segment the range data into surface patchesEach of the range images, Ra and Rb, is segmented into a set of surfacepatches, fSag and fSbg respectively. Currently, only planar patches areused by later stages of the algorithm.2. For each surface patch in fSag �nd corresponding patches in fSbgGeometric constraints may be used to form correspondences between surfacespatches. In the work presented here, however, we consider each planar patchin fSbg to be a potential correspondence with each planar patch in fSag.3. Determine constraints on the rigid transformations that align ob-ject subcomponents from surface patch correspondencesEach correct surface patch correspondence provides a constraint on the rigidtransformation that aligns the object subcomponent that the surfaces belongto. Incorrect surface correspondences will provide erroneous constraints butthese will be rejected later.4. Vote for each rigid transformation constraint in a discretized para-meter spaceA Hough transform is used to accumulate evidence for the transformationsthat align each of the object subcomponents. Surface patches belongingto the same subcomponent will provide constraints which intersect at thecorrect alignment transformation parameters, producing a peak in the Houghspace. The 6-parameter rigid, transformation space is partitioned into a 3-parameter rotation space and a 3-parameter translations space for e�ciency.5. The largest peak in the parameter space is found and surfacepatches which contributed to the peak are noted as belonging tothe same rigid subcomponent and then removedThe rigid transformation which accounts for most of the data in the rangeimages is identi�ed by �nding the largest peak in the Hough space. If theconstraint provided by a pair of corresponding surfaces passes close to thepeak then those surfaces are removed. The removed surfaces provide therequired segmentation.6. Steps 4 and 5 are repeated until no more peaks can be foundThe Hough transform is reconstructed using the remaining surfaces to �ndthe next most signi�cant subcomponent. This is repeated until no morepeaks are found in the Hough transform.
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2.1 Surface Patch SegmentationWe have used a surface patch segmentation algorithm which segments the surfacedata into quadric patches using the local surface curvature. The full details ofthis algorithm can be found in the literature [8, 9, 10] but can be summarised asfollows:1. The range data is smoothed using edge preserving, di�usion smoothing.2. The mean and Gaussian curvatures are calculated at each data point.3. Seed surface patches are formed by grouping neighbouring pixels whose meanand Gaussian curvature have the same sign.4. Seed patches are either eliminated or cleaned up using a morphological op-erator.5. Quadric surfaces are �tted to the seed patches and pixels are regroupedaccording to the surface patch they are closest to. This is repeated until astable segmentation is obtained.In the future we intend to use generic quadric patches to segment range data intorigid subsets but we currently only use planar patches.2.2 Calculating the Transformation ConstraintsEach pair of corresponding surface patches provides a constraint, Ti, on the para-meters of a rigid transformation. For planar surface patches the constraint �xes 3of the 6 degrees of freedom and can be de�ned as:Ti(�; du; dv) = f(n̂m; n̂n; dm; dn;�; du; dv) (1)where n̂m and n̂n are the surface normals of the two patches and dm and dn arethe corresponding perpendicular distances from the surfaces to the origin. Thedetails of the function f are presented in Appendix A. The parameters �, du anddv represent the remaining degrees of freedom.2.3 Representing Noisy ConstraintsIn the absence of measurement error, each of the constraints on the transforma-tion of a particular subcomponent will intersect at the appropriate point in theparameter space. In practice, measurement errors are inevitable and unless theseare accounted for in an appropriate manner, the robustness of the segmentationalgorithm will su�er.To ensure robust performance, measurement errors are propagated through thealgorithm to determine the error on each of the constraints. If the errors on all ofthe plane parameters are represented by the covariance matrix �plane (these errorsare themselves calculated by error propagation) then the error on each constraintTi can be approximated as:�i(�; du; dv) = rfT�planerf (2)
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Parameter No. Bins Full RangeRotation Hough Transform Dimensions 40x40x40 2�x2�x2�Translation Hough Transform Dimensions 20x20x20 100mmx100mmx100mmTable 1: Algorithm parameters used in the two experimentswhere rf is the matrix of partial derivatives of f with respect to the plane para-meters, commonly known as the Jacobian matrix.Having established the error on each constraint we can establish a probabilitydensity function, Pi(T;�; du; dv), to integrate into the Hough transform instead ofmaking a single vote. In fact, it is the logarithm of Pi which is integrated into theHough transform so as to turn a product of probabilities into a sum of independentterms. For convenience we make the simplifying assumption that the errors areGaussian so that: Pi(T;�; du; dv) / e��2 (3)where: �2 = [Ti �T]T�i[Ti �T] (4)This provides a probability for each cell in the Hough space, de�ned by T, which isa function of the parameters �, du and dv. To evaluate this probability we chooseparameter values which maximise Pi. The result is that each constraint is nowsmeared in the parameter space according to its sensitivity to measurement errors.It is worth noting the relationship between the constraint error and the size ofthe planar patches used to derive the constraint. For small patches the error oneach of the plane parameters is relatively large which results in a more smearedconstraint entry in the Hough transform. For large patches the constraint entrybecomes much sharper as the constraint error is small.3 ExperimentsRigid part segmentation results are presented in this section for 2 sets of rangedata acquired using a laser striper. For both experiments the same algorithmparameters have been used. These are detailed in Table 1.3.1 Experiment 1Figure 1(a) presents a pair of range images each of which contains 2 rigid sub-components. The subcomponents are simple metallic blocks with planar surfaces.The top �gure depicts the components in their original position and bottom �guredepicts the components after they have undergone a relative transformation. Thedimensions of these range images are 165x182 pixels and 152x175 pixels respect-ively.
