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Abstract

In this paper we consider one issue of the problem of automatically con-
structing geometric models of articulated objects from multiple range
images. Automatic model construction has been investigated for rigid
objects, but the techniques used do not extend easily to the articu-
lated case. The problem arises because of the need to register surface
measurements taken from different viewpoints into a common refer-
ence frame. Registration algorithms generally assume that an object
does not change shape from one view to the next, but when building a
model of an articulated object, it is necessary for the modes of artic-
ulation to be present in the example data. To avoid this problem we
propose that raw surface data of articulated objects is first segmented
into rigid subsets, corresponding to rigid subcomponents of the object.
This allows a model of each subcomponent to be constructed using the
conventional approach and a final, articulated model to be construc-
ted by assembling each of the subcomponent models. We describe an
algorithm developed to segment range data into rigid subsets based on
surface patch correspondences and present some results.

1 Introduction

The ability to automatically acquire geometric models from example objects is
useful in a growing number of application areas. In the field of computer graphics,
the need for improvements in realism requires more complex models, but manual
model construction is time-consuming and difficult. In industrial settings it is
useful to capture the geometry of existing parts either for the purpose of inspection
or to enable exact replicas to be manufactured automatically. For reasons which
will be clarified shortly, current techniques are generally limited to constructing
models of single rigid objects. In this paper we suggest how these algorithms
might be augmented to allow the automatic construction of articulated objects,
increasing the scope of this technology. For clarity we define articulated objects as
those objects consisting of a number of rigid parts that are connected by non-rigid
joints [1].
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The established approach for automatic model construction begins by taking
surface measurements from a number of viewpoints so that all of the object’s
surface is captured. Typically, this will be done with a range finder such as a
laser striper or stereo vision system. Either of two different approaches can then
be taken. In the first approach surface primitives are fitted to the raw data in
each of the views of the object, and then the different views are registered by
aligning similar primitives [2]. The second approach registers the raw data initially
using local surface shape, see for example [3, 4], and then surface primitives are
fitted directly to the registered surface data [5]. The second approach is favoured
because it makes maximum use of the raw data when surface fitting and avoids
the problem of having to piece together possibly fragmented surface patches from
different viewpoints that are not perfectly aligned.

Whichever approach is taken, the registration process assumes that the shape
of the object does not change as the surface data is acquired. If, however, we wish
to automatically capture the geometry and kinematics of an articulated object,
then the object’s shape must change from example to example. This means that
current registration algorithms cannot be used directly. Rather than developing
new registration algorithms we propose here that the raw measurement data is
segmented into rigid subsets each corresponding to a rigid subcomponent of the
object. This will enable models of each subcomponent to be constructed inde-
pendently using existing technology and a final, articulated model to be formed
by assembling each of the subcomponents.

The algorithm we have developed processes a pair of range images at a time and
segments each of them into N sub-images, where IV is the number of independently
moving, rigid subcomponents which are present in the data. This processing is
carried out in two distinct stages. In the first stage, the rigid transformation that
aligns most of the data in the first image with corresponding data in the second
is estimated. This is done by segmenting the range data into surface patches and
then finding consistent transformations that align patches in the first image with
potential correspondents in the second. In the second stage, the movement of each
surface patch between the two images is compared to the estimated transformation
and removed from the scene if it is in agreement. These two stages are then iterated
until no surface data remains and the required segmentation is obtained.

We have already published a rigid part segmentation algorithm which util-
ises point-to-point as opposed to surface patch-to-surface patch correspondences
between two range images [6, 7]. In this approach the transformation that aligns
object subcomponents are estimated by aligning rigid coordinate frames defined
at corresponding surface points. This approach is, however, limited to non-
developable surfaces on which an invariant, rigid coordinate frame can be uniquely
defined. This limitation has motivated the development of the surface patch based
algorithm presented here but it is our intention to eventually combine the two
approaches to produce a general purpose, rigid subcomponent segmentation al-
gorithm.

In the next section a detailed description of our rigid part segmentation al-
gorithm is presented. This is followed by a demonstration of the algorithm applied
to some real range image data. Finally we summarise the contribution made by
this work and briefly discuss the aims of ongoing and future work.
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The Rigid Part Segmentation Algorithm

Given a pair of range images of an articulated object, R® and R, the goal is
to segment the range data into subimages where each subimage represents a rigid
subset of the data. We present an overview of our proposed segmentation algorithm
here, followed by a more detailed description the most important stages.

1.

Segment the range data into surface patches

Each of the range images, R® and R’, is segmented into a set of surface
patches, {S?} and {S’} respectively. Currently, only planar patches are
used by later stages of the algorithm.

. For each surface patch in {S°} find corresponding patches in {S’}

Geometric constraints may be used to form correspondences between surfaces
patches. In the work presented here, however, we consider each planar patch
in {S°} to be a potential correspondence with each planar patch in {S%}.

. Determine constraints on the rigid transformations that align ob-

ject subcomponents from surface patch correspondences

Each correct surface patch correspondence provides a constraint on the rigid
transformation that aligns the object subcomponent that the surfaces belong
to. Incorrect surface correspondences will provide erroneous constraints but
these will be rejected later.

. Vote for each rigid transformation constraint in a discretized para-

meter space

A Hough transform is used to accumulate evidence for the transformations
that align each of the object subcomponents. Surface patches belonging
to the same subcomponent will provide constraints which intersect at the
correct alignment transformation parameters, producing a peak in the Hough
space. The 6-parameter rigid, transformation space is partitioned into a 3-
parameter rotation space and a 3-parameter translations space for efficiency.

. The largest peak in the parameter space is found and surface

patches which contributed to the peak are noted as belonging to
the same rigid subcomponent and then removed

The rigid transformation which accounts for most of the data in the range
images is identified by finding the largest peak in the Hough space. If the
constraint provided by a pair of corresponding surfaces passes close to the
peak then those surfaces are removed. The removed surfaces provide the
required segmentation.

. Steps 4 and 5 are repeated until no more peaks can be found

The Hough transform is reconstructed using the remaining surfaces to find
the next most significant subcomponent. This is repeated until no more
peaks are found in the Hough transform.
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2.1 Surface Patch Segmentation

We have used a surface patch segmentation algorithm which segments the surface
data into quadric patches using the local surface curvature. The full details of
this algorithm can be found in the literature [8, 9, 10] but can be summarised as
follows:

1. The range data is smoothed using edge preserving, diffusion smoothing.
2. The mean and Gaussian curvatures are calculated at each data point.

3. Seed surface patches are formed by grouping neighbouring pixels whose mean
and Gaussian curvature have the same sign.

4. Seed patches are either eliminated or cleaned up using a morphological op-
erator.

5. Quadric surfaces are fitted to the seed patches and pixels are regrouped
according to the surface patch they are closest to. This is repeated until a
stable segmentation is obtained.

In the future we intend to use generic quadric patches to segment range data into
rigid subsets but we currently only use planar patches.

2.2 Calculating the Transformation Constraints

Each pair of corresponding surface patches provides a constraint, T;, on the para-
meters of a rigid transformation. For planar surface patches the constraint fixes 3
of the 6 degrees of freedom and can be defined as:

Ti(a7du7dv) = f(ﬁm,ﬁn,dm,dn;a,du,dv) (1)

where 1, and 1,, are the surface normals of the two patches and d,, and d,, are
the corresponding perpendicular distances from the surfaces to the origin. The
details of the function f are presented in Appendix A. The parameters a, du and
dv represent the remaining degrees of freedom.

2.3 Representing Noisy Constraints

In the absence of measurement error, each of the constraints on the transforma-
tion of a particular subcomponent will intersect at the appropriate point in the
parameter space. In practice, measurement, errors are inevitable and unless these
are accounted for in an appropriate manner, the robustness of the segmentation
algorithm will suffer.

To ensure robust performance, measurement errors are propagated through the
algorithm to determine the error on each of the constraints. If the errors on all of
the plane parameters are represented by the covariance matrix X,4n (these errors
are themselves calculated by error propagation) then the error on each constraint
T; can be approximated as:

Yi(a,du,dv) = VfTEpl{mer (2)
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| Parameter | No. Bins | Full Range

Rotation Hough Transform Dimensions 40x40x40 2wx27wx27

Translation Hough Transform Dimensions | 20x20x20 | 100mmx100mmx100mm

Table 1: Algorithm parameters used in the two experiments

where Vf is the matrix of partial derivatives of f with respect to the plane para-
meters, commonly known as the Jacobian matrix.

Having established the error on each constraint we can establish a probability
density function, P;(T; «, du, dv), to integrate into the Hough transform instead of
making a single vote. In fact, it is the logarithm of P; which is integrated into the
Hough transform so as to turn a product of probabilities into a sum of independent
terms. For convenience we make the simplifying assumption that the errors are
Gaussian so that:

P;(T; o, du, dv) x e X’ (3)

where:

x* =[T; = T]"S4[T; - T] (4)

This provides a probability for each cell in the Hough space, defined by T, which is
a function of the parameters a, du and dv. To evaluate this probability we choose
parameter values which maximise P;. The result is that each constraint is now
smeared in the parameter space according to its sensitivity to measurement errors.
It is worth noting the relationship between the constraint error and the size of
the planar patches used to derive the constraint. For small patches the error on
each of the plane parameters is relatively large which results in a more smeared
constraint entry in the Hough transform. For large patches the constraint entry
becomes much sharper as the constraint error is small.

3 Experiments

Rigid part segmentation results are presented in this section for 2 sets of range
data acquired using a laser striper. For both experiments the same algorithm
parameters have been used. These are detailed in Table 1.

3.1 Experiment 1

Figure 1(a) presents a pair of range images each of which contains 2 rigid sub-
components. The subcomponents are simple metallic blocks with planar surfaces.
The top figure depicts the components in their original position and bottom figure
depicts the components after they have undergone a relative transformation. The
dimensions of these range images are 165x182 pixels and 152x175 pixels respect-
ively.
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Figure 1: (a) The range images used in experiment 1. (b) The surface patches
segmented from the range images on the first pass of the algorithm. (c) The surface
patches segmented on the second pass.