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(a) (b) (c)Figure 1: (a) The range images used in experiment 1. (b) The surface patchessegmented from the range images on the �rst pass of the algorithm. (c) The surfacepatches segmented on the second pass.The �rst pass of the rigid part segmentation algorithm took 213 seconds on a200MHz Ultra Sparc for this data set. Figure 2 presents details of the rotationHough transform. The lower of the 2 charts on the left presents the heights of eachof the peaks detected in the rotation space in order of importance. The upper ofthese charts presents the positions in the rotation parameter space of the largesttwo peaks. The segmentation of the range data based on the largest of these peaksis presented in Figure 1(b).Having removed the �rst rigid subcomponent the segmentation algorithm wasrun again with the remaining range data, this time taking 74 seconds. The detailsof the rotation Hough transform peak for this pass are presented in the right chartsin Figure 2. The height of this peak is now signi�cantly smaller than in the �rstpass as much of the spurious Hough transform voting has been removed. Theposition of this peak has also moved, and is likely to give a better estimate of thesecond alignment transformation. The segmentation of the range data based onthe largest of the new peaks is presented in Figure 1(c). No surface patches areleft at this stage so the segmentation is terminated.3.2 Experiment 2Figure 3(a) presents a pair of range images each of which contains 2 rigid subcom-ponents. The top �gure depicts the components in their original position and thebottom �gure depicts the components after they have undergone a relative trans-
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Figure 2: Details of the rotation hough transform constructed for the range datain Figure 1. The graphs on the left show the position of the �rst two peaks (top)and the height of all of the peaks found in order of signi�cance (bottom) after the�rst pass of the algorithm. The graphs on the right show the peaks details afterthe second pass.
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formation. The dimensions of these range images are 181x174 pixels and 184x177pixels respectively.

(a) (b) (c)Figure 3: (a) The range images used in experiment 2. (b) The surface patchessegmented from the range images on the �rst pass of the algorithm. (c) The surfacepatches segmented on the second pass.The �rst pass of the rigid part segmentation algorithm took 242 seconds on a200MHz Ultra Sparc for this data set. The segmentation of the range data basedon the largest of these peaks is presented in Figure 3(b). Having removed the �rstrigid subcomponent the segmentation algorithm was run again with the remainingrange data, this time taking 74 seconds. The segmentation of the range data basedon the largest of the new peaks is presented in Figure 3(c). One small surface patchis left at this stage so the segmentation is continued but no peaks are found andthe process terminates.4 Conclusions and Future WorkAs a �rst step in the process of automatically building geometric models of artic-ulated objects from multiple range images, we have developed an algorithm thatsegments range images into rigid subsets. Evidence for the presence of rigid objectsubcomponents can be determined by measuring the transformations that alignsurface points and patches from one range image to another. Here only our newwork on surface patches is reported but we have previously reported successfulsegmentation using point correspondences. Surface patches belonging to the samesubcomponent can be identi�ed as a set of surface pairings which undergo a similar