The first pass of the rigid part segmentation algorithm took 213 seconds on a
200MHz Ultra Sparc for this data set. Figure 2 presents details of the rotation
Hough transform. The lower of the 2 charts on the left presents the heights of each
of the peaks detected in the rotation space in order of importance. The upper of
these charts presents the positions in the rotation parameter space of the largest
two peaks. The segmentation of the range data based on the largest of these peaks
is presented in Figure 1(b).

Having removed the first rigid subcomponent the segmentation algorithm was
run again with the remaining range data, this time taking 74 seconds. The details
of the rotation Hough transform peak for this pass are presented in the right charts
in Figure 2. The height of this peak is now significantly smaller than in the first
pass as much of the spurious Hough transform voting has been removed. The
position of this peak has also moved, and is likely to give a better estimate of the
second alignment transformation. The segmentation of the range data based on
the largest of the new peaks is presented in Figure 1(c). No surface patches are
left at this stage so the segmentation is terminated.

3.2 Experiment 2

Figure 3(a) presents a pair of range images each of which contains 2 rigid subcom-
ponents. The top figure depicts the components in their original position and the
bottom figure depicts the components after they have undergone a relative trans-
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Figure 2: Details of the rotation hough transform constructed for the range data
in Figure 1. The graphs on the left show the position of the first two peaks (top)
and the height of all of the peaks found in order of significance (bottom) after the
first pass of the algorithm. The graphs on the right show the peaks details after
the second pass.
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formation. The dimensions of these range images are 181x174 pixels and 184x177
pixels respectively.
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Figure 3: (a) The range images used in experiment 2. (b) The surface patches
segmented from the range images on the first pass of the algorithm. (c) The surface
patches segmented on the second pass.

The first pass of the rigid part segmentation algorithm took 242 seconds on a
200MHz Ultra Sparc for this data set. The segmentation of the range data based
on the largest of these peaks is presented in Figure 3(b). Having removed the first
rigid subcomponent, the segmentation algorithm was run again with the remaining
range data, this time taking 74 seconds. The segmentation of the range data based
on the largest of the new peaks is presented in Figure 3(c). One small surface patch
is left at this stage so the segmentation is continued but no peaks are found and
the process terminates.

4 Conclusions and Future Work

As a first step in the process of automatically building geometric models of artic-
ulated objects from multiple range images, we have developed an algorithm that
segments range images into rigid subsets. Evidence for the presence of rigid object
subcomponents can be determined by measuring the transformations that align
surface points and patches from one range image to another. Here only our new
work on surface patches is reported but we have previously reported successful
segmentation using point correspondences. Surface patches belonging to the same
subcomponent can be identified as a set of surface pairings which undergo a similar
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transformation. The algorithm has been tested on real range data and shown to
work effectively.

One advantage of this approach is that, in addition to performing the required
rigid part segmentation, an estimate of the transformation that aligns each sub-
component between images is determined. This will provide a valuable initial
estimate for performing accurate surface registration later on.

In this paper, the algorithm has only been tested on planar surface patches, but
the approach can be extended to many different classes of surface. We are currently
experimenting with cylindrical surfaces and intend to extend the algorithm to other
degenerate surfaces, for example spheres. We have already published results on a
rigid part segmentation algorithm which works on non-developable surfaces and
intend to integrate these algorithms together to provide a general purpose tool.
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A The Planar Patch Transformation Constraint

The alignment of a pair of planar patches, 8% and S?, provides 3 constraints on
the 6 parameter rigid transformation, T;, where:

T;(a,du,dv) = f(fy,, iy, dp, dp; o, du, dv) (5)

In homogeneous coordinates this can be expressed as the product of a rotation,
r;, and a translation, t;.

Ti(a, du, dv) = t;(du, dv)r;(a) (6)

The rotation constraint is the set of rotations that align the surface patch normals,
n,, with fn,. This is determined by finding an arbitrary rotation that aligns 1,
with 1,, and then rotating around #n,. We can align n,, with i, by rotating
by 7 radians about the bisector, fi,, to fi,,, and n,. This gives the value of the
constraint at a = 0.

r;(0) = rot (i, 7) (7)

where rot (i, a) describes the rotation around an axis defined by fi by « radians.
A good reference for this can be found in [11]. The constraint is then found by
rotating around .

ri(a) = rot(f,, a)rot(iy, ) (8)

The translation that aligns a pair of planes is only constrained in the direction of
the plane normals. Note that the first plane has now been rotated so that it is
parallel with the second.

ti(0= O) = ﬁn(dn - dm) (9)
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We now define a pair of orthogonal vectors i1 and ¥, which are mutually orthogonal
to the plane normals n,,, such that:

i x ¥ =n, (10)

The translation constraint is then given by:

t;(du, dv) = 1, (d,, — dp) + Gdu + Vdv (11)
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