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transformation. The algorithm has been tested on real range data and shown towork e�ectively.One advantage of this approach is that, in addition to performing the requiredrigid part segmentation, an estimate of the transformation that aligns each sub-component between images is determined. This will provide a valuable initialestimate for performing accurate surface registration later on.In this paper, the algorithm has only been tested on planar surface patches, butthe approach can be extended to many di�erent classes of surface. We are currentlyexperimenting with cylindrical surfaces and intend to extend the algorithm to otherdegenerate surfaces, for example spheres. We have already published results on arigid part segmentation algorithm which works on non-developable surfaces andintend to integrate these algorithms together to provide a general purpose tool.AcknowledgementsThe work presented in this paper was funded by a UK EPSRC grant GR/H86905.A The Planar Patch Transformation ConstraintThe alignment of a pair of planar patches, Sam and Sbn, provides 3 constraints onthe 6 parameter rigid transformation, Ti, where:Ti(�; du; dv) = f(n̂m; n̂n; dm; dn;�; du; dv) (5)In homogeneous coordinates this can be expressed as the product of a rotation,ri, and a translation, ti. Ti(�; du; dv) = ti(du; dv)ri(�) (6)The rotation constraint is the set of rotations that align the surface patch normals,n̂m with n̂n. This is determined by �nding an arbitrary rotation that aligns n̂mwith n̂n and then rotating around n̂n. We can align n̂m with n̂n by rotatingby � radians about the bisector, n̂b, to n̂m and n̂n. This gives the value of theconstraint at � = 0. ri(0) = rot(n̂b; �) (7)where rot(n̂; �) describes the rotation around an axis de�ned by n̂ by � radians.A good reference for this can be found in [11]. The constraint is then found byrotating around n̂n. ri(�) = rot(n̂n; �)rot(n̂b; �) (8)The translation that aligns a pair of planes is only constrained in the direction ofthe plane normals. Note that the �rst plane has now been rotated so that it isparallel with the second. ti(0; 0) = n̂n(dn � dm) (9)
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We now de�ne a pair of orthogonal vectors û and v̂, which are mutually orthogonalto the plane normals n̂n, such that:̂u� v̂ = n̂n (10)The translation constraint is then given by:ti(du; dv) = n̂n(dn � dm) + ûdu+ v̂dv (11)References[1] Kambhamettue, C. and Goldgof, D. B., \Nonrigid Motion Analysis", Handbook ofPattern Recognition and Image Processing: Computer Vision, Ed. Young, T. Y.,Chapter 11, 1994.[2] Orr, M. J. L., Hallam, J., Fisher, R. B., \Fusion through Interpretation", Proc. 2ndEuropean Conf. on Computer Vision, (ed) G. Sandini, pp 801{805, St. MargheritaLigure, Italy, 1992.[3] Besl, P. J. and McKay, N. D., \A Method for Registration of 3-D Shapes", IEEEPAMI, 14(2), pp239-256, 1992.[4] Eggert, D., Fitzgibbon, A. W. and Fisher, R. B., \Simultaneous Registration ofMultiple Range Views for use in Reverse Engineering", Proc. ICPR, pp243-247,1996.[5] Fisher, R. B., Fitzgibbon, A. W. and Eggert, D., \Extracting Surface Patches fromComplete Range Descriptions", Proc. International Conference on Recent Advancesin 3-D Digital Imaging and Modeling , Ottawa, 1997.[6] Ashbrook, A. P. and Fisher, R. B., \Constructing Models of Articulating Objects:Range Data Partitioning", to be presented at the International Conference on Re-cent Advances in 3-D Digital Imaging and Modeling , Ottawa, 1997.[7] Ashbrook, A. P. and Fisher, R. B., \Segmentation of Range Data for the AutomaticConstruction of Models of Articulated Objects", to be presented at the IEEE Non-rigid and Articulated Motion Workshop, Puerto Rico, 1997.[8] Besl, P. J. and Jain, R. C., \Segmentation through variable-order surface �tting",IEEE PAMI, 10(2), pp167-192, 1988.[9] Fitzgibbon, A. W., Eggert, D. W. and Fisher, R. B., \High-level CAD Model Ac-quisition from Range Images", Computer-Aided Design, Vol 29(4), pp321{330, 1997.[10] A. Hoover, G. Jean-Baptiste, X. Jiang, P. J. Flynn, H. Bunke, D. Goldgof, K.Bowyer, D. Eggert, A. Fitzgibbon, R. Fisher, \An Experimental Comparison ofRange Segmentation Algorithms", IEEE Trans. Pat. Anal. and Mach. Intel., Vol18(7), pp673{689, July 1996.[11] Paul, R. P. \Robot Manipulators: Mathematics, Programming, and Control", MITPress, 1981.


